
15th International Workshop on the

Implementation of Logics
– Preliminary Proceedings –

May 26, 2024, Balaclava, Mauritius

Konstantin Korovin,
Michael Rawson,

Stephan Schulz (eds.)

Foreword

The 15th International Workshop on the Implementation of Logics was held
with the 25th International Conference on Logic for Programming, Artificial
Intelligence and Reasoning (LPAR-25) in Balaclava, on Mauritius in the
Indian Ocean. IWIL ran on May 26th, with a program that included one
invited talk, one contributed talk, and three paper presentations, followed by
a lively panel discussion on the architecture of modern automated reasoning
systems.

This volume collects the presented papers.

Konstantin Korovin, Michael Rawson, Stephan Schulz

IWIL-24 Program

• Tanel Tammet (Tallinn University of Technology, Estonia): Invited
talk: Hash Indexes for Resolution-based FOL Provers

• Daniel Ranalter, Cezary Kaliszyk (University of Innsbruck, Austria):
User-aided Conjecturing for Automated Theorem Proving

• Stephan Schulz (DHBW Stuttgart, Germany): Shared Terms and
Cached Rewriting

• Jack McKeown, Geoff Sutcliffe (University of Miami, United States):
Dataset-Specific Strategies for the E Theorem Prover

• David Fuenmayor (University of Bamberg, Germany), Jack McKeown,
Geoff Sutcliffe (University of Miami, United States): Towards StarExec
in the Cloud

• IWIL Panel: Software Architectures for Modern Automated Reasoning
Systems - Lessons Learned?

– Nikolaj Bjørner (Microsoft Research)

– Katalin Fazekas (Technical University of Vienna)

– Michael Rawson (Technical University of Vienna)

– Stephan Schulz (DHBW Stuttgart)

– Tanel Tammet (Tallinn University of Technology, Estonia)

– Moderation: Konstantin Korovin (University of Manchester)

1

Dataset-Specific Strategies for the E Theorem Prover

Jack McKeown and Geoff Sutcliffe

University of Miami, Miami, Florida, U.S.A.
jam771@miami.edu, geoff@cs.miami.edu

Abstract

The E automated theorem proving system has an “automatic” mode that analyzes the
input problem in order to choose an effective proof search strategy. A strategy includes the
term/literal orderings, given clause selection heuristics, and a number of other parameters.
This paper investigates the idea of creating one strategy for a given dataset of problems
by merging the strategies chosen by E’s automatic mode over all of the problems in the
dataset. This strategy merging approach is evaluated on the MPTPTP2078, VBT, and
SLH-29 datasets. Surprisingly, the merged strategies outperform E’s automatic mode over
all three datasets.

1 Introduction

The core component of many saturation-based Automated Theorem Proving (ATP) systems is
the “given clause” algorithm [11]. This algorithm maintains two sets of clauses: a processed
set that is initially empty, and an unprocessed set that initially contains the clauses from the
axioms and negated conjecture. One at a time, a given clause is selected from the unprocessed
set and brought into the processed set, then inferences are made between the given clause and
other clauses in the processed set. The inferred clauses are added to the unprocessed set modulo
redundancy criteria [8]. This process repeats until the empty clause is derived, the unprocessed
set becomes empty, or a resource limit is reached. The derivation of the empty clause indicates
that the conjecture is a theorem of the axioms, whereas an empty unprocessed set indicates
that the conjecture is not a theorem of the axioms.

The saturation-based ATP system E [9] implements the DISCOUNT version [3] of the given
clause algorithm. E has an automatic mode that analyzes the input problem in order to choose
an effective proof search strategy. Currently, an E strategy consists of 108 key-value pairs,
for the various parameters that influence the proof search. This paper investigates the idea of
merging the strategies chosen by E’s automatic mode for a set of problems into a single merged
strategy, and using that merged strategy for all the problems.

Section 2 briefly summarizes how E performs given clause selection, how its given clause
selection can be controlled by users, and how this control is defined in an E strategy. Section 3
describes how the strategy merging is performed, and describes how the merged strategies
are evaluated. Section 4 describes the datasets used for evaluation, gives details about the
experiments performed, and presents the experimental results. Section 5 summarizes the results,
and concludes the paper.

2 Given Clause Selection in E

In E, given clause selection is guided by clause evaluation functions (CEFs). Each CEF eval-
uates each unprocessed clause, determining a priority for each clause in a priority queue asso-
ciated with the CEF. E supports a number of different CEFs, each of which is composed of an
instance of a weight function that evaluates the clause, and a priority function that restricts the

Dataset-Specific Strategies for the E Theorem Prover Jack McKeown & Geoff Sutcliffe

scope of the CEF, (Each priority function partitions the clauses in the unprocessed set so that
a certain class of clauses is given preference regardless of the evaluations given by the weight
function). Each weight function has a set of parameters unique to that weight function, which
are provided after the priority function. Figure 1 shows an example CEF with its components
labeled.

weight function︷ ︸︸ ︷
Refinedweight (

priority function︷ ︸︸ ︷
PreferGoals ,

other parameters︷ ︸︸ ︷
3,2,2,1.5,2)︸ ︷︷ ︸

clause evaluation function

Figure 1: Example of an E clause evaluation function

During proof search CEFs are used to select the given clauses according to a heuristic. A
heuristic is an ordered list of CEFs, each having its own integer heuristic weight that determines
how many clauses should be selected from that CEF’s priority queue before moving on to the
next CEF (or back to the first CEF after the last CEF in the heuristic). Figure 2 shows an
example of an E heuristic, with each line showing a CEF prefixed by its heuristic weight: the
first CEF would be used once to select the given clause, then the second CEF would be used
four times, then the third CEF would be used ten times, etc. This schedule would then repeat
after 1 + 4 + 10 + 3 + 5 = 23 given clause selections. The heuristic is only one part of a full E
strategy. A full strategy with all 108 strategy parameters is shown in Appendix A. E strategies
include a heuristic like the one shown in Figure 2 as the value of the heuristic def key.

(1.ConjectureRelativeSymbolWeight(SimulateSOS,0.5,100,100,100,100,1.5,1.5,1),

4.ConjectureRelativeSymbolWeight(ConstPrio,0.1,100,100,100,100,1.5,1.5,1.5),

10.FIFOWeight(PreferProcessed),

3.ConjectureRelativeSymbolWeight(PreferNonGoals,0.5,100,100,100,100,1.5,1.5,1),

5.Refinedweight(SimulateSOS,3,2,2,1.5,2))

Figure 2: Example of an E heuristic.

E’s automatic mode for choosing a strategy is invoked using the --auto flag, and if invoked
with the --print-strategy flag, E will print out the strategy in the format shown in Ap-
pendix A. Therefore, an E strategy can be saved to a file by invoking E with the --auto and
--print-strategy flags and redirecting stdout to a file. The format of these files is similar to
JSON.

3 Strategy Merging

In this work the strategies chosen by --auto for every problem in a given dataset are saved
without attempting to solve the problems, and these saved strategies are merged in multiple
ways to create other strategies that are used to solve all of the problems. This primarily
means creating merged strategies that are each evaluated on all problems, but it also means
creating per-problem strategies via merging. For all 107 strategy parameters other than the
heuristic def, the value used in the merged strategy is the value that was used most frequently
in the individual strategies. The heuristic def is merged in a more sophisticated way, as
follows.

This paper evaluates three ways of merging the heuristic def parameter:

2

Dataset-Specific Strategies for the E Theorem Prover Jack McKeown & Geoff Sutcliffe

1. The simplest way to merge the heuristics takes the union of the sets of CEFs used in
all the saved strategies, and assigns a heuristic weight of 1 to each of them. The E
strategy that results from merging heuristics in this way is called MasterAllOnes. This
approach ignores the heuristic weights in the saved strategies as well as the number of
saved strategies that each CEF occurs in.

2. The second way to merge the heuristics is to assign to each CEF a heuristic weight
proportional to the sum of its heuristic weights from all of the saved strategies. The
sums are not used directly because having very large heuristic weights would cause E to
repeatedly ignore important clauses that are not preferred by a CEF being repeatedly
used, but are preferred by other CEFs. Therefore the sums are scaled down by a constant
factor and then rounded up using the ceil function. The scaling factor is determined so
that the maximum heuristic weight is 20. This number was chosen as a middle ground
between no scaling and aggressive scaling that would lose more information about the
distribution of CEFs due to the rounding. The ceil function guarantees that no CEF
is removed entirely from the merged heuristic. The E strategy that results from merging
heuristics this way is called MasterWeighted.

3. To evaluate the impact of MasterWeighted’s repeated use of the same CEFs, the Master-
Weighted strategy is also evaluated using a modified version of E that attempts to avoid
consecutively using the same CEF. It does this by going through all CEFs in a round-robin
fashion. Each CEF gets a counter is initialized at its heuristic weight, and this counter is
decremented when that CEF is used. When the counter reaches zero, that CEF is skipped
until the heuristic resets. Once all counters reach zero, they are all reset to their heuristic
weights. This is easiest to understand by example. Originally, the heuristic “3*CEF1,
2*CEF2, 1*CEF3” leads to the the following sequence of CEFs used for selection (before
repeating): “1,1,1,2,2,3.” Under the modified version of E, the same heuristic leads to
the following sequence instead: “1,2,3,1,2,1.” This method is called MasterWeightedRR.

4. Lastly, a version of the MasterWeighted strategy is created by using only the saved strate-
gies for problems that --auto was able to solve. This strategy, referred to as MasterSuc-
cess, was created with the intuition that the strategies suggested by --auto should only
be trusted to contribute to the merged strategy if they were successful on the problem for
which they were suggested.

In all of the strategies, the CEFs in the merged heuristic appear in order of decreasing
heuristic weight so that the “best” CEFs are first. In MasterAllOnes, where all heuristic
weights are set to 1, the order is the same as in MasterWeighted.

3.1 Potential ITP Application

While the strategy merging described above could be helpful when dealing with a fixed dataset of
problems, it would also be useful if a merged strategy could be evolved and applied incrementally
for a growing set of related problems. This situation is encountered when ATP systems are
used as “hammers” in Interactive Theorem Proving (ITP) systems [5]. A well-known example
is the Isabelle [7] ITP system, whose “Sledgehammer” mode [6] submits subproblems to ATP
systems like E.

5. To evaluate the potential of strategy merging for a growing set of problems, another set of
strategies was created, collectively referred to as MasterIncremental. These strategies are

3

Dataset-Specific Strategies for the E Theorem Prover Jack McKeown & Geoff Sutcliffe

created in the order that the problems are added to the set, with the kth problem getting
assigned a merged strategy formed from the --auto strategies of the first k problems.
The strategy assigned to the first problem is the same as its --auto strategy, and the
strategy assigned to the last problem is the same as MasterWeighted. Each merging is
done the same as in MasterWeighted, only with different sets of input strategies.

3.2 Ablation Study

The heuristic def parameter was hypothesized to have a larger impact on the results than
the other parameters in merged strategies because given clause selection is the core of the proof
search. To test this hypothesis, two other methods for strategy merging were evaluated.

6. The first method, called CommonHeuristic, sets the heuristic def parameter to its value
in the MasterWeighted strategy, but keeps the value chosen by --auto for all the other
107 strategy parameters.

7. The second method, called CommonElse, is essentially the converse, keeping the value
chosen by --auto for the heuristic def parameter but setting the other 107 strategy
parameters to their values in the MasterWeighted strategy.

3.3 An Auto-based Baseline

While the strategy merging can produce a strategy that generally outperforms E’s automatic
strategies, it is unclear whether this is due to the merged strategy being better than all of
the --auto strategies, or if E’s --auto mode is assigning suboptimal strategies from its set of
available strategies.

8. To test this, every unique strategy that E’s --auto mode assigns over all problems in a
dataset is evaluated on all problems in the dataset. A baseline method called AutoAll is
created by picking the best performing strategy for each problem in the dataset. Therefore,
if even one strategy solves a problem, then AutoAll solves that problem. This simulates
how good E’s --auto mode could be if it perfectly picked the best strategy for each
problem (from its set of available strategies).

4 Data, Experiments, and Results

All in all, nine methods for solving a set of problems were evaluated: --auto, AutoAll, Mas-
terAllOnes, MasterWeighted, MasterWeightedRR, MasterSuccess, MasterIncremental, Com-
monHeuristic, and CommonElse. MasterAllOnes, MasterWeighted, MasterWeightedRR, and
MasterSuccess each consist of a single E strategy, whereas the other methods have a different
strategy for each problem.

All methods were evaluated on three datasets: MPTPTP2078, VBT, and SLH-29. The
MPTPTP2078 dataset is a TPTP-compliant version of the MPTP2078 dataset [1] that consists
of problems formed from the derivation of the Bolzano-Weierstrass theorem in the Mizar Math-
ematical Library [4]. These problems come in “bushy” and “chainy” variants, with the bushy
variants having only the most immediately relevant axioms and the chainy variants having a
larger set of axioms. The “bushy” variants of the problems were used in this work. The VBT
and SLH-29 datasets were both used in the CASC-J11 competition [10], and come from the

4

Dataset-Specific Strategies for the E Theorem Prover Jack McKeown & Geoff Sutcliffe

Sledgehammer mode of the Isabelle theorem prover. The VBT dataset consists of 8000 prob-
lems generated by Isabelle’s Sledgehammer mode from the Van Emde Boas Trees entry in the
Isabelle Archive of Formal Proofs [2]. The problems are available in multiple logics, and the
typed-first order versions were used here. The SLH-29 dataset is a collection of 8400 higher-
order problems that also come from interactions with the Sledgehammer mode in Isabelle. For
most strategy parameters the --auto setting is largely consistent across problems within each
dataset. For example, in the MPTPTP2078, VBT, and SLH-29 datasets, only 16, 3, and 27
strategy parameters, respectively, had two or more values used in at least 5% of the problems.

The strategy merging and experimental setup are diagramed in Figure 3. The process is the
same for all datasets:

1. E is used to save strategies for each problem using --auto --print-strategy.

2. The saved strategies are merged in the ways described above to get the strategies for
MasterAllOnes, MasterWeighted, and MasterIncremental.

3. CommonHeuristic and CommonElse strategies are created for each problem by taking
some parameter values from the saved per-problem strategies and others from the Mas-
terWeighted strategy.

4. E is invoked on all problems using the --auto flag. The set of solved problems is used
to select the saved strategies from step 1 that are then used to make the MasterSuccess
strategy.

5. E is invoked on all problems using the MasterAllOnes, MasterWeighted, MasterSuccess,
MasterIncremental, CommonHeuristic, and CommonElse methods.

6. Every strategy suggested by --auto is used for every problem to get the AutoAll results.

Strategies are loaded into E using the --parse-strategy flag, and every call to E includes
the flags --soft-cpu-limit=60 and --cpu-limit=65, which limit CPU time.

The results are shown in Tables 1 and 2. Table 1 shows the number of problems solved by
each method. Table 2 shows the median number of given clauses selected before finding a proof,
for only problems solved by all methods and excluding problems solved during presaturation
interreduction (which is not guided by a strategy). In both tables the best result for each dataset
is bolded. Because AutoAll is the clear winner in terms of solved problems and processed clauses
for all datasets, the second best results are also bolded.

Dataset --auto
Auto
All

Master
AllOnes

Master
Weighted

Master
Weighted

RR

Master
Success

Master
Incr.

Common
Heuristic

Common
Else

M’2078 1151 1438 1219 1210 1201 1199 1199 1170 1086
VBT 2637 3596 2701 2841 2858 2806 2785 2710 2521
SLH-29 3396 4203 3642 3743 3565 3505 3556 3430 3371

Table 1: Problems solved by each method

An additional perspective on the results is given by Figures 4, 5, and 6. The vertical
lines in these figures show the same information as Table 1. Each row of the black and white
background represents one strategy, and each column represents one problem. The rows and

5

Dataset-Specific Strategies for the E Theorem Prover Jack McKeown & Geoff Sutcliffe

Figure 3: Strategy merging and experimental setup

Dataset --auto
Auto
All

Master
AllOnes

Master
Weighted

Master
Weighted

RR

Master
Success

Master
Incr.

Common
Heuristic

Common
Else

M’2078 104 51.5 92 103.5 119.5 117 112 97 105
VBT 1794.5 693.5 1475 1565 1524 1600.5 1558 1531 1878
SLH-29 1431 492 874.5 751 827.5 760 757 932 1038

Table 2: Median number of clauses processed before finding a proof.
(For only problems solved by all methods)

columns are sorted such that the strategy that solves the most problems appears on top and the
problems that are solved by the most strategies appear on the left. For instance, the fact that
the transition from black to white occurs earlier in Figure 5 than in Figure 4 suggests that the
problems in the VBT dataset are harder on average than the problems in the MPTPTP2078
dataset.

The MasterAllOnes and MasterWeighted strategies both improve upon --auto in terms of
number of problems solved and processed clauses on all datasets. The MasterWeighted strategy
solves more problems than the MasterAllOnes strategy on the VBT and SLH-29 datasets, but
not on the MPTPTP2078 dataset. Perhaps this is because the MPTPTP2078 problems are
solved in fewer given clause selections on average. The MasterAllOnes strategy uses more
unique CEFs in the short-term, but the MasterWeighted strategy ostensibly uses the CEFs in

6

Dataset-Specific Strategies for the E Theorem Prover Jack McKeown & Geoff Sutcliffe

Figure 4: MPTPTP2078 Experiment Results

Figure 5: VBT Experiment Results

better proportions in the long-term. Even if many CEFs agree that an important clause should
be selected, the repeated use of a single CEF in the MasterWeighted strategy could delay the
clause’s selection. In such a case, the MasterAllOnes strategy would select the important clause
more quickly. As problem difficulty increases, however, this potential delay would represent a
smaller proportion of the total selections needed to find a proof. This was the motivation behind
the MasterWeightedRR method. The results were mixed, however, with MasterWeightedRR
solving fewer problems than both MasterWeighted and MasterAllOnes on the MPTPTP2078
and SLH datasets, but more than both the VBT dataset.

The AutoAll results suggest that E’s auto mode could be improved by selecting a more
effective strategy for each problem without modifying the underlying set of candidate strategies
that E’s --auto mode uses. Additionally, the AutoAll result provides context that merged
strategies are not universally better than the individual strategies, although they are better on
average than the particular ones chosen by E’s --auto mode.

The MasterSuccess strategies perform worse than both the MasterWeighted strategy and
MasterAllOnes strategy in terms of both number of problems solved and processed clauses.
This is surprising because this strategy is constructed by merging only the strategies that were
successful in solving their associated problem. Perhaps failure to solve a problem is more of
an indication that the problem is difficult than it is an indication that the strategy chosen by
--auto is bad.

The MasterIncremental strategies perform worse than MasterWeighted and MasterAllOnes

7

Dataset-Specific Strategies for the E Theorem Prover Jack McKeown & Geoff Sutcliffe

Figure 6: SLH Experiment Results

on all datasets in terms of both number of problems solved and processed clauses. In light
of the general success of strategy merging, this was unsurprising because fewer strategies are
being merged to create each MasterIncremental strategy than were merged in MasterAllOnes
or MasterWeighted. That being said, MasterIncremental solves more problems than --auto on
all three datasets and uses fewer processed clauses (median) on the VBT and SLH-29 datasets,
suggesting that incremental strategy merging could be useful within ITP “hammers”.

The CommonHeuristic strategies outperform the --auto strategies on each dataset, whereas
the CommonElse strategies do not, except for in terms of the number of clauses processed on the
SLH-29 dataset. This suggests a coupling between the 107 merged non-heuristic def strategy
parameters and the merged heuristic def parameter. The merged non-heuristic def param-
eter values are beneficial, but only when used in conjunction with the merged heuristic def

parameter. (It cannot be the case that the merged heuristic is the only helpful merged param-
eter, because MasterWeighted outperforms CommonHeuristic.)

5 Conclusion

This paper demonstrates that, at least for the three datasets used here, it is possible to im-
prove upon E’s automatic strategy by merging the strategies that E automatically chooses, and
then using the merged strategy for all of the problems. While this approach would likely be
less effective over a very diverse dataset, this strategy merging seems to be a helpful way to
inject helpful bias for a homogenous dataset. Additionally, incremental strategy merging shows
promise for incorporation into ITP tools like Sledgehammer.

References

[1] J. Alama, D. Kühlwein, E. Tsivtsivadze, J. Urban, and T. Heskes. Premise Selection for Mathe-
matics by Corpus Analysis and Kernel Methods. CoRR, abs/1108.3446, 2011.

[2] T. Ammer and P. Lammich. van Emde Boas Trees. Archive of Formal Proofs, November 2021.
https://isa-afp.org/entries/Van_Emde_Boas_Trees.html, Formal proof development.

[3] Jürgen Avenhaus, Jörg Denzinger, and Matthias Fuchs. DISCOUNT: A System for Distributed
Equational Deduction. In Rewriting Techniques and Applications: 6th International Conference,
RTA-95 Kaiserslautern, Germany, April 5–7, 1995 Proceedings 6, pages 397–402. Springer, 1995.

[4] G. Bancerek, C. Bylinski, A. Grabowski, A. Kornilowicz, R. Matuszewski, A. Naumowicz, K. Pak,
and J. Urban. Mizar: State-of-the-art and Beyond. In Intelligent Computer Mathematics - In-

8

https://isa-afp.org/entries/Van_Emde_Boas_Trees.html

Dataset-Specific Strategies for the E Theorem Prover Jack McKeown & Geoff Sutcliffe

ternational Conference, CICM July 13-17, 2015, Proceedings, volume 9150 of Lecture Notes in
Computer Science, pages 261–279. Springer, 2015.

[5] J. Blanchette, C. Kaliszyk, L. Paulson, and J. Urban. Hammering Towards QED. Journal of
Formalized Reasoning, 9(1):101–148, 2016.

[6] Jia Meng and Lawrence C. Paulson. Translating Higher-Order Clauses to First-Order Clauses.
Journal of Automated Reasoning, 40(1):35–60, 2008.

[7] T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL: A Proof Assistant for Higher-Order Logic,
volume 2283. Springer Science & Business Media, 2002.

[8] J. A. Robinson. A machine-oriented logic based on the resolution principle. J. ACM, 12(1):23–41,
1965.

[9] S. Schulz, S. Cruanes, and P. Vukmirovic. Faster, Higher, Stronger: E 2.3. In Proceedings of
the 27th International Conference on Automated Deduction, number 11716 in Lecture Notes in
Computer Science, pages 495–507. Springer-Verlag, 2019.

[10] G. Sutcliffe and M. Desharnais. The 11th IJCAR Automated Theorem Proving System Competi-
tion - CASC-J11. AI Commun., 36(2):73–91, 2023.

[11] A’ Voronkov. Algorithms, Datastructures, and Other Issues in Efficient Automated Deduction.
In R. Gore, A. Leitsch, and T. Nipkow, editors, Proceedings of the International Joint Conference
on Automated Reasoning, number 2083 in Lecture Notes in Artificial Intelligence, pages 13–28.
Springer-Verlag, 2001.

A Example Strategy

Here is the strategy chosen by E for the MPT0001+1.p problem from the MPTPTP2078 dataset,
given as an example of a strategy file. The whitespace around the heuristic has been adjusted
for readability, so it might not work within E without edits.

{

{

ordertype: KBO6

to_weight_gen: precedence

to_prec_gen: invfreqhack

rewrite_strong_rhs_inst: true

to_pre_prec: ""

conj_only_mod: 0

conj_axiom_mod: 0

axiom_only_mod: 0

skolem_mod: 0

defpred_mod: 0

force_kbo_var_weight: false

to_pre_weights: ""

to_const_weight: 0

to_defs_min: false

lit_cmp: 1

lam_w: 20

db_w: 10

ho_order_kind: lfho

}

no_preproc: false

eqdef_maxclauses: 20000

eqdef_incrlimit: 20

formula_def_limit: 24

9

Dataset-Specific Strategies for the E Theorem Prover Jack McKeown & Geoff Sutcliffe

sine: "Auto"

add_goal_defs_pos: false

add_goal_defs_neg: false

add_goal_defs_subterms: false

heuristic_name: Default

heuristic_def: "(

1.ConjectureRelativeSymbolWeight(SimulateSOS,0.5,100,100,100,100,1.5,1.5,1),

4.ConjectureRelativeSymbolWeight(ConstPrio,0.1,100,100,100,100,1.5,1.5,1.5),

1.FIFOWeight(PreferProcessed),

1.ConjectureRelativeSymbolWeight(PreferNonGoals,0.5,100,100,100,100,1.5,1.5,1),

4.Refinedweight(SimulateSOS,3,2,2,1.5,2)

)"

prefer_initial_clauses: false

selection_strategy: SelectComplexExceptUniqMaxHorn

pos_lit_sel_min: 0

pos_lit_sel_max: 9223372036854775807

neg_lit_sel_min: 0

neg_lit_sel_max: 9223372036854775807

all_lit_sel_min: 0

all_lit_sel_max: 9223372036854775807

weight_sel_min: 0

select_on_proc_only: false

inherit_paramod_lit: false

inherit_goal_pm_lit: false

inherit_conj_pm_lit: false

enable_eq_factoring: true

enable_neg_unit_paramod: true

enable_given_forward_simpl: true

pm_type: ParamodSim

ac_handling: 1

ac_res_aggressive: true

forward_context_sr: true

forward_context_sr_aggressive: false

backward_context_sr: false

forward_subsumption_aggressive: false

forward_demod: 2

prefer_general: false

condensing: false

condensing_aggressive: false

er_varlit_destructive: true

er_strong_destructive: true

er_aggressive: true

split_clauses: 0

split_method: 0

split_aggressive: false

split_fresh_defs: true

rw_bw_index_type: FP7

pm_from_index_type: FP7

pm_into_index_type: FP7

sat_check_grounding: ConjMinMinFreq

sat_check_step_limit: 5000

sat_check_size_limit: 9223372036854775807

sat_check_ttinsert_limit: 9223372036854775807

10

Dataset-Specific Strategies for the E Theorem Prover Jack McKeown & Geoff Sutcliffe

sat_check_normconst: false

sat_check_normalize: false

sat_check_decision_limit: 10000

filter_orphans_limit: 9223372036854775807

forward_contract_limit: 9223372036854775807

delete_bad_limit: 2000000000

mem_limit: 0

watchlist_simplify: true

watchlist_is_static: false

use_tptp_sos: false

presat_interreduction: true

detsort_bw_rw: false

detsort_tmpset: false

arg_cong: all

neg_ext: off

pos_ext: off

ext_rules_max_depth: -1

inverse_recognition: false

replace_inj_defs: false

lift_lambdas: true

lambda_to_forall: true

unroll_only_formulas: true

elim_leibniz_max_depth: -1

prim_enum_mode: pragmatic

prim_enum_max_depth: -1

inst_choice_max_depth: -1

local_rw: false

prune_args: false

preinstantiate_induction: false

fool_unroll: true

func_proj_limit: 0

imit_limit: 0

ident_limit: 0

elim_limit: 0

unif_mode: single

pattern_oracle: true

fixpoint_oracle: true

max_unifiers: 4

max_unif_steps: 256

}

11

Towards StarExec in the Cloud

David Fuenmayor1, Jack McKeown2, and Geo� Sutcli�e2

1 University of Bamberg, Bamberg, Germany
david.fuenmayor@uni-bamberg.de
2 University of Miami, Miami, USA

jam771@miami.edu,geoff@cs.miami.edu

Abstract

StarExec has been central to much progress in logic solvers over the last 10 years. It was
recently announced that StarExec Iowa will be decommissioned, and while StarExec Miami
will continue to operate while funding is available, it will not be able to support all the logic
solver communities currently using the larger StarExec Iowa. In the long term StarExec
will necessarily have to migrate to new compute environments. This paper describes work
being done to reengineer StarExec as a cloud-native application using container technology
and infrastructure-as-code practices. The �rst step has been to containerise StarExec and
ATP systems so that they can be run on a broad range of computer platforms. The next
step in process is to write a new backend in StarExec so that Kubernetes can be used to
orchestrate distribution of StarExec job pairs over whatever compute nodes are available.
Supported by an Amazon Research Award, a new version of StarExec will be deployed in
AWS.

1 Introduction

Automated Theorem Proving (ATP) is concerned with the development and use of tools that
automate sound reasoning: the derivation of conclusions that follow inevitably from facts.
Automated Theorem Proving (ATP) is at the heart of many computational tasks, in particular
for veri�cation [12, 10] and security [8].1 New and emerging application areas include chemistry
[44], biology [6], medicine [14], elections [21, 4], auctions [5], privacy [18], law [24], ethics [9],
religion [22, 2, 16], and business [11]. ATP systems are also used as components of more complex
Arti�cial Intelligence (AI) systems, and the impact of ATP is thus extended into many facets
of society.

The Thousands of Problems for Theorem Provers (TPTP) World [40] is a well established
infrastructure that supports research, development, and deployment of ATP systems. The
TPTPWorld includes the TPTP problem library [39], the TSTP solution library [37], standards
for writing ATP problems and reporting ATP solutions [41, 36], tools and services for processing
ATP problems and solutions [37], and it supports the annual CADE ATP System Competition
(CASC) [38]. Since its �rst release in 1993 the ATP community has used the TPTP World
as an appropriate and convenient infrastructure for ATP system development, evaluation, and
application. The TPTP World has a diverse, engaged, and sustained user community, with
various parts of the TPTP World being deployed in a range of applications in both academia
and industry.2 The web page www.tptp.org provides access to all components.

The TPTP problem library was motivated by the need to provide support for meaningful
ATP system evaluation. The need to provide support for meaningful system evaluation has
been recognized in many other logic solver communities, e.g., TPTP [42], SAT [15], SMT [7],
Termination [19], etc. For many years testing of logic solvers was done on individual developers'

1In AWS - aws.amazon.com/what-is/automated-reasoning/, aws.amazon.com/security/provable-security/.
2TPTP has contributed to recognized research in 627 publications that cite [39], according to Google Scholar.

https://www.tptp.org
https://aws.amazon.com/what-is/automated-reasoning/
https://aws.amazon.com/security/provable-security//

Stars in the Clouds Fuenmayor, McKeown, Sutcli�e

computers. In 2010 a proposal for centralised hardware and software support was submitted
to the NSF, and in 2011 a $2.11 million grant3 was awarded. This grant led to the devel-
opment and availability of StarExec Iowa [33] in 2012, and a subsequent $1.00 million grant4

in 2017 expanded StarExec to Miami. StarExec has been central to much progress in logic
solvers over the last 10 years, supporting 16 logic solver communities, used for running many
annual competitions [1], and supporting many many users. StarExec Iowa provides community
infrastructure for many logic solver communities, e.g., ASP, QBF, SAT, SMT, Termination,
etc, while StarExec Miami is used by the TPTP community. StarExec Miami has features that
take advantage of TPTP standards, and is also used to host CASC.

It was recently announced that StarExec Iowa will be decommissioned. The maintainer
of StarExec Iowa explained that �the plan is to operate StarExec as usual for competitions
Summer 2024 and Summer 2025, and then put the system into a read-only mode for one year
(Summer 2025 to Summer 2026)�. The 2017 grant for StarExec Miami paid for the hardware and
three years of system administration. The hardware is still hosted by the University of Miami
High Performance Computing group, funded on a shoe-string budget by the TPTP World.
While StarExec Miami will continue to operate while funding is available, it will not be able to
support all the logic solver communities currently using the larger StarExec Iowa. In the long
term StarExec will necessarily have to migrate to new compute environments, and several plans
are (at the time of writing) being discussed. This paper describes work being done to reengineer
StarExec as a cloud-native application using container technology and infrastructure-as-code
practices. The �rst step has been to containerise5 StarExec and ATP systems so that they can
be run on a broad range of computer platforms. The next step in process is to write a new
backend in StarExec so that Kubernetes can be used to orchestrate distribution of StarExec job
pairs over whatever compute nodes are available. Supported by an Amazon Research Award
(see Section 5) a new version of StarExec will be deployed in AWS. This StarExec instance
will be fully functional and available to the community (as much as our budget allows). It
will also serve as an exemplary implementation for those willing to deploy their own, possibly
customized, StarExec on their own computers or in the cloud.

This paper is organized as follows: Section 2 provides a short background to ATP systems,
StarExec, and containerisation. Section 3 describes how StarExec has been containerised, and
Section 4 describes how ATP systems have been containerised. Section 5 explains how the
containerised StarExec and ATP systems will be deployed in a Kubernetes setting. Section 6
concludes and looks forward to future work.

All the software described in the paper is available from . . .
github.com/StarExecMiami/StarExec-ARC.

2 Background

2.1 StarExec

Figure 1 shows the architecture of the currently deployed StarExec Miami. The hardware
consists of a single head node and multiple compute nodes. The head node provides the browser

3NSF Awards 1058748 and 1058925, led by Aaron Stump and Cesare Tinelli at the University of Iowa
4NSF Award 1730419
5Strictly, �images� are built, and the images are deployed in containers. But keeping with common use of

the terminology, we say �container images� and �containerise�.

2

https://github.com/StarExecMiami/StarExec-ARC

Stars in the Clouds Fuenmayor, McKeown, Sutcli�e

interface for users, in particular it accepts job requests that generate job pairs consisting of an
ATP system and a problem �le, does internal scheduling, and uses the SUN Grid Engine (SGE)
to distribute the job pairs to the compute nodes. (For development and testing, the head node
can also run job pairs itself using a local backend.) The head node maintains a relational
MariaDB database, and all the nodes access an NFS mounted shared �le system. The database
records everything, including locations of the ATP systems' �les and the problem �les in the �le
system. Job pairs executing on a compute node have their time and memory usage limited and
reported by the runsolver [26] utility (the BenchExec [3] utility in StarExec Iowa). The results
and resource usage data from completed job pairs are stored in the �le system, and recorded
in the database. The browser interface provides the necessary facilities for user management,
uploading ATP systems, uploading problem �les, browsing the ATP systems and problems,
creating jobs, imposing resource limits in jobs, tracking job progress, browsing and downloading
job results, and deleting ATP systems, problems, jobs, etc.

SGE server
runsolver
ATP system
Problem

MariaDB File system

As many
as you
have

Results

Job
pair

Head Node
StarExec

head node
StarExec
Local backend
SGE client
backend

Compute Node
StarExec

compute node
SGE server
runsolver
ATP system
Problem

Compute Node
StarExec

compute node

Figure 1: StarExec Architecture

2.2 ATP Systems

ATP Systems are complex pieces of software, typically using advanced data structures [28],
sophisticated algorithms [43], and tricky code optimizations [27]. They are written in a variety of
programming languages: Prolog [23, 13], Scala [32], C [29], C++ [25], OCaml [17], Python [30],
etc. Their build processes include techniques such as parser generators [31], Make�les, code
repositories, speci�c versions of libraries, etc. For a user who is focussed on an application
of ATP, installing an ATP system can be a deal breaker. Many early users selected a weaker
system, e.g., Otter [20], for their experiments because it was readily available and easy enough
to install. There have been some proposals for standardising the ATP system build process,
e.g., tptp.org/Proposals/SystemBuild.html, but the diversity of ATP system software makes
conformity nigh impossible. An alternative is to push the task back on the system developers,
and one approach to this is containerising ATP systems, as discussed in Section 4.

3

https://tptp.org/Proposals/SystemBuild.html

Stars in the Clouds Fuenmayor, McKeown, Sutcli�e

2.3 Containerisation

Containers are a technology stemming from the concept of operating-system-level virtualiza-
tion.6 A container is a lightweight, isolated environment that packages and runs applications
with all their dependencies as a self-contained unit in user space, while safely sharing the (Linux)
kernel with other containers. This encapsulation facilitates seamless software deployment across
diverse computing landscapes. Containers are instantiated from read-only images that contain
all the necessary components and instructions for creating a container, including application
code, runtime platform, libraries, environment variables, and con�guration �les. An image is
de�ned in a �le named Dockerfile (or Containerfile) using a standard syntax. The task of
generating a container image de�nition for an existing application so it can be run as a container
is often referred to as �containerisation�.

Containerising an application o�ers numerous bene�ts, including scalability, resource e�-
ciency, enhanced security, and improved observability. Since containers share the host operating
system's kernel, they incur less overhead compared to traditional virtualisation techniques. This
characteristic enables containers to be started and stopped quickly, facilitating rapid scaling of
applications to meet �uctuating demands. Containerisation also supports observability akin to
bare-metal environments through kernel-level mechanisms such as eBPF7 and cgroups8, which
enable sophisticated monitoring and resource management. The isolation provided by contain-
ers helps prevent con�icts between applications and enhances security by limiting the impact
of potential vulnerabilities.

Popular containerisation platforms, e.g., Docker, Podman, LXD, and rkt, have signi�cantly
contributed to the widespread adoption of container technology within the modern IT land-
scape. Notably, Kubernetes (often abbreviated as K8s) has emerged as the de-facto industry
standard for container orchestration: automating the deployment, scaling, and management of
containerised applications. Kubernetes' YAML-based con�guration manifests (JSON-variants
are also supported) have become widely adopted as a language for declarative infrastructure-
as-code (IaC), enabling developers and operations teams to manage infrastructure through
declarative, version-controlled code, rather than through the traditional error-prone mixture of
imperative scripts and manual processes. IaC thus facilitates consistent, repeatable, and auto-
mated provisioning and deployment of servers, networks, and other infrastructure components.

As an �operating system for the cloud�, Kubernetes o�ers several distributions with varying
levels of functionality (and complexity). Nowadays, there exist several lightweight production-
ready distributions, e.g., k3s (k3s.io), k0s (k0sproject.io), and microK8s (microk8s.io),
that greatly simplify the deployment and management of Kubernetes environments, especially
in development, testing, and small-scale production scenarios. These distributions provide an
accessible entry point for organizations and individuals looking to adopt Kubernetes without
the overhead of its full-scale versions, thus democratizing access to this pivotal technology.

3 Containerising StarExec

StarExec (see Section 2.1) is based around a head node that coordinates activities, in particular
the creation of jobs as sets of job pairs, with each pair consisting of an ATP system and a problem
�le. MariaDB is used to store job information and results, and NFS is used to share disk space
between the head node and compute nodes. StarExec currently o�ers two backends for running

6See en.wikipedia.org/wiki/OS-level_virtualization
7Extended Berkeley Packet Filter, see en.wikipedia.org/wiki/EBPF
8Linux's control groups, see en.wikipedia.org/wiki/Cgroups

4

https://k3s.io/
https://k0sproject.io/
https://microk8s.io/
https://en.wikipedia.org/wiki/OS-level_virtualization
https://en.wikipedia.org/wiki/EBPF
https://en.wikipedia.org/wiki/Cgroups

Stars in the Clouds Fuenmayor, McKeown, Sutcli�e

job pairs: the local backend that runs pairs on the same computer as the head node, and the
Sun Grid Engine (SGE) backend that sends pairs out to compute nodes.

So far, the head node with a local backend has been successfully containerised - see the
starexec-containerised directory of the GitHub repository. It includes . . .

� A Dockerfile for building a StarExec image with a local backend.

� A StarExec con�guration �le (database credentials, special StarExec directory paths,
default StarExec users, NFS mount path, etc.).

� Various scripts used in the Dockerfile to con�gure and build StarExec. These scripts
are responsible for:

� Installing and con�guring StarExec dependencies including Java, Apache Tomcat,
ant, MariaDB, SPSS, and more.

� Creating new user accounts (at the operating system level) used for running jobs.

� Changing permissions of certain �les and directories that StarExec depends on.

� Building StarExec using ant, which also initializes the database.

� A README.md �le explaining how to build and run the image.

The deployment of StarExec Miami was a real challenge, requiring installation and con�g-
uration of many pieces of software. The containerisation approach aims to make this process
simple and repeatable, eliminating the need to understand the complex environment require-
ments of StarExec. While the containerisation of StarExec with a local backend is somewhat
valuable on its own, it is most importantly a �rst step towards the deployment of a full StarExec
cluster in the cloud. Section 5 explains how this will be done.

4 Containerising ATP Systems

While the grand plan is to deploy ATP systems in a containerised StarExec, and in a Kubernetes
hosted version of StarExec, containerising ATP systems is independently useful because it
allows ATP systems to be easily deployed in users' applications. It would be great if ATP
systems developers become super enthusiastic about containerising their systems after reading
this section ,.

The ATP systems' are containerised in a hierarchy, shown in Figure 2. The underlying
operating system is ubuntu:latest from dockerhub . . .

hub.docker.com/_/ubuntu
The ubuntu-arc9 container image adds to ubuntu:latest using apt-get to install common
software such as cmake, git, tcsh, python3, and wget. ubuntu-arc also creates an artifacts
directory where the components required for an ATP system's execution are placed.

The tptp-world container image provides utilities from the TPTP World that are used
by ATP systems, e.g., SPCForProblem detects the Specialist Problem Class (SPC) [42] of a
problem that is used by some ATP systems to decide on what search parameters to use. To
support these utilities some libraries that are not part of the ubuntu-arc have to be added.
Additionally, the runsolver utility for limiting and reporting the resources used by an ATP
system is added. (See Section 4.3 for information about the forthcoming ResourceLimitRun
utility that will replace runsolver.) The details of building the ATP-system:version and ATP-

system:version-RLR container images are provided in Section 4.1.

9�arc� for �Automated Reasoning Containerisation, or Automated Reasoning in the Cloud�.

5

https://hub.docker.com/_/ubuntu

Stars in the Clouds Fuenmayor, McKeown, Sutcli�e

ATP-system:version-RLR

ATP-system:version

ubuntu:latest

ubuntu-arc

tptp-world

Figure 2: ATP System Container Image Hierarchy

4.1 Building ATP System Containers

Each ATP-system:version container image is built on top of the ubuntu-arc container image,
and with the tptp-world container image forms the base for the �nal ATP-system:version-RLR
container image. The ATP-system is the container name, and the version/version-RLR are the
container tags. Podman10 requires the container name to be lowercase, so, e.g., E's container
is named eprover. The �RLR� refers to the �Resource Limited Run� program used to monitor
and limit the resources used by the ATP system, either runsolver or ResourceLimitRun. The
�les for containerising some ATP systems are in the provers-containerised directory of the
GitHub repository. A Makefile to containerise E, Leo-III, and Vampire is included.

EachATP-system:version container image adds the ATP system's executables to ubuntu-arc.
The ATP system is retrieved online, e.g., from a GitHub repository, and the necessary com-
mands to build the executables are run. The executables are copied into the /artifacts
directory. The choice of which version of the ATP system to containerise is made inside the
Dockerfile. This localization is necessary because the processes for retrieving and building
particular ATP system versions vary from system to system and from version to version. An
ATP-system:version container image must include a run_system script to run the ATP system,
using whatever incantations are necessary. The parameters for running the ATP system are pro-
vided to the run_system script in �RLR� environment variables (see Section 4.2). Appendix A
shows E's run_system script. It invokes the eprover or eprover-ho binary, depending on
whether the problem is �rst-order or higher-order. Depending on the intent, the appropriate
command line arguments are given to the selected binary along with the problem �le and time
limit. Figure 3 shows the Dockerfile used to create E's eprover:3.0.03 container image,
using the command �podman build -t eprover:3.0.03 .�.

Each ATP-system:version-RLR container image is based on its ATP-system:version con-
tainer image and the tptp-world container image. ATP-system:version-RLR primarily ex-
tends tptp-world, and copies over only what is necessary from ATP-system:version. This
simple arrangement allows a generic Dockerfile to be used, parameterised by the under-

10Our containerisation e�orts are carried out using Podman, which is designed to work as a drop-in replace-
ment for Docker (simply aliasing podman to docker is endorsed in the documentation).

6

Stars in the Clouds Fuenmayor, McKeown, Sutcli�e

#--
FROM ubuntu-arc

Clones repository
ARG E_VERSION=E-3.0.03
RUN git clone --depth 1 --branch $E_VERSION https://github.com/eprover/eprover.git

Set working directory to cloned sources directory
WORKDIR /eprover

Builds first-order executable
RUN ./configure --bindir=/artifacts && \

make && \
make install

Builds higher-order executable
RUN ./configure --enable-ho && \

make rebuild
RUN cp PROVER/eprover-ho /artifacts/eprover-ho

run_system script
ADD run_system /artifacts/
#--

Figure 3: The Dockerfile for E's -build

lying ATP-system:version. The ENTRYPOINT in ATP-system:version-RLR is the runsolver
utility from tptp-world, which is used to run the ATP system (see Section 4.2). Figure 4
shows the Dockerfile to create E's eprover:3.0.03-RLR container image, using the command
�podman build -t eprover:3.0.03 RLR --build-arg PROVER_IMAGE=eprover:3.0.03 .�.
The ATP-system:version-RLR container images are pushed to dockerhub in . . .

hub.docker.com/repositories/tptpstarexec
which has a directory for each ATP system. The pushed container images are tagged as
ATP-system-name:ATP-system-version-RLR-architecture, where architecture is, e.g., arm64 or
amd64.

4.2 Running ATP-system:version-RLR Containers

An ATP-system:version-RLR container image is started using podman run. The parameters for
running the ATP system are passed into the container in environment variables, using the -e
option: RLR_INPUT_FILE provides the problem �le name, RLR_CPU_LIMIT provides the CPU
time limit in seconds (0 by default, to indicate no limit), RLR_WC_LIMIT provides the wall
clock time limit in seconds (0 by default, to indicate no limit), RLR_MEM_LIMIT provides the
memory limit in MiB (0 by default, to indicate no limit), and RLR_INTENT indicates the user's
intent11 (THM by default). The problem �le is passed into the running container using the -v
option to mount the directory containing the problem �le to a directory inside the container,

11An intent is a tag such as THM or SAT, indicating that the ATP system should try to prove (or, equivalently
for most systems, show that the problem is unsatis�able) or disprove (or, equivalently for most systems, show
that the problem is satis�able) the conjecture, respectively.

7

https://hub.docker.com/repositories/tptpstarexec

Stars in the Clouds Fuenmayor, McKeown, Sutcli�e

#--
ARG PROVER_IMAGE

FROM ${PROVER_IMAGE} AS builder
FROM tptp-world

ENV PATH=".:${PATH}"
WORKDIR /artifacts

System specific stuff
COPY --from=builder /artifacts/* /artifacts/

ENTRYPOINT ["runsolver"]
#--

Figure 4: The generic Dockerfile for building -RLR container images

and setting the RLR_INPUT_FILE environment variable to the name of the problem �le in the
directory inside the container. The command line parameters for runsolver (the ENTRYPOINT
in the ATP-system:version-RLR container image) and run_system are provided as the remaining
parameters to podman run. For example, to run the eprover:3.0.03-RLR container image on
the problem MGT019+2.p, the podman run could be . . .

podman run eprover:3.0.03-RLR -v .:/artifacts/CWD
-e RLR_INPUT_FILE='/artifacts/CWD/MGT019+2.p' -e RLR_CPU_LIMIT='60'
-e RLR_WC_LIMIT='60' -e RLR_MEM_LIMIT='0' -e RLR_INTENT='SAT'
--timestamp -C 60 -W 60 run_system
The �--timestamp -C 60 -W 60� are command line parameters to runsolver.

A Python script run_image.py is provided to simplify and standardize running ATP-

system:version-RLR container images. The script is shown in Appendix B. The script must
have an ATP-system:version-RLR container image name as a command line argument. By de-
fault run_image.py runs the ATP-system:version-RLR with the problem taken from stdin,
imposing no CPU, wall clock, or memory limits, with the THM intent. All the parameters can
be changed with further command line options.

4.3 The ResourceLimitedRun Utility

When the TPTP World's SystemOnTPTP service [34] was �rst made available [35] it used a
Perl program called TreeLimitedRun to monitor and limit ATP systems' use of CPU time,
wall clock time, and memory. As the name suggests, the principle was to monitor the forest of
process hierarchies started by an ATP system, understanding that some of the processes might
be orphaned and adopted by the init process (now systemd and others). TreeLimitedRun
was superseded by runsolver [26] that is written in C++, and adopted the same principle for
monitoring processes. More recently, BenchExec [3], which is used in StarExec Iowa, has taken
advantage of Linux's cgroup v2 subsystem, which provides operating system level support for
monitoring processes. BenchExec is written in Python, with rather heavy installation require-
ments. The new ResourceLimitedRun utility is written in C, and also uses Linux's cgroup v2
subsystem. ResourceLimitedRun has the same command line parameters as runsolver, and
thus can be substituted for runsolver (and BenchExec). ResourceLimitedRun is being tested
at the time of writing, and hopefully will be deployed at the time of presentation!

8

Stars in the Clouds Fuenmayor, McKeown, Sutcli�e

5 Towards a Cloud-native StarExec

The term �cloud-native� has increasingly become synonymous with an approach to designing and
operating applications that fully leverage the bene�ts of the cloud computing model.12 Cloud-
native applications are distinguished by their ability to scale e�ectively, utilising the cloud's
capability to dynamically allocate resources. This development paradigm is closely aligned with
DevOps practices that emphasize collaboration between development and operations teams to
automate the process of software delivery and infrastructure changes. It inherently supports
infrastructure-as-code (IaC), a key DevOps practice, enabling the management and provisioning
of infrastructure through declarative, version-controlled de�nition �les that are both human-
and machine-readable.

Containers (see Section 2.3) play a pivotal role in cloud-native development. Dockerfiles
are used to specify the steps to create a container image, embodying the IaC philosophy by
detailing the desired (partial) state of a containerised application. Similarly, Kubernetes YAML
manifests de�ne, in a declarative fashion, how application components are deployed and run on
Kubernetes clusters, aligned with the IaC paradigm.

The synthesis of these practices allows for the entire stack, from infrastructure to appli-
cation, to be declaratively speci�ed, versioned, and automatically deployed as required. The
reliance on mainstream open source technologies such as the CNCF Kubernetes and Podman
projects (www.cncf.io/projects) o�ers unparalleled �exibility, scalability, and portability, free
from the constraints of single vendors or platforms. An open distribution model ensures that
StarExec's infrastructure �as code� is readily accessible for modi�cation and distribution, e.g.,
by cloning or forking from our GitHub repository. Adopting these technologies will allow ATP
systems and StarExec, including the requisite infrastructure, to be deployed by ATP system
developers and users in their preferred cloud environment or even in on-premises servers. This
approach signi�cantly simpli�es the process of utilizing state-of-the-art ATP technology, making
it much more easily usable by anyone, anywhere.

5.1 Re-engineering StarExec for the Cloud

Recalling the current architecture of StarExec described in Section 3, several areas for improve-
ment have been identi�ed to better serve the needs for re-engineering. Our ongoing e�orts
include:

1. Utilization of containerised ATP systems (see Section 4), which will be hosted in
a publicly accessible container image registry, instead of the current approach of requir-
ing StarExec users to build and upload a StarExec .tgz package according to StarExec
speci�cations.

2. Adding an abstraction layer for database communication with the relational
database (currently MariaDB) used to persist job information. This layer will allow the
database component to operate in its own container, signi�cantly reducing coupling. Fur-
thermore, by eliminating MariaDB-speci�c bindings, compatibility with other database
systems will be enabled. This �exibility allows for seamless integration with existing SQL
databases within the user's infrastructure, enhancing portability and adaptability.

12For more information refer to the initiatives led by the Cloud Native Computing Foundation (CNCF) at
www.cncf.io, which advocates for the adoption of this paradigm by fostering and sustaining an ecosystem of
open source, vendor-neutral projects.

9

https://www.cncf.io/projects/
https://www.cncf.io/

Stars in the Clouds Fuenmayor, McKeown, Sutcli�e

3. Using Kubernetes job scheduling facilities, thereby completely replacing the current
SGE cluster management. This change o�ers numerous bene�ts:

� Scalability: Kubernetes excels at managing and scaling containerised applications,
adapting to �uctuating workloads with ease. It also seamlessly integrates with most
infrastructure provisioning tools, supporting both cloud and on-premise platforms.

� Monitoring: A vast array of observability tools (encompassing logging, metrics,
tracing, etc.) support seamless integration with Kubernetes. Additionally, with its
self-healing features, Kubernetes can automatically restart failed containers, replace
and reschedule containers when nodes die, and kill non-responsive containers.

� E�ciency: Similar to SGE and other cluster management software such as Slurm
and Torque, Kubernetes optimizes the use of underlying hardware by e�ciently
scheduling jobs and managing resources.13

� Flexibility: Kubernetes' extensible architecture allows for custom schedulers and
automated scaling decisions, enabling it to support a wide range of workloads, in-
cluding stateless, stateful, and batch processing.

Figure 5 shows a generic architecture of the future re-engineered StarExec using Kubernetes.

Database File system

Compute Node
StarExec

compute node
container

RLR
ATP system
Problem

As many
as you
want

Job
pair
info

Results

Job
pair
data

Kubernetes
control plane

Kubernetes
service

Head Node
StarExec

head node
container

StarExec
Local backend
Kubernetes
backend

Kubernetes jobs

Compute Node
StarExec

compute node
container

RLR
ATP system
Problem

Figure 5: Projected StarExec generic architecture

5.2 StarExec in AWS

An Amazon Research Award14 has been granted to deploy StarExec in AWS. This will not
only help fund the development e�orts discussed in Section 5.1, but will also fund a �rst fully-

13Certainly, Kubernetes does not outperform traditional High-Performance Computing (HPC) software within
their specialized application domains. Kubernetes' extensible architecture facilitates interfacing with HPC
systems through custom schedulers if the need arises (see kubernetes.io/docs/concepts/extend-kubernetes).
In this setup, Kubernetes oversees container orchestration, while delegating the scheduling of intensive computing
tasks to specialized HPC software.

14Amazon Research Award, Fall 2023. Any opinions, �ndings, and conclusions or recommendations expressed
in this material are those of the authors, and do not re�ect the views of Amazon.

10

https://kubernetes.io/docs/concepts/extend-kubernetes/
https://www.amazon.science/research-awards/recipients/geoffrey-sutcliffe

Stars in the Clouds Fuenmayor, McKeown, Sutcli�e

functional reference deployment of StarExec in the AWS cloud. The generic architecture in
Figure 5 will be instantiated using concrete AWS-managed services, as shown in Figure 6.

AWS RDS AWS EFS

AWS EC2
StarExec

compute node
container

RLR
ATP system
Problem

As many
as you
want

Job
pair
info

Results

Job
pair
data

EKS
service

AWS EC2
StarExec

head node
container

StarExec
Local backend
Kubernetes
backend

EKS jobs

AWS EC2
StarExec

compute node
container

RLR
ATP system
Problem

AWS EKS

Figure 6: Architecture in AWS

� The Kubernetes control plane will be managed by AWS Elastic Kubernetes Service (EKS).

� The StarExec head and compute nodes will run on suitable Amazon EC2 instances, cur-
rently planned to be x2iedn.xlarge instances that have four Intel Xeon Scalable vCPUs
running up to 3.5GHz, and 128 GiB memory.

� The database will be Amazon Relational Database (RDS).

� The �le system will be Amazon Elastic File System (EFS).

� The ATP systems' containerisation can be made compatible with (possibly be exactly) the
Amazon Trusted Solver format, as was recently used in the SMT and SAT competitions15.

Leveraging AWS-managed services will expedite the delivery of StarExec's initial cloud-
native version to the community. This approach will particularly bene�t teams planning to
deploy StarExec on their own AWS accounts or through AWS grants. The initial release will be
rigorously tested through the migration of the TPTP community from StarExec Miami to the
new StarExec AWS platform. We are particularly enthusiastic about collaborating with teams
interested in deploying StarExec on their on-premise infrastructure or within university HPC
clusters.

6 Conclusion

This paper has described work being done to containerise StarExec and ATP systems so that
they can be run on a broad range of computer platforms. Additionally, this work explains plans
to build backend in StarExec so that Kubernetes can be used to orchestration distribute of
StarExec job pairs over whatever compute nodes are available.

This is ongoing work � some of the work is still in progress, particularly embedding StarExec
in Kubernetes on AWS. Hopefully the future will include StarExec being �exibly available in
online compute clusters.

15github.com/aws-samples/aws-batch-comp-infrastructure-sample

11

https://github.com/aws-samples/aws-batch-comp-infrastructure-sample

Stars in the Clouds Fuenmayor, McKeown, Sutcli�e

References

[1] E. Bartocci, D. Beyer, P.E. Black, G. Fedyukovich, H. Garavel, A. Hartmanns, M. Huisman,
F. Kordon, J. Nagele, M. Sighireanu, B. Ste�en, M. Suda, G. Sutcli�e, T. Weber, and A. Tamada.
TOOLympics 2019: An Overview of Competitions in Formal Methods. In T. Vojnar and L. Zhang,
editors, Proceedings of the 2019 International Conference on Tools and Algorithms for the Con-

struction and Analysis of Systems, number 11429 in Lecture Notes in Computer Science, page To
appear. Springer-Verlag, 2019.

[2] C. Benzmüller and B. Woltzenlogel Paleo. Automating Gödel's Ontological Proof of God's Ex-
istence with Higher-order Automated Theorem Provers. In T. Schaub, editor, Proceedings of the
21st European Conference on Arti�cial Intelligence, pages 93�98, 2014.

[3] D. Beyer, S. Löwe, and P. Wendler. Reliable Benchmarking: Requirements and Solutions. Inter-
national Journal on Software Tools for Technology Transfer, 21:1�29, 2019.

[4] A. Bruni, E. Drewsen, and C. Schürmann. Towards a Mechanized Proof of Selene Receipt-Freeness
and Vote-Privacy. In R. Krimmer, M. Volkamer, N. Braun Binder, N. Kersting, O. Pereira, and
C. Schürmann, editors, Proceedings of the International Joint Conference on Electronic Voting,

E-Vote-ID 2017, number 10615 in Lecture Notes in Computer Science, pages 110�126. Springer-
Verlag, 2017.

[5] M. Caminati, M. Kerber, C. Lange, and C. Rowat. Sound Auction Speci�cation and Implemen-
tation. In M. Feldman, M. Schwarz, and T. Roughgarden, editors, Proceedings of the 16th ACM

Conference on Economics and Computation, pages 547�564. ACM Press, 2015.

[6] V. Chaudri, B. Cheng, A. Overholtzer, J. Roschelle, A. Spaulding, P. Clark, M. Greaves, and
D. Gunning. Inquire Biology: A Textbook that Answers Questions. AI Magazine, 34(3), 2013.

[7] D. Cok, A. Stump, and T. Weber. The 2013 Evaluation of SMT-COMP and SMT-LIB. Journal
of Automated Reasoning, 55(1):61�90, 2015.

[8] B. Cook. Formal Reasoning About the Security of Amazon Web Services. In H. Chockler and
G. Weissenbacher, editors, Proceedings of the 30th International Conference on Computer Aided

Veri�cation, number 10981 in Lecture Notes in Computer Science, pages 38�47. Springer-Verlag,
2018.

[9] L. Dennis, M. Fisher, M. Slavkovik, and M. Webster. Formal Veri�cation of Ethical Choices in
Autonomous Systems. Robotics and Autonomous Systems, 77:1�14, 2016.

[10] R. Hähnle and M. Huisman. Deductive Software Veri�cation: From Pen-and-Paper Proofs to
Industrial Tools. In B. Ste�en and G. Woeginger, editors, Computing and Software Science: State

of the Art and Perspectives, number 10000 in Lecture Notes in Computer Science, pages 345�373.
Springer-Verlag, 2019.

[11] M.T. Hannan. Rethinking Age Dependence in Organizational Mortality: Logical Formalizations.
American Journal of Sociology, 104:126�164, 1998.

[12] J. Harrison. Floating-Point Veri�cation using Theorem Proving. In M. Bernardo and A. Cimatti,
editors, Proceedings of the 6th International School on Formal Methods for the Design of Computer,

Communication, and Software Systems, number 3965 in Lecture Notes in Computer Science, pages
211�242. Springer-Verlag, 2006.

[13] S. Holden. Connect++: A New Automated Theorem Prover Based on the Connection Calculus.
In J. Otten and W. Bibel, editors, Proceedings of the 1st International Workshop on Automated

Reasoning with Connection Calculi, number 3613 in CEUR Workshop Proceedings, pages 95�106,
2023.

[14] A. Hommersom, P. Lucas, and P. van Bommel. Automated Theorem Proving for Quality-checking
Medical Guidelines. In G. Sutcli�e, B. Fischer, and S. Schulz, editors, Proceedings of the Workshop

on Empirically Successful Classical Automated Reasoning, 2005.

[15] H. Hoos and T. Stützle. SATLIB: An Online Resource for Research on SAT. In I. Gent, H. van
Maaren, and T. Walsh, editors, Proceedings of the 3rd Workshop on the Satis�ability Problem,

12

Stars in the Clouds Fuenmayor, McKeown, Sutcli�e

pages 283�292. IOS Press, 2000.

[16] J. Horner. A Computationally Assisted Reconstruction of an Ontological Argument in Spinoza's
The Ethics. Open Philosophy, 2:219�229, 2019.

[17] K. Korovin. Implementing an Instantiation-based Theorem Prover for First-order Logic. In
C. Benzmüller, B. Fischer, and G. Sutcli�e, editors, Proceedings of the 6th International Workshop

on the Implementation of Logics, number 212 in CEUR Workshop Proceedings, pages 63�63, 2006.

[18] T. Libal. Towards Automated GDPR Compliance Checking. In F. Heintz, M. Milano, and
B. O'Sullivan, editors, Proceedings of the International Workshop on the Foundations of Trust-

worthy AI Integrating Learning, Optimization and Reasoning, number 12641 in Lecture Notes in
Computer Science, pages 3�19, 2020.

[19] C. Marché and H. Zantema. The Termination Competition. In F. Baader, editor, Proceedings of
the 18th International Conference on Term Rewriting and Applications, number 4533 in Lecture
Notes in Computer Science, pages 303�313, 2007.

[20] W.W. McCune. Otter 3.3 Reference Manual. Technical Report ANL/MSC-TM-263, Argonne
National Laboratory, Argonne, USA, 2003.

[21] T. Nipkow. Social Choice Theory in HOL: Arrow and Gibbard-Satterthwaite. Journal of Auto-

mated Reasoning, 43(3):289�304, 2009.

[22] P. Oppenheimer and E. Zalta. A Computationally-Discovered Simpli�cation of the Ontological
Argument. Australasian Journal of Philosophy, 89(2):333�349, 2011.

[23] J. Otten. 20 Years of leanCoP - An Overview of the Provers. In J. Otten and W. Bibel, editors,
Proceedings of the 1st International Workshop on Automated Reasoning with Connection Calculi,
number 3613 in CEUR Workshop Proceedings, pages 4�22, 2023.

[24] H. Prakken and G. Sartor. Law and Logic: A Review from an Argumentation Perspective. Arti�cial
Intelligence, 227:214�245, 2015.

[25] A. Riazanov and A. Voronkov. The Design and Implementation of Vampire. AI Communications,
15(2-3):91�110, 2002.

[26] O. Roussel. Controlling a Solver Execution with the runsolver Tool. Journal of Satis�ability,

Boolean Modeling and Computation, 7(4):139�144, 2011.

[27] S. Schulz. Algorithms and Data Structures for First-Order Equational Deduction. In
C. Benzmüller, B. Fischer, and G. Sutcli�e, editors, Proceedings of the 6th International Workshop

on the Implementation of Logics, number 212 in CEUR Workshop Proceedings, pages 1�6, 2006.

[28] S. Schulz. Simple and E�cient Clause Subsumption with Feature Vector Indexing. In M.P.
Bonacina and M. Stickel, editors, Automated Reasoning and Mathematics: Essays in Memory

of William W. McCune, number 7788 in Lecture Notes in Arti�cial Intelligence, pages 45�67.
Springer-Verlag, 2013.

[29] S. Schulz, S. Cruanes, and P. Vukmirovi¢. Faster, Higher, Stronger: E 2.3. In P. Fontaine,
editor, Proceedings of the 27th International Conference on Automated Deduction, number 11716
in Lecture Notes in Computer Science, pages 495�507. Springer-Verlag, 2019.

[30] S. Schulz and A. Pease. Teaching Automated Theorem Proving by Example: PyRes 1.2 (system
description). In N. Peltier and V. Sofronie-Stokkermans, editors, Proceedings of the 10th Interna-

tional Joint Conference on Automated Reasoning, number 12167 in Lecture Notes in Computer
Science, pages 158�166, 2020.

[31] A. Steen. Scala TPTP Parser v1.5, 2021. DOI: 10.5281/zenodo.5578872.

[32] A. Steen and C. Benzmüller. The Higher-Order Prover Leo-III. In D. Galmiche, S. Schulz,
and R. Sebastiani, editors, Proceedings of the 8th International Joint Conference on Automated

Reasoning, number 10900 in Lecture Notes in Arti�cial Intelligence, pages 108�116, 2018.

[33] A. Stump, G. Sutcli�e, and C. Tinelli. StarExec: a Cross-Community Infrastructure for Logic
Solving. In S. Demri, D. Kapur, and C. Weidenbach, editors, Proceedings of the 7th International

Joint Conference on Automated Reasoning, number 8562 in Lecture Notes in Arti�cial Intelligence,

13

Stars in the Clouds Fuenmayor, McKeown, Sutcli�e

pages 367�373, 2014.

[34] G. Sutcli�e. SystemOnTPTP. In D. McAllester, editor, Proceedings of the 17th International

Conference on Automated Deduction, number 1831 in Lecture Notes in Arti�cial Intelligence,
pages 406�410. Springer-Verlag, 2000.

[35] G. Sutcli�e. TPTP, TSTP, CASC, etc. In V. Diekert, M. Volkov, and A. Voronkov, editors,
Proceedings of the 2nd International Symposium on Computer Science in Russia, number 4649 in
Lecture Notes in Computer Science, pages 6�22. Springer-Verlag, 2007.

[36] G. Sutcli�e. The SZS Ontologies for Automated Reasoning Software. In G. Sutcli�e, P. Rudnicki,
R. Schmidt, B. Konev, and S. Schulz, editors, Proceedings of the LPAR Workshops: Knowledge

Exchange: Automated Provers and Proof Assistants, and the 7th International Workshop on the

Implementation of Logics, number 418 in CEUR Workshop Proceedings, pages 38�49, 2008.

[37] G. Sutcli�e. The TPTP World - Infrastructure for Automated Reasoning. In E. Clarke and
A. Voronkov, editors, Proceedings of the 16th International Conference on Logic for Programming,

Arti�cial Intelligence, and Reasoning, number 6355 in Lecture Notes in Arti�cial Intelligence,
pages 1�12. Springer-Verlag, 2010.

[38] G. Sutcli�e. The CADE ATP System Competition - CASC. AI Magazine, 37(2):99�101, 2016.

[39] G. Sutcli�e. The TPTP Problem Library and Associated Infrastructure. From CNF to TH0,
TPTP v6.4.0. Journal of Automated Reasoning, 59(4):483�502, 2017.

[40] G. Sutcli�e. Stepping Stones in the TPTP World. In C. Benzmüller, M. Heule, and R. Schmidt,
editors, Proceedings of the 12th International Joint Conference on Automated Reasoning, Lecture
Notes in Arti�cial Intelligence, page Invited paper, 2024.

[41] G. Sutcli�e, S. Schulz, K. Claessen, and A. Van Gelder. Using the TPTP Language for Writing
Derivations and Finite Interpretations. In U. Furbach and N. Shankar, editors, Proceedings of the
3rd International Joint Conference on Automated Reasoning, number 4130 in Lecture Notes in
Arti�cial Intelligence, pages 67�81. Springer, 2006.

[42] G. Sutcli�e and C.B. Suttner. Evaluating General Purpose Automated Theorem Proving Systems.
Arti�cial Intelligence, 131(1-2):39�54, 2001.

[43] A' Voronkov. Algorithms, Datastructures, and Other Issues in E�cient Automated Deduction.
In R. Gore, A. Leitsch, and T. Nipkow, editors, Proceedings of the International Joint Conference
on Automated Reasoning, number 2083 in Lecture Notes in Arti�cial Intelligence, pages 13�28.
Springer-Verlag, 2001.

[44] M. Yadav. On the Synthesis of Machine Learning and Automated Reasoning for an Arti�cial
Synthetic Organic Chemist. New Journal of Chemistry, 41(4):1411�1416, 2017.

14

Stars in the Clouds Fuenmayor, McKeown, Sutcli�e

A E's run_system script

#--
#!/bin/tcsh

setenv HERE `dirname $0`
setenv TEMPDIR `mktemp -d`
setenv PROBLEMFILE $TEMPDIR/E---3.1_$$.p
onintr cleanup

#----Add extra ()s for THF and TXF
$HERE/tptp4X -t uniquenames4 -x $RLR_INPUT_FILE > $PROBLEMFILE

set SPCLine=`grep -E "^% SPC " $PROBLEMFILE`
if ("$SPCLine" != "") then

set ProblemSPC = `expr "$SPCLine" : "^% SPC *: *\([^]*\)"`
else

set ProblemSPC = `$HERE/SPCForProblem $RLR_INPUT_FILE`
endif
set Mode = $RLR_INTENT

set CommonParameters="--delete-bad-limit=2000000000 --definitional-cnf=24 \
-s --print-statistics -R --print-version --proof-object --cpu-limit=$RLR_WC_LIMIT"
if ("$Mode" == "THM") then

if (`expr "$ProblemSPC" : "TH0_.*"`) then
echo "Running higher-order theorem proving"
$HERE/eprover-ho $CommonParameters --auto-schedule=8 $PROBLEMFILE

else
echo "Running first-order theorem proving"
$HERE/eprover $CommonParameters --auto-schedule=8 $PROBLEMFILE

endif
else

echo "Running first-order model finding"
$HERE/eprover $CommonParameters --satauto-schedule=8 $PROBLEMFILE

endif

cleanup:
echo "% E exiting"
rm -rf $TEMPDIR

#--

15

Stars in the Clouds Fuenmayor, McKeown, Sutcli�e

B run_image.py

#--
#!/usr/bin/env python3

import argparse
import subprocess
import os, sys
import shutil

def getRLRArgs(args):
mem_part = f" -M {args.memory_limit}" if args.memory_limit > 0 else ""
return "--timestamp --watcher-data /dev/null -C " + \

f"{args.cpu_limit} -W {args.wall_clock_limit}{mem_part}"

def getEnvVars(args):
return " ".join([f"-e {k}='{v}'" for k, v in [

("RLR_INPUT_FILE", "/artifacts/CWD/problemfile"),
("RLR_CPU_LIMIT", args.cpu_limit), ("RLR_WC_LIMIT", args.wall_clock_limit),
("RLR_MEM_LIMIT", args.memory_limit), ("RLR_INTENT", args.intent),

]])

def makeBenchmark(problem):
if problem:

shutil.copy(problem, "./problemfile")
else:

with open('./problemfile', 'w') as problemfile:
problemfile.write(sys.stdin.read())

if __name__ == "__main__":
parser = argparse.ArgumentParser("Wrapper for a podman call to a prover image")
parser.add_argument("image_name",

help="Image name, e.g., eprover:3.0.03-RLR-arm64")
parser.add_argument("-P", "--problem",help="Problem file if not stdin")
parser.add_argument("-C", "--cpu-limit", default=0, type=int,

help="CPU time limit in seconds, default=none")
parser.add_argument("-W", "--wall-clock-limit", default=0, type=int,

help="Wall clock time limit in seconds, default=none")
parser.add_argument("-M", "--memory-limit", default=0, type=int,

help="Memory limit in MiB, default=none")
parser.add_argument("-I", "--intent", default="THM", choices=["THM", "SAT"],

help="Intention (THM, SAT, etc), default=THM")
args = parser.parse_args()
if args.wall_clock_limit == 0 and args.cpu_limit != 0:

args.wall_clock_limit = args.cpu_limit

command = f"podman run {getEnvVars(args)} -v .:/artifacts/CWD -t " + \
f"{args.image_name} {getRLRArgs(args)} run_system"

makeBenchmark(args.problem)
subprocess.run(command, shell=True)
os.remove("./problemfile")

#--

16

Shared Terms and Cached Rewriting

Stephan Schulz

DHBW Stuttgart
Stuttgart, Germany
schulz@eprover.org

Abstract

We describe the implementation of first-order terms, the central data structure of most
modern automated theorem provers, as perfectly shared immutable term DAGs in E. We
demonstrate typical gains possible with this structure (reducing the number of term nodes
typically by orders of magnitude) and discuss some of the side benefits of such a represen-
tation. One of these benefits is the ability to easily implement cached rewriting, improving
the performance of rewriting-based simplification. We discuss lessons learned and some
potential future work.

1 Introduction

Shared terms seem to have become a staple among high-performance automated theorem
provers, but this is rarely mentioned outside the source code. In particular, it is hard to
find descriptions of their implementation and performance. In this paper, we try to allevi-
ate this difficulty and describe the implementation of shared terms and cached rewriting in
E [Sch02, SCV19]. E is a mature theorem prover, written in ANSI C, and continually devel-
oped for about a quarter of a century.

First-order terms, such as f(X, a) or f(g(g(a)), f(X, b)), are the most central element of
most automated first-order theorem prover. Their implementation is probably the most critical
data structure in particular for saturating systems, which generate new terms in prodigious
numbers during proof search. Such systems, like e.g. E, Vampire [KV13], SPASS [WDF+09],
Prover9 [McC10] and Twee [Sma21] have dominated the field of automated theorem proving
for the last decades. They are typically based on variants of the superposition calculus [BG94]
(or its unit-equational counterpart, unfailing completion [BDP89]), employ resolution [Rob65]
and/or superposition (an ordering-constrained form of paramodulation [RW69]) as the main
inference rules to create new clauses, and rewriting (sometimes called demodulation) and sub-
sumption as the major mechanisms to simplify and remove clauses.

There are several different ways to implement terms, from simple trees as e.g. in the
completion-based prover DISCOUNT [DKS97] and many early provers, to flat terms [Chr93]
or string terms as used in Waldmeister [LH02]. When we started the development of E, one of
the core ideas was to structure the prover around shared terms, i.e. a term structure in which
every term (and subterm) was represented only once, and different occurrences of the same
term simply point to the one copy stored in a term bank. Such a term bank represents a forest
of term trees as a single directed acyclic graph (DAG).

The first implementation of this idea in E was realised as a dynamic term bank with mutable
terms. Rewriting, one of the core simplification techniques, would actively change terms in
the term bank. Changes were propagated to superterms, possibly leading to large, non-local
changes as the result of a single rewrite step. Memory management of term cells was handled
via reference-counting garbage collection. We did a comparative evaluation of shared and
unshared (flat) terms by comparing the performance of E and Waldmeister, both tuned to
behave as similar as possible [LS01]. The result was somewhat disappointing - while shared

Shared Terms Schulz

terms represented the proof state using much fewer term cells, the propagation of rewriting to
superterms nearly exactly cancelled out the benefits gained by rewriting each subterm at most
once.

Since the dynamic term bank implementation did not result in performance benefits, but sig-
nificantly complicated overall system design and in particular proof reconstruction, we changed
the implementation. The new version uses the same basic DAG structure, but terms themselves
are now immutable. Rewriting of terms in clauses is always triggered from the clause level (so
no complex notification or bookkeeping of changes is needed). To speed up rewriting, we cache
the result of rewrite steps, i.e. we add an annotated link to a rewritten term, pointing the
resulting term and giving a justification for the rewrite (normally the clause that was used to
perform the rewrite). Term cell memory is still handled by garbage collection, but now using
a mark-and-sweep garbage collector that is only triggered at strategic locations in the code
(e.g. after axiom selection and clause normal form transformation), or if there is active memory
pressure.

In this paper, we describe this second implementation for the first time in some detail,
and we report on some experiences and measurements. In an ideal world, theorem provers
would use an abstract interface to all major data types, and it would be possible to just plug
different data structures in to get perfect performance comparisons. However, despite some
attempts this has never been achieved for high-performance theorem provers. This is especially
true for the term data type, for two reasons: First, the term data type is so central that its
design imposes significant constraints on overall system design and architecture. And secondly,
theorem proving has been (and is) an ongoing research field, and new ideas often require new
methods for accessing and manipulating terms. However, we believe that the statistics we
present below provide some insight into the value of shared terms and cached rewriting.

1.1 Background

We assume that the reader is familiar with the basic design of modern saturating theorem
provers. The proof state is represented by a set of clauses, where each clause is a disjunctively
interpreted multi-set of literals and each literal is a signed atom - in the case of E either an
equation or a disequation between terms. New clauses are created by generating inference rules,
mostly based on unification, with most clauses generated by superposition and/or resolution.
The proof state is reduced using simplification rules, often based on matching - in particular
subsumption and rewriting or demodulation with unit clauses. Provers based on the given-
clause loop split the proof state into a set of processed or active clauses, which is interreduced,
and a set of unprocessed or passive clauses which may be partially simplified, but have not yet
participated in generating inferences. The most important search decision is the selection of
the next of these unprocessed clauses for processing.

2 Term Banks and Shared Terms

In the following, we assume a first-order signature F = {f1/a1, f2/a2, . . .} of function symbols
with associated arities, and a set of variables V . In practice, F is always finite, but may grow
over time, e.g. by introducing Skolem symbols or names for definitions. For our purposes,
we don’t need to distinguish (proper) function symbols and predicate symbols. The set V of
variables is conceptually countably infinite, but we only ever need a finite subset.

In E, and in many other theorem provers, function symbols are encoded as small positive
integers, which serve as indices into a table representing the full signature, including externally

2

Shared Terms Schulz

Index 0 1 2 3 4 5 6 7 8 9 10 …

Pointer

X1 X2 X3 X4 X5 X9X6 X7 X8 X10

Hash 0 1 2 3 4 5 6 7 8 9 10 …

Tree

t1

t2 t3

t7t5 t17t12 t9 t11 t18

t4

t8 t2 t3

t4

t14

Variable Bank

Term Cell Store

Term Bank

Figure 1: Term bank architecture

visible names of function symbols and meta-properties such as arities. Variables are encoded as
small negative integers, with a mapping from input variable names to these integers provided by
temporary translation tables during parsing. Since variables are necessarily renamed frequently
during proof search, their names in the input are not typically maintained long-term.

Terms are either variables, or they are constructed from existing terms t1, . . . , tn and a
function symbol f/n ∈ F , yielding f(t1, . . . , tn). Notice that for a symbol c/0 ∈ F (a constant),
c() is a term. In this case, we usually omit the parentheses.

2.1 Basic implementation

A term bank is a data structure that stores terms and allows reasonably efficient access to terms.
In E, terms are represented by pointers to term cells, which are essentially homogeneous. A
term cell contains an encoding of the function symbol or variable (called the f code), the arity
of the term, a set of invariant properties (see the next section), and a dynamic length array of
pointers to subterms. As per the above definition, a term is identified by its f code and the
list of argument terms. These make up the key under which a term can be found in the term
bank.

The main function of the term bank is to return a pointer to a shared term syntactically
identical to an arbitrary term handed to it, in other words: to convert (potentially) unshared
terms into shared terms, or to find the unique existing equivalent of a given term.

In the definition above we have distinguished two different kinds of terms: Variables, and
composite terms starting with a function symbol. While we represent both of these types using
standard term cells, they are stored differently. Variables are stored in the variable bank of a
term bank. The variable bank is a dynamic array of pointers to (variable) term cells, indexed
by the (negated) f code of the variable. Thus, finding a shared variable can be done in Θ(1).
Variable cells are not garbage collected, since they are reused over and over again, and are quite
low in numbers.

3

Shared Terms Schulz

Composite terms, on the other hand, are stored in a term cell store data structure. This
is implemented as a large hash table with collisions resolved externally via splay trees [ST85]
(a self-adjusting variant of binary search trees). Composite terms of the form f(t1, . . . , tn)
are inserted/found bottom up. First, we compute pointers s1, . . . , sn to shared versions of the
argument terms t1, . . . , tn (note that this may involve further recursion). We then consider the
sequence f code, s1, ..., sn as the search key for the term in the term bank. We compute
a hash code from the f code and up to two argument pointers by xoring their (shifted) binary
representations and masking them to 15 bits, selecting one of 32768 possible term cell trees.
Using at most two argument pointers simplifies the hash computation and is sufficient to give
a relatively even distribution of terms over hash values. Since the number of terms is much
larger than the hash table, conflicts are unavoidable, and are resolved by storing not terms,
but term sets (represented by splay trees) at each hash position. We search for a given key key
(using a simple lexicographic order on the components) in the corresponding tree. If a term is
found, we can return it. If not, we create a new term cell from the f code and the argument
terms, and insert that into the tree. During insertion, we compute a number of immutable
properties (see next section) that make many operations more efficient. Figure 1 illustrates the
basic architecture.

A note on higher-order terms This paper focuses on first-order logic. However, E has
recently been extended to higher-order logic [VBCS21, VBS23]. One of the core ideas of this
extension was that “you do not pay for features you do not use”, in other words, higher-order
features should only be visible where strictly necessary. With respect to terms, the two features
that directly affect term representation are partial applications and applied variables. For
partial applications, we used the fortunate fact that each term cell in E stores the number of
arguments of the represented term. In the case of first-order logic that always is the arity of the
symbol, and was just added for convenience. But this allows us to represent partial applications
by just creating a term with fewer arguments. In other words, if f is a binary function symbol,
the term f@t is represented like the first-order term f(t). This corresponds to a flattened spine
notation [CP03]. Only in the case of applied variables do we resort to an explicit app-encoding,
using the special variadic function symbol @ var, adding the applied variable and the other
arguments as proper arguments to the term. Thus, X@s@t is represented as the first-order
term @ var(X, s, t). Finally, λ-terms are supported using a special f code to represent the λ
binder, and de-Bruijn-indices to encode bound variables in a locally nameless notation [Cha12].
Each binder abstracts one variable, and de-Bruijn-indices are encoded as constant terms with
the f code field overloaded by the index value. De-Bruijn-variables are distinguished by a
single-bit term property from normal constants.

2.2 Shared Properties

Having immutable, permanent terms allows us to efficiently pre-compute several term proper-
ties, and store them in the term cell. This is particularly true for properties that are normally
computed bottom-up. In our case this includes groundness (does the term contain any first-
order variables), variable count, function symbol count, and standard weight (computed as two
times function symbol count plus variable count). These are used to make many operations
more efficient. For example, instantiation does not change ground terms, so when an instance
is created we can just return a pointer to the existing term in the term bank for any ground
subterm. Standard weight can be used as a cheap pre-test during matching - any instance of
a term t always has at least the weight of t, so it is impossible for a heavier term to match a

4

Shared Terms Schulz

lighter term.
Temporary shared properties of terms are e.g. variable bindings (computed via unification

and matching) and rewrite status (see below).

2.3 Garbage collection

Terms in the term bank are memory-managed via a mark-and-sweep garbage collector. All per-
sistent clause and formula sets are registered with the garbage collector. The system maintains
a single garbage status bit. All new allocations of term cells are marked with that bit in the
current status. If a garbage collection cycle is triggered, the system goes through all registered
clauses and formulas, and marks all used term cells by setting a single bit to the complement
of the current status. It then goes through the term bank, and frees all cells which still have
the current status. Then the global garbage status is flipped. The next collection cycle proceed
likewise, only with a different bit value.

In practice, the system performs garbage collection rarely. The collector is triggered during
and after clausification, and after unprocessed clauses are culled because the proof state reaches
some pre-defined threshold.

3 Cached Rewriting

E uses two different rewrite relations. Both are induced by processed positive unit clauses
(also called (potential) demodulators). The first, corresponding to ⇒R in completion-based
system [BDP89], is based only on orientable unit clauses, i.e. clauses in which one side of
the single equational literal is already bigger than the other in the term ordering used by
the current strategy. Because of the monotonicity of the used orderings, this applies to all
instances. Since we only rewrite from larger to smaller terms, we only need to check if the
maximal term of such an equation matches to be able to rewrite1. The other rewrite relation,
corresponding to ⇒R(E), also considers all orientable instances of unit equations. In this case,
for unorientable equations we first need to check if either side matches, and then check if the
instance generated by the match (possibly after also instantiating unbound variables in the
potentially smaller side [Sch22]) is reducing. The second relation is much more expensive to
compute, because we need to consider both sides for matching, and in the case of a match,
compute a relatively expensive ordering check. Therefore, in most configurations we use the
first relation for simplification of the large set of unprocessed clauses, and the second relation
only once a clause has been selected for processing, and for back-simplification of the processed
clause set. Still, for equational problems, simplification in general and rewriting in particular
takes a significant amount of time.

To improve performance at this bottleneck, we have implemented cached rewriting in E,
i.e. we store information about rewritability of terms directly at the term node, and reuse it
if terms are encountered and need to be simplified more than once. This is similar in spirit
to light normalisation as implemented in iProver [DK20], but both predates it and is more
comprehensive. While iProver caches normal forms for the left hand side of (potential) rewrite
rules, E caches rewrite results not at the rule level, but at the term level. Thus, E caches all
rewrite steps, while iProver memorizes a shortcut for rewriting with uninstantiated rules.

1There are some restrictions on rewriting maximal sides of maximal positive literals in processed clauses,
but these are irrelevant to the current discussion.

5

Shared Terms Schulz

3.1 Implementation and optimisations

Each term cell carries information about possible rewrites. These consist of two pointers, the
replace pointer and the demod pointer. If the replace pointer is not NULL, it points to a term
cell representing the term the original has been rewritten to. In that case, the demod pointer
indicates which clause was used for this rewrite step, thus facilitating proof reconstruction.

If a term with a non-NULL replace pointer is encountered during normalisation, the system
does not try any demodulators, but simply follows this pointer, pushing the clauses indicated
by demod pointers onto the modification stack of the clause being simplified.

There are two more optimisations for rewriting built into the term bank. We maintain
a monotonically increasing abstract time. In particular, this abstract time always increases
when a new clause is added to the set of potential rewrite rules/equations. If a term is found
irreducible with respect to the given rewrite relation and the current set of processed unit
clauses, we annotate the term with this information (i.e. “Term s is irreducible with respect
to all processed orientable unit clauses at time T” or “. . . with respect to all unit clauses. . . ”).
Clauses carry the abstract time they were processed at in their meta-information. If a term is
encountered again, and we know that it is irreducible with all clauses at time T , we don’t need
to try any clauses that have age T or older.

In practice, potential demodulators are stored in indices, trie-like structures where the
clauses are stored at the leaves of the tree. We associate each node of this trie with a) the
age of the youngest demodulator stored in the subtree rooted there and b) the weight of small-
est potentially matching side of demodulators in this subtree. When traversing the tree to find
demodulators for a query term, we can ignore all branches only containing clauses that are too
old to rewrite the query term, and all clauses whose matching sides are too heavy to match this
term.

4 Experimental Results

We ran experiments on all (well-typed, non-arithmetic) first-order problems from TPTP [Sut17],
version 8.2.0, for a total of 18102 problems. We recorded a number of statistics for each prob-
lem successfully solved, including runtime, number of clauses in the final proof state, number
of term nodes assuming unshared terms, number of actual nodes in the shared term DAG rep-
resenting these, and total number of term nodes in the term bank2. Experiments were run on
StarExec [SST14], using the StarExec Miami installation. The machines were equipped with
256GB of RAM and Intel Xeon CPUs running at 3.20GHz. We used a 250 second “soft” CPU
time limit (i.e. the prover will gracefully terminate after completing the current main loop it-
eration, providing statistics) and a “hard” limit of 300 seconds . The prover was the first-order
version of E 3.0.10 Shangri-La, identical to the latest released version of E except for minor
bug-fixes and the addition of a number of optional statistics that can be computed and printed
after proof search.

We use several different sequential search strategies:

• E’s standard automatic mode classifies the problem and then picks parameters that have
performed well on similar problems in the past. The major parameters are the clause
selection heuristic, determining in which order clauses are picked for processing in the

2Our implementation slightly over-counts active DAG notes, because for technical reasons it also counts
nodes used by clauses archived for proof reconstruction. This is typically a negligible number compared to the
overall proof state, but it leads to some visible noise for very small problems. The set of all term bank nodes
also includes currently unused, i.e. garbage-collectable nodes.

6

Shared Terms Schulz

Strategy Success Proofs Saturations Incomplete
Auto 11453 10268 1185 170
Auto (w/o literal selection) 9406 8734 672 131
Symbol counting 10:1 8935 7825 1110 15
Symbol counting 10:1 (w/o lit.sel.) 7911 7268 643 15

There are 18102 problems in the test set. Incomplete runs are runs where the prover ran out of
unprocessed clauses after deleting some (possibly non-redundant) clauses for lack of memory.
Proof search for problems not covered by the other columns in each row have terminated
unsuccessfully due to timeouts.

Table 1: Performance data for the 4 different strategies

given clause loop, the term ordering, and the literal selection strategy. However, there
are many other (mostly binary) parameters that can be set.

• The second strategy is based on the same automatic mode, but explicitly disables negative
literal selection, i.e. all maximal literals of a clause are used as inference literals. We
chose this option to investigate if the differences in term sharing observed in our 2001
paper [LS01] especially for Horn problems can be confirmed for the current system.

• To minimize the number of variables, we also run an experiment using a single simple
but well-performing general purpose strategy. This fixes the term ordering to KBO with
weights by inverse symbol frequency rank, precedence by inverse symbol frequency, and
constant weight of 1 for constants [Sch22], It uses clause selection using simple symbol
counting and clause age in a 10:1 ratio [SM16], and literal selection using SelectComplex,
a strategy that will always pick a negative inference symbol if available, preferring, in
that order, pure variable disequations (i.e. literals of the form X ̸≃ Y), the smallest
(by symbol count) negative ground literal, and finally the literal with the greatest size
difference between the two sides of the literal3. We call this Symbol counting 10:1 or just
SC10:1 below. The term ordering is the one most often used by E in automatic mode
(i.e. the one that has performed best over large problem sets in our testing). The literal
selection strategy is one of the bests ones that always select a negative literal if possible.
And finally, the clause selection strategy performas relatively well, follows a scheme that
most theorem provers support, and depends only on the signature, not on the conjecture.

• Finally, we ran the same simple strategy, but without enabling negative literal selection.

Table 1 shows the performance data for the different search strategies. For this work,
performance is somewhat secondary, but we would like to point out a couple of things. E in
automatic mode solves nearly two thirds of all problems. Disabling literal selection reduces this
by about 2000 problems, to a bit over one half of all problems. The relatively naive homogeneous
strategy with literal selection overall performs similar to auto-mode without literal selection,
but does worse for proofs and better for saturations.

Table 2 gives a characterisation of the data we present here. It has four parts, one for each
of the four strategies. For each strategy, we present the following measures:

• Runtime is the CPU time (in seconds) to completion of the job (either successful or not).
Between approximately 100 and 200 runs did not manage to complete in the 300s hard
CPU time limit, and thus provided no statistic. These are excluded from the analysis.

3E encodes all literals as equations or disequations, using e.g. p(X) ≃ $true to represent the non-equational
literals p(X).

7

Shared Terms Schulz

• Clauses is the number of clauses in the final proof state, both processed and unprocessed.

• Term tree nodes is the number of term cells that would be referenced (directly or indi-
rectly) by the final clauses if E would represent terms as unshared trees.

• Term DAG nodes is the number of shared term cells needed to actually represent the
above terms (and a small number of terms referenced by archived clauses, see above).

• All TB nodes is the number of all term cells stored in the term bank at the time the proof
search terminated. In addition to the previous value this includes term nodes that could
be garbage collected because they are currently not used by any clause.

• Sharing factor is the ratio of term tree nodes to term DAG nodes.

• Total rewrites is the number of successful rewrite steps performed during proof search.

• Cached rewrites counts the subset of the previous value that was performed using a cached
rewrite link instead of actually finding a fresh demodulator and applying it.

• Fraction RWs cached is the ratio of the above, i.e. it gives the fraction of cached rewrite
steps relative to all rewrite steps.

• Finally, TB utilization is the fraction of all term bank nodes that are referenced by the
final proof state, i.e. the fraction of all TB nodes and term DAG nodes.

For each value, we provide the minimum, the first, second (median) and third quartile, and
the maximum, as well as the arithmetic mean. For integer values, the average is rounded to
the next integer. Note that all values are described independently, i.e. the median value of
total rewrites does not necessarily result from the same problem as the median value of the
number of cached rewrites, and the median value of the fraction of cached rewrite steps is not
the fraction of the median values of cached and all rewrite steps.

We will visualise several of the data distributions in the form of distribution diagrams. These
diagrams show the values observed in a population of test runs sorted by size - the smallest
ones on the left, the biggest ones on the right. Note that because of the great scope of difficulty
and run time, in many cases we had to pick a logarithmic y-axis to adequately represent the
data.

4.1 Data structures and sharing

Figure 2 shows distribution diagrams for various counts of real or theoretical data structure
measures: The number of clauses, number of term tree nodes represented by these clauses, actual
term DAG nodes needed to represent them in the shared representation, and nodes actually
present in the term bank. The diagram on the left shows data for the normal automatic mode
of E (corresponding to Table 2a), the one on the right to automatic mode with negative literal
selection disabled (Table 2b).

In both cases we can see that the distribution of clauses and term tree nodes tracks quite
well, but that for non-trivial examples, the value for term tree nodes is about two to three
orders of magnitude greater than the corresponding number of clauses. This supports the claim
about the central role terms play for saturating automated theorem provers.

When we consider shared term cells in the term bank, we can see that both the number of
shared cells in the term DAG and of all cells in the term bank again track very closely, with
only a relatively small difference between them. They also very roughly track the number of

8

Shared Terms Schulz

a) Auto Min 1st q. Median 3rd q. Max Mean
Runtime 0.0 0.04 1.01 250.92 299.67 91.35
Clauses 0 301 18585 1132492 3094248 521457
Term tree nodes 0 4658 476289 34841300 7393888760 40213831
Term DAG nodes 2 1167 16399 659293 8665762 471810
All TB nodes 2 1554 20948 772362 11615296 605027
Sharing factor 0 3 15 53 13080680 2285
Total rewrites 0 53 6866 1323619 2350108946 3075329
Cached rewrites 0 35 5754 1201231 2348276767 2822675
Fraction RWs cached 0.0 0.579476 0.862697 0.972625 1.0 0.715044
TB utilization 0.000015 0.747881 0.890252 0.965839 1.0 0.832692

b) Auto w/o lit.sel. Min 1st q. Median 3rd q. Max Mean
Runtime 0.0 0.06 30.94 251.35 290.25 122.05
Clauses 0 706 511220 1301428 3037819 692984
Term tree nodes 0 12268 17398621 47747811 7437234556 49428700
Term DAG nodes 2 1874 35424 365138 7200828 330910
All TB nodes 2 2254 40074 393308 10918291 416376
Sharing factor 0 7 42 243 13080680 2880
Total rewrites 0 68 16919 731660 2350108946 2223361
Cached rewrites 0 43 15645 700882 2348276767 1999820
Fraction RWs cached 0.0 0.666667 0.92072 0.989583 1.0 0.750739
TB utilization 0.000015 0.82482 0.942162 0.994384 1.0 0.877701

c) SC 10:1 Min 1st q. Median 3rd q. Max Mean
Runtime 0.0 0.05 249.95 251.13 283.02 130.72
Clauses 0 757 538654 1464193 2929585 777191
Term tree nodes 0 12515 15874006 42004063 9297406274 47137260
Term DAG nodes 2 2179 259782 2216163 9123313 1163082
All TB nodes 2 2680 324531 2365703 12303650 1286958
Sharing factor 0 5 11 26 617798 1071
Total rewrites 0 208 42766 1901498 285140568 4513105
Cached rewrites 0 111 36574 1718916 277525335 4148014
Fraction RWs cached 0.0 0.600037 0.867287 0.97038 1.0 0.723709
TB utilization 0.002204 0.820367 0.940815 0.995384 1.0 0.877509

d) SC 10:1 w/o lit.sel Min 1st q. Median 3rd q. Max Mean
Runtime 0.0 0.11 250.74 251.46 296.54 144.05
Clauses 0 2348 998417 1492407 2986997 875239
Term tree nodes 0 56315 32810594 61388806 9447774986 64101714
Term DAG nodes 2 2936 86396 703796 9123314 549414
All TB nodes 2 3558 93611 729518 11051673 639408
Sharing factor 0 11 57 241 3032020 1800
Total rewrites 0 276 106863 1163220 285140568 3084820
Cached rewrites 0 193 97326 1085361 276724411 2811925
Fraction RWs cached 0.0 0.724032 0.942955 0.988776 1.0 0.781862
TB utilization 0.002204 0.883698 0.97377 0.996761 1.0 0.905721

Table 2: Overview of result data

9

Shared Terms Schulz

Figure 2: Distribution of clause number and different term nodes counts for auto-mode (left)
and auto-mode without literal selection (right)

Figure 3: Scatter plot of term DAG nodes over term tree nodes for automatic mode (left) and
of sharing factor over runtime (right). Notice that both axes are logarithmic for both diagrams.

clauses, but with a lot more variation. However, especially for harder problems (i.e. problems
for which the prover needs a longer time to complete) with greater number of both clauses and
term cells, we can see that shared term counts often are lower than clause counts.

This great saving in the number of term cells is confirmed if we consider the actual values of
shared term cells relative to unshared tree cells. Figure 3 (left) visualises this data. Each dot
corresponds to a single problem (run in automatic mode), with the x-coordinate determined by
the number of (theoretical) term nodes in an unshared tree representation, and the y-coordinate
representing the number of nodes in the shared representation. This diagram style allows us
to see the wide spread of relative values, but it also confirms that the about 2.5 orders of
magnitude for non-trivial problems is typical.

The right diagram in Figure 3 visualises and compares the distribution of the sharing factor
(i.e. the ratio of term tree nodes to term DAG nodes) for all 4 different search strategies.
This factor tells us how many unshared nodes a shared node typically represents, or in other
words, the relative memory increase an unshared term representation would cause. For non-

10

Shared Terms Schulz

Figure 4: Distribution of the sharing factor for all four search strategies (left) and for Unit,
Horn and non-Horn problems for the symbol counting strategy with and without literal selection
(right)

trivial and non-extreme problems, the sharing factors vary between ≈10 and ≈100, but for
harder problems, it often reaches the thousands, and in the extreme case several millions.
There also is a significant number where the recorded sharing factor is well below 1 even for
non-trivial problems. We have investigated some of these cases, and they stem from examples
where the prover produces a very small final clause set (usually a saturation or incomplete
saturation), but with a non-trivial derivation. The most extreme example comes from the
TPTP problem COL125+1.p. The problem has status CounterSatisfiable (i.e. the resulting
clause set is satisfiable) and prover eventually derives the final single-literal clause X1≃X2,
which subsumes all other clauses, leading to a final proof state with just 2 term cells. However,
the derivation of that final clause is highly non-trivial, and there 1684 archived clauses that are
kept to enable proof reconstruction. As noted above, the term cells referenced by clauses in
this set are counted against the shared term cell counts, resulting, in this case, to a significant
overcount.

Another interesting aspect becomes apparent if we compare the distributions for the different
strategies. The two non-literal-selecting strategies behave very similar, as do the two literal-
selecting ones. In general, sharing is a lot higher for the non-selecting strategies. This tracks
with our earlier results [LS01] and seems to indicate that negative literal selection not only
finds more proofs faster, but also that it results in less redundancy in the generated terms. We
can also see the effects in the numerical data in Table 2. We have visualised the distributions
for individual problem classes in Figure 4. As expected, literal selection has no effect (except
for random noise) on unit problems (the blue data points are nearly perfectly covered by the
cyan line). For both Horn and non-Horn problems we can see that literal selection drastically
lowers the sharing factor, but even more so in the Horn case.

4.2 Garbage collection

Figure 5 gives us some insight into the amount of collectable (i.e. not currently referenced) term
cells in the term bank. On the left diagram, we can see that for the vast majority of problems,
the two values - utilized and all term cells - lie very close together, placing the data point on
or just below the diagonal. There are, however, a few clusters of problems where the number

11

Shared Terms Schulz

Figure 5: Referenced term bank nodes over all term bank nodes (left) and distribution of the
utilization fraction (right) for automatic mode

Figure 6: Cached rewrites over all rewrites (left) and distribution of the fraction of uncached
rewrites (right) for automatic mode

of used nodes is significantly lower than the number of all stored nodes in the term bank. In
theorem proving we sometimes observe that a few critical rewrite rules, once derived, can lead
to a big collapse in the proof state, as very many clauses can suddenly be simplified. Similarly,
sometimes a key clause can be derived that subsumes a large number of other clauses. Either
of these would explain the outlying clusters.

On the right hand side, we see the distribution of the term bank utilization over all problems.
Only very few problems show a utilization of less than 50%, and for most problems this factor
is over 80%. Table 2 confirms this, with the median term bank utilization between 89% and
97% (depending on the search strategy). Overall, we conclude that our decision to only trigger
garbage collection in specific situations is adequate, and that most term nodes that are created
are in use over a long time.

12

Shared Terms Schulz

4.3 Cached rewriting

Finally, Figure 6 visualises some of the data on cached rewriting. On the left, we can see a
scatter plot showing the number of cached rewrites over the number of all rewrites. As we can
see, the “main sequence” follows the diagonal, with the spread of values becoming smaller as
the number of rewrite steps increases. In other words, the more rewrite steps there are, the
higher the percentage of those that are cached, There are, however, a number of outliers.

The diagram on the right shows the distribution of the fraction of uncached rewrite steps.
The median of this distribution (for automatic mode) is 13.7%, or about 1 in 8 rewrite steps.
However, as seen above, most of the more difficult problems have a much lower fraction of
uncached steps.

5 Lessons Learned

As E was originally built with the dynamic term banks in mind, we allowed for multiple term
banks to be in use (because e.g. some terms need to be preserved while others are rewritten).
We also allowed for multiple instances of the same term, only distinguished by some single-
bit properties. Both of these features are no longer used with the new immutable terms and
cached rewriting driven from the clause level. By designing a prover around a single term
bank distinguishing terms by structure only, quite a bit of simplification would be possible. In
particular, we could always use pointer identity as syntactic identity for shared terms, without
careful thought about where the terms come from.

Also, strict commitment to have all non-transient terms shared would make most support
for unshared terms, in particular for parsing them, unnecessary. A trivial implementation
improvement would be to include the term bank pointer into the term data structure (for all
shared terms). It is needed nearly everywhere terms are processed, and the pointer could thus
be made easily available, and serve as a marker to distinguish shared terms from temporary
unshared ones when needed.

A number of features of E’s shared terms were either never used, or have long since fallen
into disuse. This included the ability to print and parse terms in an abbreviated fashion (using
node ids to represent shared subterms), and the ability to parse and print Prolog-style lists.
Also, E now supports the old LOP-format, two different TPTP syntaxes for first-order logic, the
later also in a typed variant, and, after extension to higher-order logic [VBS23] the (largely in-
dependent) TPTP syntax for monomorphic higher order syntax [SB10]. In a re-implementation,
it would probably be better to concentrate on the modern TPTP syntax [SSCB12, SB10], and
to keep the parsers for first-order and higher-order logic largely separate.

Indexing with weight and age constraints could be applied more consequently, and would
profit from the lazy approach to update constraints described previously [Sch24].

We consider it an open question if (equational) literals should be represented as shared
terms at the clause level. This would have some advantages, but the greater freedom of adding
useful information at the literal level also has its value. Also, equations are usually unordered
term pairs, so they would still need special handling in many situations.

Managing term memory with garbage collection has been a particularly productive idea. It
frees developers from manually tracking references, and allows them to simply construct and
discard terms as is convenient. Indeed, the impact of garbage collection on term cells was so big
that we replaced E’s native and distinct formula data type with term-encoded formulas (where
logical operators and quantifiers are just special interpreted function symbols). This made the
later move to logics with first class Booleans [SCV19, VBCS21] like TF0 and FOOL [KKRV16],

13

Shared Terms Schulz

where formulas and terms become one structure anyways, much easier.

6 Conclusion

The choice to go with a shared term data structures has paid off for E in multiple ways. As
demonstrated in this paper, for hard problems we achieve massive savings in the number of
term cells, typically to a degree that the number of term cells is of the same order of magnitude
as the number of clauses, and hence no longer the limiting factor.

High levels of term sharing can be observed over nearly all problem types and all non-trivial
problems, but it seems to go up with the number of terms and, though with a larger spread,
with runtime. In general, high levels of sharing seem to indicate a lot of redundancy in the
proof state - this is particularly obvious if we compare the (usually) stronger calculus variants
with literal selection to the ones without. There may be a way to utilise this fact to help control
proof search in the future, but so far this remains a vague idea.

Cached rewriting has shown good potential, reducing the number of expensive new rewrites
by orders of magnitude for hard problems. It would be interesting to analyse how often size
and age constraints have cut short the search for demodulators early, but that is beyond the
scope of this paper.

A substantial amount of experience was accumulated with shared terms and cached rewriting
in E. We hope that this paper helps future implementation to avoid some of the pitfalls along
the way and build on our experience.

References

[BDP89] L. Bachmair, N. Dershowitz, and D.A. Plaisted. Completion Without Failure. In H. Ait-
Kaci and M. Nivat, editors, Resolution of Equations in Algebraic Structures, volume 2,
pages 1–30. Academic Press, 1989.

[BG94] Leo Bachmair and Harald Ganzinger. Rewrite-Based Equational Theorem Proving with
Selection and Simplification. Journal of Logic and Computation, 3(4):217–247, 1994.

[Cha12] Arthur Charguéraud. The locally nameless representation. Journal of Automated Reason-
ing, 49(3):363–408, 2012.

[Chr93] J. Christian. Flatterms, Discrimination Nets and Fast Term Rewriting. Journal of Auto-
mated Reasoning, 10(1):95–113, 1993.

[CP03] Iliano Cervesato and Frank Pfenning. A linear spine calculus. Journal of Logic and Com-
putation, 13(5):639–688, 2003.

[DK20] André Duarte and Konstantin Korovin. Implementing superposition in iProver (system
description). In Nicolas Peltier and Viorica Sofronie-Stokkermans, editors, Proc. of the
10th IJCAR, Paris (Part II), volume 12167 of LNAI, pages 158–166. Springer, 2020.

[DKS97] J. Denzinger, M. Kronenburg, and S. Schulz. DISCOUNT: A Distributed and Learning
Equational Prover. Journal of Automated Reasoning, 18(2):189–198, 1997. Special Issue
on the CADE 13 ATP System Competition.

[KKRV16] Evgenii Kotelnikov, Laura Kovács, Giles Reger, and Andrei Voronkov. The Vampire and
the FOOL. In Jeremy Avigad and Adam Chlipala, editors, Proceedings of the 5th ACM
SIGPLAN Conference on Certified Programs and Proofs, Saint Petersburg, USA, pages
37–48. ACM, 2016.

[KV13] Laura Kovács and Andrei Voronkov. First-order theorem proving and Vampire. In Natasha
Sharygina and Helmut Veith, editors, Proc. of the 25th CAV, volume 8044 of LNCS, pages
1–35. Springer, 2013.

14

Shared Terms Schulz

[LH02] B. Löchner and Th. Hillenbrand. A Phytography of Waldmeister. Journal of AI Commu-
nications, 15(2/3):127–133, 2002.

[LS01] B. Löchner and S. Schulz. An Evaluation of Shared Rewriting. In H. de Nivelle and
S. Schulz, editors, Proc. of the 2nd International Workshop on the Implementation of Logics,
MPI Preprint, pages 33–48, Saarbrücken, 2001. Max-Planck-Institut für Informatik.

[McC10] William W. McCune. Prover9 and Mace4. http://www.cs.unm.edu/~mccune/prover9/,
2005–2010. (acccessed 2016-03-29).

[Rob65] J. A. Robinson. A Machine-Oriented Logic Based on the Resolution Principle. Journal of
the ACM, 12(1):23–41, 1965.

[RW69] G. Robinson and L. Wos. Paramodulation and Theorem Proving in First-Order Theories
with Equality. In B. Meltzer and D. Michie, editors, Machine Intelligence 4. Edinburgh
University Press, 1969.

[SB10] Geoff Sutcliffe and Christoph Benzmüller. Automated Reasoning in Higher-Order Logic
using the TPTP THF Infrastructure. Journal of Formalized Reasoning, 3(1):1–27, 2010.

[Sch02] Stephan Schulz. E – A Brainiac Theorem Prover. Journal of AI Communications,
15(2/3):111–126, 2002.

[Sch22] Stephan Schulz. Empirical properties of term orderings for superposition. In Boris Konev,
Claudia Schon, and Alexander Steen, editors, Proc. of the 8th PAAR, Haifa, Israel, number
3201 in CEUR Workshop Proceedings, 2022.

[Sch24] Stephan Schulz. Lazy and eager patterns in high-performance automated theorem proving.
In Laura Kovács and Michael Rawson, editors, Proceedings of the 7th and 8th Vampire
Workshop, volume 99 of EPiC Series in Computing, pages 7–12. EasyChair, 2024.

[SCV19] Stephan Schulz, Simon Cruanes, and Petar Vukmirović. Faster, higher, stronger: E 2.3. In
Pascal Fontaine, editor, Proc. of the 27th CADE, Natal, Brasil, number 11716 in LNAI,
pages 495–507. Springer, 2019.

[SM16] Stephan Schulz and Martin Möhrmann. Performance of clause selection heuristics for
saturation-based theorem proving. In Nicola Olivetti and Ashish Tiwari, editors, Proc. of
the 8th IJCAR, Coimbra, volume 9706 of LNAI, pages 330–345. Springer, 2016.

[Sma21] Nick Smallbone. Twee: An Equational Theorem Prover. In André Platzer and Geoff
Sutcliffe, editors, Proc. of the 28th CADE, Pittsburgh, volume 12699 of LNAI, pages 602–
613. Springer, 2021.

[SSCB12] Geoff Sutcliffe, Stephan Schulz, Koen Claessen, and Peter Baumgartner. The TPTP Typed
First-order Form with Arithmetic. In Nikolaj Bjørner and Andrei Voronkov, editors, Proc.
of the 18th LPAR, Merida, volume 7180 of LNAI, pages 406–419. Springer, 2012.

[SST14] Aaron Stump, Geoff Sutcliffe, and Cesare Tinelli. StarExec: A Cross-Community Infras-
tructure for Logic Solving. In Stéphane Demri, Deepak Kapur, and Christoph Weidenbach,
editors, Proc. of the 7th IJCAR, Vienna, volume 8562 of LNCS, pages 367–373. Springer,
2014.

[ST85] D.D. Sleator and R.E. Tarjan. Self-Adjusting Binary Search Trees. Journal of the ACM,
32(3):652–686, 1985.

[Sut17] Geoff Sutcliffe. The TPTP problem library and associated infrastructure - from CNF to
TH0, TPTP v6.4.0. Journal of Automated Reasoning, 59(4):483–502, 2017.

[VBCS21] Petar Vukmirović, Jasmin Christian Blanchette, Simon Cruanes, and Stephan Schulz. Ex-
tending a Brainiac Prover to Lambda-free Higher-Order Logic. International Journal on
Software Tools for Technology Transfer, August 2021.

[VBS23] Petar Vukmirović, Jasmin Christian Blanchette, and Stephan Schulz. Extending a high-
performance prover to higher-order logic. In Natasha Sharygina and Sriram Sankara-
narayanan, editors, Proc. 29th Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’23), Paris, France, number 13994(2) in LNCS, pages
111–132. Springer, 2023.

15

http://www.cs.unm.edu/~mccune/prover9/

Shared Terms Schulz

[WDF+09] Christoph Weidenbach, Dilyana Dimova, Arnaud Fietzke, Rohit Kumar, Martin Suda, and
Patrick Wischnewski. SPASS Version 3.5. In Renate Schmidt, editor, Proc. of the 22nd
CADE, Montreal, Canada, volume 5663 of LNAI, pages 140–145. Springer, 2009.

16

	Introduction
	Given Clause Selection in E
	Strategy Merging
	Potential ITP Application
	Ablation Study
	An Auto-based Baseline

	Data, Experiments, and Results
	Conclusion
	Example Strategy
	Introduction
	Background
	StarExec
	ATP Systems
	Containerisation

	Containerising StarExec
	Containerising ATP Systems
	Building ATP System Containers
	Running ATP-system:version-RLR Containers
	The ResourceLimitedRun Utility

	Towards a Cloud-native StarExec
	Re-engineering StarExec for the Cloud
	StarExec in AWS

	Conclusion
	E's run_system script
	run_image.py
	Introduction
	Background

	Term Banks and Shared Terms
	Basic implementation
	Shared Properties
	Garbage collection

	Cached Rewriting
	Implementation and optimisations

	Experimental Results
	Data structures and sharing
	Garbage collection
	Cached rewriting

	Lessons Learned
	Conclusion

