
Superposition
@25

Superposition 1: Basics and Implementation
Stephan Schulz
schulz@eprover.org

Contents

1 Introduction

2 Basics

3 Implementation

4 Conclusion

5 References

2

Introduction

3

The Big Picture

Real World Problem

4

The Big Picture

Real World Problem

4

The Big Picture

Real World Problem Formalized Problem

4

The Big Picture

Real World Problem Formalized Problem

8X : human(X)! mortal(X)
8X : philosopher(X)! human(X)

philosopher(socrates)

?
|=

mortal(socrates)

4

The Big Picture

Real World Problem Formalized Problem

8X : f(X, 0) ' X)
8X : 9Y : f(X, Y) ' 0

8X, Y, Z : f(f(X,Y), Z) ' f(X, f(Y, Z))

?
|=

8X, Y : (f(X, Y) ' 0! f(Y, X) ' 0)

4

The Big Picture

Real World Problem Formalized Problem

ATP

8X : f(X, 0) ' X)
8X : 9Y : f(X, Y) ' 0

8X, Y, Z : f(f(X,Y), Z) ' f(X, f(Y, Z))

?
|=

8X, Y : (f(X, Y) ' 0! f(Y, X) ' 0)

4

The Big Picture

Real World Problem Formalized Problem

ATPProof

8X : f(X, 0) ' X)
8X : 9Y : f(X, Y) ' 0

8X, Y, Z : f(f(X,Y), Z) ' f(X, f(Y, Z))

?
|=

8X, Y : (f(X, Y) ' 0! f(Y, X) ' 0)

4

The Big Picture

Real World Problem Formalized Problem

ATPProof
Countermodel

or

8X : f(X, 0) ' X)
8X : 9Y : f(X, Y) ' 0

8X, Y, Z : f(f(X,Y), Z) ' f(X, f(Y, Z))

?
|=

8X, Y : (f(X, Y) ' 0! f(Y, X) ' 0)

4

The Big Picture

Real World Problem Formalized Problem

ATPProof
Countermodel

Timeout

or

or

8X : f(X, 0) ' X)
8X : 9Y : f(X, Y) ' 0

8X, Y, Z : f(f(X,Y), Z) ' f(X, f(Y, Z))

?
|=

8X, Y : (f(X, Y) ' 0! f(Y, X) ' 0)

4

The Big Picture

Real World Problem Formalized Problem

ATP

Superposition
Proof

Countermodel
Timeout

or

or

8X : f(X, 0) ' X)
8X : 9Y : f(X, Y) ' 0

8X, Y, Z : f(f(X,Y), Z) ' f(X, f(Y, Z))

?
|=

8X, Y : (f(X, Y) ' 0! f(Y, X) ' 0)

4

Proof by Contradiction

8
>><
>>:

8X : human(X)! mortal(X)
8X : philosopher(X)! human(X)

philosopher(socrates)
¬mortal(socrates)

9
>>=
>>;

8X : human(X)! mortal(X)
8X : philosopher(X)! human(X)

philosopher(socrates)
|=

mortal(socrates)

is unsatisfiable

iff

5

From Formulas To Clauses

8
>><
>>:

8X : human(X)! mortal(X)
8X : philosopher(X)! human(X)

philosopher(socrates)
¬mortal(socrates)

9
>>=
>>;

is unsatisfiable

iff

8
>><
>>:

¬human(X) _mortal(X)
¬philosopher(X) _ human(X)

philosopher(socrates)
¬mortal(socrates)

9
>>=
>>;

is unsatisfiable
6

Clausification

1 Optional: Introduce definitions to avoid
exponential explosion

I Only satisfiability-preserving

2 Eliminate implication and equivalency, simplify

3 Move negations inwards to literals (Negation
Normal Form)

4 Optional: Miniscope (move universal
quantifiers inwards)

5 Remove existential quantifiers via
Skolemization

I Only satisfiability-preserving

6 Move universal quantifiers outwards

7 Apply distributive law to move disjunctions
inwards (Conjunktive Normal Form)

8 Read off disjuncts as clauses

Formula
set

Equi-
satisfiable
 clause set

Clausifier

7

Saturating Theorem Proving

I Goal: Show unsatisfiability of a set of clauses S
I Approach:

I Systematically enrich S with clauses derived via inferences from
clauses in S (Saturation)

I Optionally: Remove redundant clauses

I Outcome:

I Derivation of the empty clause � (explicit witness of unsatisfiability)
I Successful saturation (up to redundancy): S is satisfiable
I . . . or infinite sequence of derivations

I Properties:

I Correctness: Only logical consequences are derived
I Completeness: Every unsatisfiable S will eventually lead to the

derivation of �

8

A (slightly subjective) historical view

Completion
[KB70]

Enumerate
Instances [DP60]

1960

1970

1980

1990

Resolution w.
Unification[Ro65]

Paramodulation
[RW69]

Unfailing Completion
[HR87,BDP89]

Semi–Decision
[Huet81]

Rich field of
resolution

variants and
refinements

Superposition
[BG90,NR92,BG94]

9

10

Basics

11

Equational Clause Logic (0)

Multisets

I Formally: A multiset over a set S is a function M : S → N.

I Intuitively: A multiset is a set-like collection that allows multiple
occurrences of the same element

I We write multisets like sets and generalize most operations in the
obvious way:

I ∀s ∈ S : (M1 ∪M2)(s) = M1(s) + M2(s)
I ∀s ∈ S(M1 ∩M2)(s) = min(M1(s),M2(s)
I M1 ⊆ M2 iff ∀s ∈ S : M1(s) ≤ Ms(s)
I . . .

12

Equational Clause Logic (1)

Definition: Signature, Terms

We assume:
I Signature F of function symbols with associated arities, e.g.

F = {f /2, g/1, a/0, n/0}
I We assume at least one constant in F

I Enumerable set of variables V = {X ,Y ,Z ,X1,X2, . . .}
The set T (F ,V) of terms is defined as follows

I V ⊆ T (F ,V)

I If f /n ∈ F , t1, . . . , tn ∈ T (F ,V), then f (t1, . . . , tn) ∈ T (F ,V)

I Nothing else is a term

I Example terms: f (X ,Y), a, f (g(a), g(b)),X , f (X , f (Y ,Z))

I We write a instead of a() for constants

13

Equational Clause Logic (2)

Definition: Equations, literals

I An (positive) equation is an unordered pair of terms

I We write s ' t
I We identify s ' t with the multiset {{s}, {t}}

I An disequation or negative equation is an unordered pair of terms

I We write s 6' t
I We identify s 6' t with the multiset {{s, t}}

I A literal is either an equation or a disequation

I We write s '̇ t if we don’t want to specify the polarity
I . . . or we simply write l1, l2, . . . for various literals

14

Equational Clause Logic (3)

Definition: Clauses

I A clause is a multiset of literals
I We write a clause as a disjunction of literals

I {l1, l2, l3} = l1 ∨ l2 ∨ l3

Examples:

I g(a) ' a ∨ g(a) 6' a is a (tautological) clause

I f (X , f (Y ,Z)) ' f (f (X ,Y),Z) is a (positive unit) clause

I a 6' b ∨ g(a) 6' g(b) is a (negative) clause

15

Ground Terms and the Herbrand Universe

Definition: Ground Terms

I A ground term is a terms that does not contain
any variables

I Analogously: ground literals, ground clauses

I We write T (F) for the set of all ground terms
over the signature F

I We also call T (F) the Herbrand universe for F

Jaques Herbrand: If we want to show that a set of clauses is
unsatisfiable, we only need to consider interpretations where variables
range over the Herbrand universe

16

Ground Terms and the Herbrand Universe

Definition: Ground Terms

I A ground term is a terms that does not contain
any variables

I Analogously: ground literals, ground clauses

I We write T (F) for the set of all ground terms
over the signature F

I We also call T (F) the Herbrand universe for F

Jaques Herbrand: If we want to show that a set of clauses is
unsatisfiable, we only need to consider interpretations where variables
range over the Herbrand universe

16

Herbrand Equality Interpretations

Definition

I A Herbrand Equality Interpretation I is a congruence relation on
ground terms, i.e. a relation for which the following holds:

I I is reflexive, symmetric and transitive
I If (s, t) ∈ I , then (u[p ← s], u[p ← t]) ∈ I

I . . . where u[p ← s] denotes the term u with the subterm at position p
replaced by s

I A ground equation s ' t is true under I , if (s, t) ∈ I

I We write I |= s ' t

I A ground disequation s 6' t is true under I , if (s, t) /∈ I

I We write I |= s 6' t

I A ground clause C is true under I , if one of its literals is true

I We write I |= s 6' t

17

Exercise: Herbrand Equality Interpretations

I Assume F = {a/0, b/0, c/0, g/1}
I What is the smallest Herbrand Equality Interpretation I1 in which

a ' b is true?

I What is the smallest Herbrand Equality Interpretation I2 in which
both a ' b and g(a) ' g(c) are true?

I What is the truth status of the following clauses under I1 and I2?

I g(a) 6' b ∨ a ' c
I g(b) 6' g(c) ∨ a ' c

18

Substitutions

Definition: Substitution, Instance

I A substitution is a mapping σ : V → T (F ,V) with the property
that {X ∈ V |Xσ 6= X} is finite

I We continue it to a mapping σ : T (F ,V)→ T (F ,V)

I Every variable X in a term t is replaced by the corresponding term Xσ
I We write tσ for the result of applying σ to t

I Substitutions are further continued to literals and clauses in the
obvious way

I We call tσ, lσ, Cσ instances of t, l , or C , respectively

I If tσ, lσ,Cσ are ground, we call σ a grounding substitution (for
t, l ,C), and tσ, lσ,Cσ ground instances

Examples: Consider σ = {X ← a,Y ← g(X)}
I f (X ,Y)σ = f (a, g(X))
I σ is grounding for g(X)

19

Substitutions

Definition: Substitution, Instance

I A substitution is a mapping σ : V → T (F ,V) with the property
that {X ∈ V |Xσ 6= X} is finite

I We continue it to a mapping σ : T (F ,V)→ T (F ,V)

I Every variable X in a term t is replaced by the corresponding term Xσ
I We write tσ for the result of applying σ to t

I Substitutions are further continued to literals and clauses in the
obvious way

I We call tσ, lσ, Cσ instances of t, l , or C , respectively

I If tσ, lσ,Cσ are ground, we call σ a grounding substitution (for
t, l ,C), and tσ, lσ,Cσ ground instances

Examples: Consider σ = {X ← a,Y ← g(X)}
I f (X ,Y)σ = f (a, g(X))
I σ is grounding for g(X)

19

Semantics of Clauses

I We have defined the truth value of ground clauses under a Herbrand
Equality Interpretation I

I What about non-ground clauses?

Semantics of clauses

Let I be a Herbrand Equality Interpretation and C be a clause

I I |= C iff I |= Cσ for all grounding substitutions σ

I A clause is true under Herbrand Equality Interpretation if all its
ground instances are

20

Semantics of Clauses

I We have defined the truth value of ground clauses under a Herbrand
Equality Interpretation I

I What about non-ground clauses?

Semantics of clauses

Let I be a Herbrand Equality Interpretation and C be a clause

I I |= C iff I |= Cσ for all grounding substitutions σ

I A clause is true under Herbrand Equality Interpretation if all its
ground instances are

20

Semantics of Clauses

I We have defined the truth value of ground clauses under a Herbrand
Equality Interpretation I

I What about non-ground clauses?

Semantics of clauses

Let I be a Herbrand Equality Interpretation and C be a clause

I I |= C iff I |= Cσ for all grounding substitutions σ

I A clause is true under Herbrand Equality Interpretation if all its
ground instances are

20

Herbrand Equality Models

Definition

Assume a set S of clauses and a Herbrand Equality Interpretation I

I I is called a Herbrand Equality Model iff ∀C ∈ S : I |= C

I S is called satisfiable, if such an I exists

I Otherwise, S is unsatisfiable

21

Herbrand Equality Models

Definition

Assume a set S of clauses and a Herbrand Equality Interpretation I

I I is called a Herbrand Equality Model iff ∀C ∈ S : I |= C

I S is called satisfiable, if such an I exists

I Otherwise, S is unsatisfiable

21

Different Interpretations of Clauses

I As a disjunction, a clause is true, if one of its literals is true

s1 6' t1 ∨ s2 6' t2 ∨ s3 ' t3 ∨ s4 ' t4

I Implicational form: If the disequations are false, one of the
equations must be true

(s1 ' t1 ∧ s2 ' t2)→ (s3 ' t3 ∨ s4 ' t4)

I Even stronger: If all but one literals are false, the remaining one
must be true

(s1 ' t1 ∧ s2 ' t2 ∧ s3 6' t3)→ s4 ' t4

Clauses can be seen as (conditional) rewrite rules

22

Different Interpretations of Clauses

I As a disjunction, a clause is true, if one of its literals is true

s1 6' t1 ∨ s2 6' t2 ∨ s3 ' t3 ∨ s4 ' t4

I Implicational form: If the disequations are false, one of the
equations must be true

(s1 ' t1 ∧ s2 ' t2)→ (s3 ' t3 ∨ s4 ' t4)

I Even stronger: If all but one literals are false, the remaining one
must be true

(s1 ' t1 ∧ s2 ' t2 ∧ s3 6' t3)→ s4 ' t4

Clauses can be seen as (conditional) rewrite rules

22

Unification

Definition: Unifier, mgu

I A substitution σ is called a unifier for two terms s,t, if sσ = tσ
I It is called a most general unifier if it is the most general

substitution with this property

I If a unifier exists, the most general unifier is unique (up to variable
renamings) and can be computed easily

I We write mgu(s, t) to denote the most general unifier of s and t

I If a term represents all its ground instances, the mgu allows us to
find the common instances of two terms

I Thus, it allows us to derive new clauses which talk about these
subsets

23

Unification

Definition: Unifier, mgu

I A substitution σ is called a unifier for two terms s,t, if sσ = tσ
I It is called a most general unifier if it is the most general

substitution with this property

I If a unifier exists, the most general unifier is unique (up to variable
renamings) and can be computed easily

I We write mgu(s, t) to denote the most general unifier of s and t

I If a term represents all its ground instances, the mgu allows us to
find the common instances of two terms

I Thus, it allows us to derive new clauses which talk about these
subsets

23

Exercise/Examples

I Consider the (unit) clause g(a) 6' g(X). Is it satisfiable? Why or
why not?

I Consider the set S = {a ' b, g(a) 6' g(b)}. Is S satisfiable? Why or
why not?

The fact that Herbrand Equality Interpretations are congruences allow
us to apply equational reasoning!

24

Exercise/Examples

I Consider the (unit) clause g(a) 6' g(X). Is it satisfiable? Why or
why not?

I Consider the set S = {a ' b, g(a) 6' g(b)}. Is S satisfiable? Why or
why not?

The fact that Herbrand Equality Interpretations are congruences allow
us to apply equational reasoning!

24

Equality Resolution

I Syntactically identical terms must be equal in I

I I is a congruence relation and hence reflexive

I Thus, if the two terms of a negative equation have common
instances, we can shorten the clause for these instances

(ER)
C ∨ s 6' t

Cσ
if σ = mgu(s, t)

I Notes:

I C is an arbitrary clause (possibly empty)
I Remember that clauses are multisets, hence unordered
I Any interpretation that makes C ∨ s 6' t true also makes Cσ true,

hence Cσ is a logical consequence of C ∨ s 6' t
I This is a generating inference: The new clause is added to the current

set of clauses

25

Paramodulation: Replacing Equals with Equals

I Paramodulation interprets a clause as a conditional rewrite rule

I One positive literal is applied
I The others are considered as conditions
I Conditions are not solved, but lazily added to the result

(PM)
C ∨ s ' t D ∨ u '̇v

(C ∨ D ∨ u[p ← t]'̇v)σ
if σ = mgu(u|p, s)

I Notes:

I The literal used for replacing must be positive
I The literal in which a term is replaced can have any polarity
I This is a generating inference: The new clause is added to the current

set of clauses

26

(Positive) Factoring

I Factoring allow us to unify literals with the same polarity

(PF)
C ∨ s ' t ∨ u ' v

(C ∨ s ' t)σ
if σ = mgu(s ' t, u ' v)

I Notes:

I Note that s ' t and u ' v are unordered, hence must be tried in
both directions for unification

I This is a generating inference: The new clause is added to the current
set of clauses

27

Exercise: A Proof Attempt

You should be able to prove the unsatisfiability of the following clause set
with just the rules (ER), (PM), (EF). Can you?

p(X ,X) ' X

p(p(p(X ,Y),Z),U) 6' p(p(Y ,Z),X) ∨ p(p(p(X ,Y),Z), i(U)) ' n0))

p(p(p(X ,Y),Z), i(U)) 6' n0 ∨ p(p(p(X ,Y),Z),U) ' p(p(Y ,Z),X)))

p(i(p(a, i(b))), i(p(i(a), i(b)))) 6' b
∨p(p(a, b), c) 6' p(a, p(b, c)) ∨ p(b, a) 6' p(a, b)

28

The Proof

cnf(c_0_0, axiom, (add(add(add(X1,X2),X3),inverse(X4))=n0|add(add(add(X1,X2),X3),X4)!=add(add(X2,X3),X1))).

cnf(c_0_4, plain, (add(add(X1,X2),inverse(X3))=n0|add(add(X1,X2),X3)!=add(add(X1,X2),X1))).

cnf(c_0_34, plain, (add(add(X1,X2),X3)=n0|add(add(X2,X3),X1)!=n0)).

cnf(c_0_1, axiom, (add(X1,X1)=X1)).

cnf(c_0_5, plain, (add(X1,inverse(X2))=n0|add(X1,X2)!=X1)).

cnf(c_0_7, plain, (add(X1,inverse(X1))=n0)).cnf(c_0_8, plain, (add(add(X1,X2),X3)=add(add(X1,X2),X1)|add(add(X1,X2),inverse(X3))!=n0)).

cnf(c_0_10, plain, (add(add(X1,X2),X3)=add(add(X2,add(X1,X2)),X1)|add(add(X1,X2),inverse(X3))!=n0)).

cnf(c_0_11, plain, (add(n0,X1)=n0)).

cnf(c_0_12, plain, (add(add(X1,add(X2,X1)),X2)=add(X2,X1))).

cnf(c_0_14, plain, (add(X1,X2)=X1|add(X1,inverse(X2))!=n0)).

cnf(c_0_16, plain, (add(X1,n0)=n0)).

cnf(c_0_31, plain, (add(add(X1,X2),X3)=add(add(X2,X3),X1))).

cnf(c_0_32, plain, (add(add(X1,X2),X1)=add(X1,X2))).

cnf(c_0_2, axiom, (add(add(add(X1,X2),X3),X4)=add(add(X2,X3),X1)|add(add(add(X1,X2),X3),inverse(X4))!=n0)).

cnf(c_0_13, plain, (add(add(X1,X2),n0)=n0)).

cnf(c_0_20, plain, (add(add(X1,X2),X3)=n0|add(add(X3,X1),X2)!=n0)).

cnf(c_0_29, plain, (add(add(X1,X2),inverse(X2))=n0)).

cnf(c_0_36, plain, (add(add(X1,X2),X3)=add(X2,X1)|add(add(X1,X2),inverse(X3))!=n0)).

cnf(c_0_3, negated_conjecture, (add(inverse(add(a,inverse(b))),inverse(add(inverse(a),inverse(b))))!=b|add(add(a,b),c)!=add(a,add(b,c))|add(b,a)!=add(a,b))).

cnf(c_0_51, negated_conjecture, (add(inverse(add(a,inverse(b))),inverse(add(inverse(b),inverse(a))))!=b)).

cnf(c_0_6, plain, (add(add(X1,X2),inverse(X1))=n0)).

cnf(c_0_9, plain, (add(n0,inverse(X1))=n0)).

cnf(c_0_15, plain, (add(inverse(X1),X1)=n0)).

cnf(c_0_21, plain, (add(add(X1,inverse(X2)),X2)=n0)).

cnf(c_0_40, plain, (add(inverse(X1),add(X1,X2))=n0)).

cnf(c_0_27, plain, (add(add(inverse(X1),X2),X1)=n0)).

cnf(c_0_38, plain, (add(add(X1,X2),inverse(add(X2,X1)))=n0)).

cnf(c_0_26, plain, (inverse(inverse(X1))=X1)).

cnf(c_0_43, plain, (add(inverse(add(X1,inverse(X2))),X2)=X2)).

cnf(c_0_17, plain, (add(inverse(inverse(X1)),X1)=inverse(inverse(X1)))).

cnf(c_0_19, plain, (add(X1,inverse(n0))=X1)).

cnf(c_0_25, plain, (add(X1,inverse(inverse(X1)))=X1)).

cnf(c_0_28, plain, (add(X1,inverse(X2))=X1|add(X1,X2)!=n0)).

cnf(c_0_18, plain, (inverse(inverse(n0))=n0)).

cnf(c_0_23, plain, (add(inverse(inverse(inverse(X1))),X1)=n0)).

cnf(c_0_22, plain, (add(X1,X2)=n0|add(X2,X1)!=n0)).

cnf(c_0_35, plain, (add(X1,add(X2,inverse(X1)))=n0)).

cnf(c_0_24, plain, (add(X1,inverse(inverse(inverse(X1))))=n0)).cnf(c_0_48, plain, (add(inverse(X1),add(X2,X1))=n0)).

cnf(c_0_30, plain, (add(add(X1,X2),X2)=add(X1,X2))).

cnf(c_0_46, plain, (add(X1,add(X1,X2))=add(X1,X2))).

cnf(c_0_53, negated_conjecture, ($false)).

cnf(c_0_39, plain, (add(X1,inverse(add(X2,inverse(X1))))=X1)). cnf(c_0_44, plain, (add(inverse(X1),inverse(add(X1,X2)))=inverse(X1))).cnf(c_0_50, plain, (add(inverse(X1),inverse(add(X2,X1)))=inverse(X1))).

cnf(c_0_33, plain, (add(X1,X2)=add(X2,X1))).

cnf(c_0_37, plain, (add(add(X1,X2),X3)=add(X2,add(X3,X1)))).

cnf(c_0_42, plain, (add(X1,add(X2,inverse(add(X1,X2))))=n0)).

cnf(c_0_49, plain, (add(X1,inverse(add(X2,X1)))=add(X1,inverse(X2)))).

cnf(c_0_52, plain, (add(inverse(add(X1,X2)),inverse(add(X2,inverse(X1))))=inverse(X2))).

cnf(c_0_41, plain, (add(X1,add(X2,X3))=add(X1,X3)|add(X1,add(inverse(X2),X3))!=n0)).

cnf(c_0_45, plain, (add(X1,inverse(add(X1,inverse(X2))))=add(X1,X2))).

cnf(c_0_47, plain, (add(X1,inverse(add(X1,X2)))=add(X1,inverse(X2)))).

29

Paramodulation is Blind

I Fact: (PM), (ER) and (PF) together are a sound and complete
inference system for equational reasoning

I If used exhaustively, the will generate the empty clause from any
unsatisfiable clause set

I They will never generate the empty clause from a satisfiable clause set

I Problem: Paramodulation is too prolific

I Every positive literal can be used as a rewrite rule
I . . . in either direction (!)
I Any literal can be rewritten at any position

The search space explodes extremely fast!
=⇒

Only very simple proofs can be found

30

Paramodulation is Blind

I Fact: (PM), (ER) and (PF) together are a sound and complete
inference system for equational reasoning

I If used exhaustively, the will generate the empty clause from any
unsatisfiable clause set

I They will never generate the empty clause from a satisfiable clause set

I Problem: Paramodulation is too prolific

I Every positive literal can be used as a rewrite rule
I . . . in either direction (!)
I Any literal can be rewritten at any position

The search space explodes extremely fast!
=⇒

Only very simple proofs can be found

30

Superposition: Fixing Paramodulation

I Superposition restricts paramodulation by introducing orderings

I Paramodulation can only be used on maximal terms in maximal
literals

I Only maximal instances of equations can be used as rewrite rules
I Only potentially reducing rewrite steps can be made

I Side effect: Powerful redundancy criteria

I In particular: Unconditional rewriting

31

Simplification Orderings

Definition: Simplification ordering

I A simplification ordering > on T (F ,V) is a partial ordering > with
the following properties:

I > is stable under substitutions: s > t implies sσ > tσ
I > is compatible with the term structure: s > t implies

u[p ← s] > u[p ← t]
I > is terminating
I > contains the subterm relation

I > is a ground simplification ordering, if > is total on ground terms

Notes:

I > cannot be total on all terms (consider X > Y)

I Examples of (families of) simplification orderings are the
Knuth-Bendix-Ordering (KBO) and the Lexicographic Path Ordering
(LPO)

32

Simplification Orderings

Definition: Simplification ordering

I A simplification ordering > on T (F ,V) is a partial ordering > with
the following properties:

I > is stable under substitutions: s > t implies sσ > tσ
I > is compatible with the term structure: s > t implies

u[p ← s] > u[p ← t]
I > is terminating
I > contains the subterm relation

I > is a ground simplification ordering, if > is total on ground terms

Notes:

I > cannot be total on all terms (consider X > Y)

I Examples of (families of) simplification orderings are the
Knuth-Bendix-Ordering (KBO) and the Lexicographic Path Ordering
(LPO)

32

Lifting Orderings

Let > be a (ground) simplification ordering on terms. > is lifted to
literals via the multiset-extension:
I Remember:

I We identify s ' t with {{s}, {t}}
I We identify s 6' t with {{s, t}}

I So s '̇ t > u '̇v if their respective multiset representations compare
that way under >>

33

From Paramodulation to Superposition

I Term orderings allow us to restrict paramodulation and equality
resolution to maximal literals

I Factoring can also be restricted, but needs to be slightly generalized
to maintain completeness

34

(Ordered) Equality Resolution

(ER)
C ∨ s 6' t

Cσ
if σ = mgu(s, t) and s 6' t is maximal in (C ∨ s 6' t)σ
I Notes:

I This restricts the previous version with the added maximality
requirement

I Equality resolution is generally harmless

35

Superposition

I Superposition restricts paramodulation with term orderings

I It comes in two versions for positive and negative target literals

(SN)
C ∨ s ' t D ∨ u 6' v

(C ∨ D ∨ u[p ← t] 6' v)σ
if

I u|p /∈ V , σ = mgu(u|p, s)
I sσ 6< tσ, uσ 6< vσ
I (s ' t)σ is strictly maximal in (C ∨ s ' t)σ
I (u 6' v)σ is maximal in (D ∨ u 6' v)σ

(SP)
C ∨ s ' t D ∨ u ' v

(C ∨ D ∨ u[p ← t] ' v)σ
if

I u|p /∈ V , σ = mgu(u|p, s)
I sσ 6< tσ, uσ 6< vσ
I (s ' t)σ is strictly maximal in (C ∨ s ' t)σ
I (u ' v)σ is strictly maximal in (D ∨ u 6' v)σ

36

Equality Factoring

I Equality factoring generalizes positive factoring

(EF)
C ∨ s ' t ∨ u ' v

(C ∨ t 6' v ∨ u ' v)σ
if

I σ = mgu(s, u)
I sσ 6< tσ
I (s ' t)σ is maximal in (C ∨ s ' t ∨ u ' vσ)

37

Correctness

An inference system that contains just (ER), (SN), (SP), (EF) is sound
and complete!

I For completeness, every possible inference must eventually be
performed

I Implementation e.g.:

I Level saturation
I Given-clause algorithm

I In practice, redundancy elimination is critical!

38

A Basic Proof Procedure

U
(unprocessed clauses)

g

P
(processed clauses)

g=☐
?

39

A Basic Proof Procedure

U
(unprocessed clauses)

Gene-
rate

g

P
(processed clauses)

g=☐
?

39

Redundancy

I Superposition comes with a powerful redundancy concept:
I A clause is redundant, if every ground instance is implied by smaller

ground instances of other clauses
I The ordering lifts the literal ordering via the multiset-construction

(again!) to the clause level

I Redundant clauses can be removed without affecting completeness

I Note: Simplification can add new, smaller clauses to make a
previous clause redundant!

40

Redundancy

I Superposition comes with a powerful redundancy concept:
I A clause is redundant, if every ground instance is implied by smaller

ground instances of other clauses
I The ordering lifts the literal ordering via the multiset-construction

(again!) to the clause level

I Redundant clauses can be removed without affecting completeness

I Note: Simplification can add new, smaller clauses to make a
previous clause redundant!

40

Tautologies

I Tautologies are clauses that are true under any implementation

I Example: a 6' b ∨ a ' b
I Example: a 6' b ∨ a ' a

I Tautologies are implied by the empty set of clauses

I Hence they can be removed per the general redundancy criterion

41

Intra-Clause Simplifications

I A clause that is a subset of another clause is smaller

I Any inference that removes a literal replaces a clause by a smaller one
that makes it redundant

I Examples:

I Removal of duplicate literals
I Removal of trivially false literals (s 6' s)

42

Rewriting

I Rewriting replaces a term with a smaller term

I The original clause is implied by the new one and the rewriting one
I Crucial for efficient proof procedures!

(RP)
s ' t u ' v ∨ C

s ' t u[p ← tσ] ' v ∨ C
if

I u|p = sσ, sσ > tσ

I u ' v is not maximal or u 6> v or p 6= λ or σ is not a variable
renaming

(RN)
s ' t u 6' v ∨ C

s ' t u[p ← tσ] 6' v ∨ C
if u|p = sσ and sσ > tσ

43

Additional Simplifications

I Subsumption

I Contextual literal cutting a.k.a clause simplification a.k.a.
subsumption resolution

I Condensation

I AC redundancy elimination

44

Implementation

45

The Given-Clause Algorithm

U
(unprocessed clauses)

g

P
(processed clauses)

g=☐
?

I Aim: Move everything
from U to P

I Invariant: All generating
inferences with premises
from P have been
performed

I Invariant: P is
interreduced

I Clauses added to U are
simplified with respect
to P

46

The Given-Clause Algorithm

U
(unprocessed clauses)

Gene-
rate

g

P
(processed clauses)

g=☐
?

I Aim: Move everything
from U to P

I Invariant: All generating
inferences with premises
from P have been
performed

I Invariant: P is
interreduced

I Clauses added to U are
simplified with respect
to P

46

The Given-Clause Algorithm

U
(unprocessed clauses)

Gene-
rate

Simpli-
fiable?

Cheap
Simplify

Simplify

g

P
(processed clauses)

g=☐
?

I Aim: Move everything
from U to P

I Invariant: All generating
inferences with premises
from P have been
performed

I Invariant: P is
interreduced

I Clauses added to U are
simplified with respect
to P

46

The Given-Clause Algorithm

U
(unprocessed clauses)

Gene-
rate

Simpli-
fiable?

Cheap
Simplify

Simplify

g

P
(processed clauses)

g=☐
?

I Aim: Move everything
from U to P

I Invariant: All generating
inferences with premises
from P have been
performed

I Invariant: P is
interreduced

I Clauses added to U are
simplified with respect
to P

46

The Given-Clause Loop

while U 6= {}
g = delete best(U)
g = simplify(g ,P)
if g == �

SUCCESS, Proof found
if g is not subsumed by any clause in P (or otherwise redundant w.r.t. P)

P = P\{c ∈ P | c subsumed by (or otherwise redundant w.r.t.) g}
T = {c ∈ P | c can be simplified with g}
P = (P\T) ∪ {g}
T = T ∪ generate(g ,P)
foreach c ∈ T
c = cheap simplify(c ,P)
if c is not trivial
U = U ∪ {c}

SUCCESS, original U is satisfiable

47

48

48

48

48

48

48

48

Some Numbers

Initial clauses in saturation : 4

Processed clauses : 4808

...of these trivial : 385

...subsumed : 3976

...remaining for further processing : 447

Other redundant clauses eliminated : 604

Generated clauses : 46595

...of the previous two non-trivial : 33866

Paramodulations : 45989

Factorizations : 0

Equation resolutions : 606

Current number of processed clauses : 306

Current number of unprocessed clauses: 25454

49

U
(unprocessed clauses)

Gene-
rate

Simpli-
fiable?

Cheap
Simplify

Simplify

g

P
(processed clauses)

g=☐
?

U
(unprocessed clauses)

50

Expensive operations

I Paramodulation/Superposition: Find partners for g

I Indexing with e.g. Fingerprint Indexing or Discrimination Tree
Indexing

I Forward rewriting: Find matching equations for g and newly
generated clauses

I Biggest single cost in many provers!
I Use Discrimination Tree Indexing

I Backward rewriting: Find clauses rewritable with g

I Use Path Indexing or Fingerprint Indexing

I Subsumption: Find clauses subsuming or subsumed by g

I Use Feature Vector Indexing

51

Search control

52

Clause selection

53

Basic Approaches

I Symbol counting

I Pick smallest clause in P
I |{f (X) 6= a,P(a) 6= $true, g(Y) = f (a)}| = 10

I FIFO

I Always pick oldest clause in P

I Flexible weighting

I Symbol counting, but give different weight to different symbols
I E.g. lower weight to symbols from goal!

I Combinations

I Interleave different schemes

54

Influences on E

I DISCOUNT

I Different experts (heuristic evaluation functions)
I Only one expert per saturation phase

I Otter

I Interleaves size/age selection
I Larry Wos: ”The optimal pick-given ration is 5”

I Waldmeister

I Larry is right in general, wrong in detail

55

The Second System Effect

The general tendency is to over-design the second system,
using all the ideas and frills that were cautiously sidetracked on
the first one. The result, as Ovid says, is a “big pile.”

— Frederick P. Brooks, Jr.

56

Given-Clause Selection in E

I Domain Specific Language (DSL) for clause selection scheme

I Arbitrary number of queues
I Each queue ordered by:

I Unparameterized priority function
I Parameterized heuristic evaluation function

I Clauses picked using weighted round-robbin scheme
I Example:

I 4 clauses from queue 1
I 2 clauses from queue 2
I 2 clauses from queue 3
I Start over at queue 1

Second-system effect gone wild

57

The Influence of Clause Selection

 0

 2000

 4000

 6000

 8000

 10000

 0 50 100 150 200 250 300

E 1.8 Best
E 0.2 Goals
E 0.2 Larry
E 0.2 FOF

E 0.2 SC

58

Exercise: Playing with E

I Download and install E from http://www.eprover.org

I Run it some of the provided examples

I Play with the parameters

I Take a guided tour through the source

59

http://www.eprover.org

Conclusion

60

Conclusion

I After 25 years, superposition is still the best general-purpose
calculus for first-order logic with equality

I Good implementations are available

I E
I SPASS
I Prover 9
I Vampire

I . . . but further improvements are possible

I Search control heuristics are still crucial

And part of the future will be part of the afternoon session!

61

Conclusion

I After 25 years, superposition is still the best general-purpose
calculus for first-order logic with equality

I Good implementations are available

I E
I SPASS
I Prover 9
I Vampire

I . . . but further improvements are possible

I Search control heuristics are still crucial

And part of the future will be part of the afternoon session!

61

References

62

References

L. Bachmair and H. Ganzinger.

On Restrictions of Ordered Paramodulation with Simplification.
In M.E. Stickel, editor, Proc. of the 10th CADE, Kaiserslautern, volume 449 of LNAI, pages 427—441. Springer, 1990.

L. Bachmair and H. Ganzinger.

Rewrite-Based Equational Theorem Proving with Selection and Simplification.
Journal of Logic and Computation, 3(4):217–247, 1994.

R. Nieuwenhuis and A. Rubio.

Paramodulation-Based Theorem Proving.
In A. Robinson and A. Voronkov, editors, Handbook of Automated Reasoning, volume I, chapter 7, pages 371–443.
Elsevier Science and MIT Press, 2001.

A. Nonnengart and C. Weidenbach.

Computing Small Clause Normal Forms.
In A. Robinson and A. Voronkov, editors, Handbook of Automated Reasoning, volume I, chapter 5, pages 335–367.
Elsevier Science and MIT Press, 2001.

Stephan Schulz.

System Description: E 1.8.
In Ken McMillan, Aart Middeldorp, and Andrei Voronkov, editors, Proc. of the 19th LPAR, Stellenbosch, volume 8312
of LNCS. Springer, 2013.

63

Image Sources

I Jaques Herbrand: Public Domain via Wikimedia

I Clipart: http://openclipart.org

64

http://openclipart.org

	Introduction
	Basics
	Implementation
	Conclusion
	References

