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Proof by Contradiction

8
>><
>>:

8X : human(X)! mortal(X)
8X : philosopher(X)! human(X)

philosopher(socrates)
¬mortal(socrates)

9
>>=
>>;

8X : human(X)! mortal(X)
8X : philosopher(X)! human(X)

philosopher(socrates)
|=

mortal(socrates)

is unsatisfiable

iff
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From Formulas To Clauses

8
>><
>>:

8X : human(X)! mortal(X)
8X : philosopher(X)! human(X)

philosopher(socrates)
¬mortal(socrates)

9
>>=
>>;

is unsatisfiable

iff

8
>><
>>:

¬human(X) _mortal(X)
¬philosopher(X) _ human(X)

philosopher(socrates)
¬mortal(socrates)

9
>>=
>>;

is unsatisfiable
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Clausification

1 Optional: Introduce definitions to avoid
exponential explosion

I Only satisfiability-preserving

2 Eliminate implication and equivalency, simplify

3 Move negations inwards to literals (Negation
Normal Form)

4 Optional: Miniscope (move universal
quantifiers inwards)

5 Remove existential quantifiers via
Skolemization

I Only satisfiability-preserving

6 Move universal quantifiers outwards

7 Apply distributive law to move disjunctions
inwards (Conjunktive Normal Form)

8 Read off disjuncts as clauses

Formula 
set

Equi- 
satisfiable 
 clause set

Clausifier
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Saturating Theorem Proving

I Goal: Show unsatisfiability of a set of clauses S
I Approach:

I Systematically enrich S with clauses derived via inferences from
clauses in S (Saturation)

I Optionally: Remove redundant clauses

I Outcome:

I Derivation of the empty clause � (explicit witness of unsatisfiability)
I Successful saturation (up to redundancy): S is satisfiable
I . . . or infinite sequence of derivations

I Properties:

I Correctness: Only logical consequences are derived
I Completeness: Every unsatisfiable S will eventually lead to the

derivation of �
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A (slightly subjective) historical view

Completion 
[KB70]

Enumerate 
Instances [DP60]

1960
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Unification[Ro65]
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Unfailing Completion 
[HR87,BDP89]

Semi–Decision 
[Huet81]

Rich field of 
resolution 

variants and 
refinements

Superposition 
[BG90,NR92,BG94]
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Basics
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Equational Clause Logic (0)

Multisets

I Formally: A multiset over a set S is a function M : S → N.

I Intuitively: A multiset is a set-like collection that allows multiple
occurrences of the same element

I We write multisets like sets and generalize most operations in the
obvious way:

I ∀s ∈ S : (M1 ∪M2)(s) = M1(s) + M2(s)
I ∀s ∈ S(M1 ∩M2)(s) = min(M1(s),M2(s)
I M1 ⊆ M2 iff ∀s ∈ S : M1(s) ≤ Ms(s)
I . . .
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Equational Clause Logic (1)

Definition: Signature, Terms

We assume:
I Signature F of function symbols with associated arities, e.g.

F = {f /2, g/1, a/0, n/0}
I We assume at least one constant in F

I Enumerable set of variables V = {X ,Y ,Z ,X1,X2, . . .}
The set T (F ,V ) of terms is defined as follows

I V ⊆ T (F ,V )

I If f /n ∈ F , t1, . . . , tn ∈ T (F ,V ), then f (t1, . . . , tn) ∈ T (F ,V )

I Nothing else is a term

I Example terms: f (X ,Y ), a, f (g(a), g(b)),X , f (X , f (Y ,Z ))

I We write a instead of a() for constants

13



Equational Clause Logic (2)

Definition: Equations, literals

I An (positive) equation is an unordered pair of terms

I We write s ' t
I We identify s ' t with the multiset {{s}, {t}}

I An disequation or negative equation is an unordered pair of terms

I We write s 6' t
I We identify s 6' t with the multiset {{s, t}}

I A literal is either an equation or a disequation

I We write s '̇ t if we don’t want to specify the polarity
I . . . or we simply write l1, l2, . . . for various literals
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Equational Clause Logic (3)

Definition: Clauses

I A clause is a multiset of literals
I We write a clause as a disjunction of literals

I {l1, l2, l3} = l1 ∨ l2 ∨ l3

Examples:

I g(a) ' a ∨ g(a) 6' a is a (tautological) clause

I f (X , f (Y ,Z )) ' f (f (X ,Y ),Z ) is a (positive unit) clause

I a 6' b ∨ g(a) 6' g(b) is a (negative) clause
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Ground Terms and the Herbrand Universe

Definition: Ground Terms

I A ground term is a terms that does not contain
any variables

I Analogously: ground literals, ground clauses

I We write T (F ) for the set of all ground terms
over the signature F

I We also call T (F ) the Herbrand universe for F

Jaques Herbrand: If we want to show that a set of clauses is
unsatisfiable, we only need to consider interpretations where variables
range over the Herbrand universe
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Herbrand Equality Interpretations

Definition

I A Herbrand Equality Interpretation I is a congruence relation on
ground terms, i.e. a relation for which the following holds:

I I is reflexive, symmetric and transitive
I If (s, t) ∈ I , then (u[p ← s], u[p ← t]) ∈ I

I . . . where u[p ← s] denotes the term u with the subterm at position p
replaced by s

I A ground equation s ' t is true under I , if (s, t) ∈ I

I We write I |= s ' t

I A ground disequation s 6' t is true under I , if (s, t) /∈ I

I We write I |= s 6' t

I A ground clause C is true under I , if one of its literals is true

I We write I |= s 6' t

17



Exercise: Herbrand Equality Interpretations

I Assume F = {a/0, b/0, c/0, g/1}
I What is the smallest Herbrand Equality Interpretation I1 in which

a ' b is true?

I What is the smallest Herbrand Equality Interpretation I2 in which
both a ' b and g(a) ' g(c) are true?

I What is the truth status of the following clauses under I1 and I2?

I g(a) 6' b ∨ a ' c
I g(b) 6' g(c) ∨ a ' c

18



Substitutions

Definition: Substitution, Instance

I A substitution is a mapping σ : V → T (F ,V ) with the property
that {X ∈ V |Xσ 6= X} is finite

I We continue it to a mapping σ : T (F ,V )→ T (F ,V )

I Every variable X in a term t is replaced by the corresponding term Xσ
I We write tσ for the result of applying σ to t

I Substitutions are further continued to literals and clauses in the
obvious way

I We call tσ, lσ, Cσ instances of t, l , or C , respectively

I If tσ, lσ,Cσ are ground, we call σ a grounding substitution (for
t, l ,C ), and tσ, lσ,Cσ ground instances

Examples: Consider σ = {X ← a,Y ← g(X )}
I f (X ,Y )σ = f (a, g(X ))
I σ is grounding for g(X )
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Semantics of Clauses

I We have defined the truth value of ground clauses under a Herbrand
Equality Interpretation I

I What about non-ground clauses?

Semantics of clauses

Let I be a Herbrand Equality Interpretation and C be a clause

I I |= C iff I |= Cσ for all grounding substitutions σ

I A clause is true under Herbrand Equality Interpretation if all its
ground instances are
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Herbrand Equality Models

Definition

Assume a set S of clauses and a Herbrand Equality Interpretation I

I I is called a Herbrand Equality Model iff ∀C ∈ S : I |= C

I S is called satisfiable, if such an I exists

I Otherwise, S is unsatisfiable
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Different Interpretations of Clauses

I As a disjunction, a clause is true, if one of its literals is true

s1 6' t1 ∨ s2 6' t2 ∨ s3 ' t3 ∨ s4 ' t4

I Implicational form: If the disequations are false, one of the
equations must be true

(s1 ' t1 ∧ s2 ' t2)→ (s3 ' t3 ∨ s4 ' t4)

I Even stronger: If all but one literals are false, the remaining one
must be true

(s1 ' t1 ∧ s2 ' t2 ∧ s3 6' t3)→ s4 ' t4

Clauses can be seen as (conditional) rewrite rules
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Unification

Definition: Unifier, mgu

I A substitution σ is called a unifier for two terms s,t, if sσ = tσ
I It is called a most general unifier if it is the most general

substitution with this property

I If a unifier exists, the most general unifier is unique (up to variable
renamings) and can be computed easily

I We write mgu(s, t) to denote the most general unifier of s and t

I If a term represents all its ground instances, the mgu allows us to
find the common instances of two terms

I Thus, it allows us to derive new clauses which talk about these
subsets

23
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Exercise/Examples

I Consider the (unit) clause g(a) 6' g(X ). Is it satisfiable? Why or
why not?

I Consider the set S = {a ' b, g(a) 6' g(b)}. Is S satisfiable? Why or
why not?

The fact that Herbrand Equality Interpretations are congruences allow
us to apply equational reasoning!
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Equality Resolution

I Syntactically identical terms must be equal in I

I I is a congruence relation and hence reflexive

I Thus, if the two terms of a negative equation have common
instances, we can shorten the clause for these instances

(ER)
C ∨ s 6' t

Cσ
if σ = mgu(s, t)

I Notes:

I C is an arbitrary clause (possibly empty)
I Remember that clauses are multisets, hence unordered
I Any interpretation that makes C ∨ s 6' t true also makes Cσ true,

hence Cσ is a logical consequence of C ∨ s 6' t
I This is a generating inference: The new clause is added to the current

set of clauses

25



Paramodulation: Replacing Equals with Equals

I Paramodulation interprets a clause as a conditional rewrite rule

I One positive literal is applied
I The others are considered as conditions
I Conditions are not solved, but lazily added to the result

(PM)
C ∨ s ' t D ∨ u '̇v

(C ∨ D ∨ u[p ← t]'̇v)σ
if σ = mgu(u|p, s)

I Notes:

I The literal used for replacing must be positive
I The literal in which a term is replaced can have any polarity
I This is a generating inference: The new clause is added to the current

set of clauses
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(Positive) Factoring

I Factoring allow us to unify literals with the same polarity

(PF)
C ∨ s ' t ∨ u ' v

(C ∨ s ' t)σ
if σ = mgu(s ' t, u ' v)

I Notes:

I Note that s ' t and u ' v are unordered, hence must be tried in
both directions for unification

I This is a generating inference: The new clause is added to the current
set of clauses
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Exercise: A Proof Attempt

You should be able to prove the unsatisfiability of the following clause set
with just the rules (ER), (PM), (EF). Can you?

p(X ,X ) ' X

p(p(p(X ,Y ),Z ),U) 6' p(p(Y ,Z ),X ) ∨ p(p(p(X ,Y ),Z ), i(U)) ' n0))

p(p(p(X ,Y ),Z ), i(U)) 6' n0 ∨ p(p(p(X ,Y ),Z ),U) ' p(p(Y ,Z ),X )))

p(i(p(a, i(b))), i(p(i(a), i(b)))) 6' b
∨p(p(a, b), c) 6' p(a, p(b, c)) ∨ p(b, a) 6' p(a, b)
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The Proof

cnf(c_0_0, axiom, (add(add(add(X1,X2),X3),inverse(X4))=n0|add(add(add(X1,X2),X3),X4)!=add(add(X2,X3),X1))).

cnf(c_0_4, plain, (add(add(X1,X2),inverse(X3))=n0|add(add(X1,X2),X3)!=add(add(X1,X2),X1))).

cnf(c_0_34, plain, (add(add(X1,X2),X3)=n0|add(add(X2,X3),X1)!=n0)).

cnf(c_0_1, axiom, (add(X1,X1)=X1)).

cnf(c_0_5, plain, (add(X1,inverse(X2))=n0|add(X1,X2)!=X1)).

cnf(c_0_7, plain, (add(X1,inverse(X1))=n0)).cnf(c_0_8, plain, (add(add(X1,X2),X3)=add(add(X1,X2),X1)|add(add(X1,X2),inverse(X3))!=n0)).

cnf(c_0_10, plain, (add(add(X1,X2),X3)=add(add(X2,add(X1,X2)),X1)|add(add(X1,X2),inverse(X3))!=n0)).

cnf(c_0_11, plain, (add(n0,X1)=n0)).

cnf(c_0_12, plain, (add(add(X1,add(X2,X1)),X2)=add(X2,X1))).

cnf(c_0_14, plain, (add(X1,X2)=X1|add(X1,inverse(X2))!=n0)).

cnf(c_0_16, plain, (add(X1,n0)=n0)).

cnf(c_0_31, plain, (add(add(X1,X2),X3)=add(add(X2,X3),X1))).

cnf(c_0_32, plain, (add(add(X1,X2),X1)=add(X1,X2))).

cnf(c_0_2, axiom, (add(add(add(X1,X2),X3),X4)=add(add(X2,X3),X1)|add(add(add(X1,X2),X3),inverse(X4))!=n0)).

cnf(c_0_13, plain, (add(add(X1,X2),n0)=n0)).

cnf(c_0_20, plain, (add(add(X1,X2),X3)=n0|add(add(X3,X1),X2)!=n0)).

cnf(c_0_29, plain, (add(add(X1,X2),inverse(X2))=n0)).

cnf(c_0_36, plain, (add(add(X1,X2),X3)=add(X2,X1)|add(add(X1,X2),inverse(X3))!=n0)).

cnf(c_0_3, negated_conjecture, (add(inverse(add(a,inverse(b))),inverse(add(inverse(a),inverse(b))))!=b|add(add(a,b),c)!=add(a,add(b,c))|add(b,a)!=add(a,b))).

cnf(c_0_51, negated_conjecture, (add(inverse(add(a,inverse(b))),inverse(add(inverse(b),inverse(a))))!=b)).

cnf(c_0_6, plain, (add(add(X1,X2),inverse(X1))=n0)).

cnf(c_0_9, plain, (add(n0,inverse(X1))=n0)).

cnf(c_0_15, plain, (add(inverse(X1),X1)=n0)).

cnf(c_0_21, plain, (add(add(X1,inverse(X2)),X2)=n0)).

cnf(c_0_40, plain, (add(inverse(X1),add(X1,X2))=n0)).

cnf(c_0_27, plain, (add(add(inverse(X1),X2),X1)=n0)).

cnf(c_0_38, plain, (add(add(X1,X2),inverse(add(X2,X1)))=n0)).

cnf(c_0_26, plain, (inverse(inverse(X1))=X1)).

cnf(c_0_43, plain, (add(inverse(add(X1,inverse(X2))),X2)=X2)).

cnf(c_0_17, plain, (add(inverse(inverse(X1)),X1)=inverse(inverse(X1)))).

cnf(c_0_19, plain, (add(X1,inverse(n0))=X1)).

cnf(c_0_25, plain, (add(X1,inverse(inverse(X1)))=X1)).

cnf(c_0_28, plain, (add(X1,inverse(X2))=X1|add(X1,X2)!=n0)).

cnf(c_0_18, plain, (inverse(inverse(n0))=n0)).

cnf(c_0_23, plain, (add(inverse(inverse(inverse(X1))),X1)=n0)).

cnf(c_0_22, plain, (add(X1,X2)=n0|add(X2,X1)!=n0)).

cnf(c_0_35, plain, (add(X1,add(X2,inverse(X1)))=n0)).

cnf(c_0_24, plain, (add(X1,inverse(inverse(inverse(X1))))=n0)).cnf(c_0_48, plain, (add(inverse(X1),add(X2,X1))=n0)).

cnf(c_0_30, plain, (add(add(X1,X2),X2)=add(X1,X2))).

cnf(c_0_46, plain, (add(X1,add(X1,X2))=add(X1,X2))).

cnf(c_0_53, negated_conjecture, ($false)).

cnf(c_0_39, plain, (add(X1,inverse(add(X2,inverse(X1))))=X1)). cnf(c_0_44, plain, (add(inverse(X1),inverse(add(X1,X2)))=inverse(X1))).cnf(c_0_50, plain, (add(inverse(X1),inverse(add(X2,X1)))=inverse(X1))).

cnf(c_0_33, plain, (add(X1,X2)=add(X2,X1))).

cnf(c_0_37, plain, (add(add(X1,X2),X3)=add(X2,add(X3,X1)))).

cnf(c_0_42, plain, (add(X1,add(X2,inverse(add(X1,X2))))=n0)).

cnf(c_0_49, plain, (add(X1,inverse(add(X2,X1)))=add(X1,inverse(X2)))).

cnf(c_0_52, plain, (add(inverse(add(X1,X2)),inverse(add(X2,inverse(X1))))=inverse(X2))).

cnf(c_0_41, plain, (add(X1,add(X2,X3))=add(X1,X3)|add(X1,add(inverse(X2),X3))!=n0)).

cnf(c_0_45, plain, (add(X1,inverse(add(X1,inverse(X2))))=add(X1,X2))).

cnf(c_0_47, plain, (add(X1,inverse(add(X1,X2)))=add(X1,inverse(X2)))).
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Paramodulation is Blind

I Fact: (PM), (ER) and (PF) together are a sound and complete
inference system for equational reasoning

I If used exhaustively, the will generate the empty clause from any
unsatisfiable clause set

I They will never generate the empty clause from a satisfiable clause set

I Problem: Paramodulation is too prolific

I Every positive literal can be used as a rewrite rule
I . . . in either direction (!)
I Any literal can be rewritten at any position

The search space explodes extremely fast!
=⇒

Only very simple proofs can be found

30



Paramodulation is Blind

I Fact: (PM), (ER) and (PF) together are a sound and complete
inference system for equational reasoning

I If used exhaustively, the will generate the empty clause from any
unsatisfiable clause set

I They will never generate the empty clause from a satisfiable clause set

I Problem: Paramodulation is too prolific

I Every positive literal can be used as a rewrite rule
I . . . in either direction (!)
I Any literal can be rewritten at any position

The search space explodes extremely fast!
=⇒

Only very simple proofs can be found

30



Superposition: Fixing Paramodulation

I Superposition restricts paramodulation by introducing orderings

I Paramodulation can only be used on maximal terms in maximal
literals

I Only maximal instances of equations can be used as rewrite rules
I Only potentially reducing rewrite steps can be made

I Side effect: Powerful redundancy criteria

I In particular: Unconditional rewriting
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Simplification Orderings

Definition: Simplification ordering

I A simplification ordering > on T (F ,V ) is a partial ordering > with
the following properties:

I > is stable under substitutions: s > t implies sσ > tσ
I > is compatible with the term structure: s > t implies

u[p ← s] > u[p ← t]
I > is terminating
I > contains the subterm relation

I > is a ground simplification ordering, if > is total on ground terms

Notes:

I > cannot be total on all terms (consider X > Y )

I Examples of (families of) simplification orderings are the
Knuth-Bendix-Ordering (KBO) and the Lexicographic Path Ordering
(LPO)

32



Simplification Orderings

Definition: Simplification ordering

I A simplification ordering > on T (F ,V ) is a partial ordering > with
the following properties:

I > is stable under substitutions: s > t implies sσ > tσ
I > is compatible with the term structure: s > t implies

u[p ← s] > u[p ← t]
I > is terminating
I > contains the subterm relation

I > is a ground simplification ordering, if > is total on ground terms

Notes:

I > cannot be total on all terms (consider X > Y )

I Examples of (families of) simplification orderings are the
Knuth-Bendix-Ordering (KBO) and the Lexicographic Path Ordering
(LPO)

32



Lifting Orderings

Let > be a (ground) simplification ordering on terms. > is lifted to
literals via the multiset-extension:
I Remember:

I We identify s ' t with {{s}, {t}}
I We identify s 6' t with {{s, t}}

I So s '̇ t > u '̇v if their respective multiset representations compare
that way under >>
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From Paramodulation to Superposition

I Term orderings allow us to restrict paramodulation and equality
resolution to maximal literals

I Factoring can also be restricted, but needs to be slightly generalized
to maintain completeness
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(Ordered) Equality Resolution

(ER)
C ∨ s 6' t

Cσ
if σ = mgu(s, t) and s 6' t is maximal in (C ∨ s 6' t)σ
I Notes:

I This restricts the previous version with the added maximality
requirement

I Equality resolution is generally harmless
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Superposition

I Superposition restricts paramodulation with term orderings

I It comes in two versions for positive and negative target literals

(SN)
C ∨ s ' t D ∨ u 6' v

(C ∨ D ∨ u[p ← t] 6' v)σ
if

I u|p /∈ V , σ = mgu(u|p, s)
I sσ 6< tσ, uσ 6< vσ
I (s ' t)σ is strictly maximal in (C ∨ s ' t)σ
I (u 6' v)σ is maximal in (D ∨ u 6' v)σ

(SP)
C ∨ s ' t D ∨ u ' v

(C ∨ D ∨ u[p ← t] ' v)σ
if

I u|p /∈ V , σ = mgu(u|p, s)
I sσ 6< tσ, uσ 6< vσ
I (s ' t)σ is strictly maximal in (C ∨ s ' t)σ
I (u ' v)σ is strictly maximal in (D ∨ u 6' v)σ
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Equality Factoring

I Equality factoring generalizes positive factoring

(EF)
C ∨ s ' t ∨ u ' v

(C ∨ t 6' v ∨ u ' v)σ
if

I σ = mgu(s, u)
I sσ 6< tσ
I (s ' t)σ is maximal in (C ∨ s ' t ∨ u ' vσ)
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Correctness

An inference system that contains just (ER), (SN), (SP), (EF) is sound
and complete!

I For completeness, every possible inference must eventually be
performed

I Implementation e.g.:

I Level saturation
I Given-clause algorithm

I In practice, redundancy elimination is critical!
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A Basic Proof Procedure

U 
(unprocessed clauses)

g

P 
(processed clauses)

g=☐ 
?
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Redundancy

I Superposition comes with a powerful redundancy concept:
I A clause is redundant, if every ground instance is implied by smaller

ground instances of other clauses
I The ordering lifts the literal ordering via the multiset-construction

(again!) to the clause level

I Redundant clauses can be removed without affecting completeness

I Note: Simplification can add new, smaller clauses to make a
previous clause redundant!
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Tautologies

I Tautologies are clauses that are true under any implementation

I Example: a 6' b ∨ a ' b
I Example: a 6' b ∨ a ' a

I Tautologies are implied by the empty set of clauses

I Hence they can be removed per the general redundancy criterion
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Intra-Clause Simplifications

I A clause that is a subset of another clause is smaller

I Any inference that removes a literal replaces a clause by a smaller one
that makes it redundant

I Examples:

I Removal of duplicate literals
I Removal of trivially false literals (s 6' s)
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Rewriting

I Rewriting replaces a term with a smaller term

I The original clause is implied by the new one and the rewriting one
I Crucial for efficient proof procedures!

(RP)
s ' t u ' v ∨ C

s ' t u[p ← tσ] ' v ∨ C
if

I u|p = sσ, sσ > tσ

I u ' v is not maximal or u 6> v or p 6= λ or σ is not a variable
renaming

(RN)
s ' t u 6' v ∨ C

s ' t u[p ← tσ] 6' v ∨ C
if u|p = sσ and sσ > tσ
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Additional Simplifications

I Subsumption

I Contextual literal cutting a.k.a clause simplification a.k.a.
subsumption resolution

I Condensation

I AC redundancy elimination
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Implementation
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The Given-Clause Algorithm

U 
(unprocessed clauses)

g

P 
(processed clauses)

g=☐ 
?

I Aim: Move everything
from U to P

I Invariant: All generating
inferences with premises
from P have been
performed

I Invariant: P is
interreduced

I Clauses added to U are
simplified with respect
to P
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The Given-Clause Loop

while U 6= {}
g = delete best(U)
g = simplify(g ,P)
if g == �

SUCCESS, Proof found
if g is not subsumed by any clause in P (or otherwise redundant w.r.t. P)

P = P\{c ∈ P | c subsumed by (or otherwise redundant w.r.t.) g}
T = {c ∈ P | c can be simplified with g}
P = (P\T ) ∪ {g}
T = T ∪ generate(g ,P)
foreach c ∈ T
c = cheap simplify(c ,P)
if c is not trivial
U = U ∪ {c}

SUCCESS, original U is satisfiable
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Some Numbers

# Initial clauses in saturation : 4

# Processed clauses : 4808

# ...of these trivial : 385

# ...subsumed : 3976

# ...remaining for further processing : 447

# Other redundant clauses eliminated : 604

# Generated clauses : 46595

# ...of the previous two non-trivial : 33866

# Paramodulations : 45989

# Factorizations : 0

# Equation resolutions : 606

# Current number of processed clauses : 306

# Current number of unprocessed clauses: 25454
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Expensive operations

I Paramodulation/Superposition: Find partners for g

I Indexing with e.g. Fingerprint Indexing or Discrimination Tree
Indexing

I Forward rewriting: Find matching equations for g and newly
generated clauses

I Biggest single cost in many provers!
I Use Discrimination Tree Indexing

I Backward rewriting: Find clauses rewritable with g

I Use Path Indexing or Fingerprint Indexing

I Subsumption: Find clauses subsuming or subsumed by g

I Use Feature Vector Indexing
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Search control
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Clause selection
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Basic Approaches

I Symbol counting

I Pick smallest clause in P
I |{f (X ) 6= a,P(a) 6= $true, g(Y ) = f (a)}| = 10

I FIFO

I Always pick oldest clause in P

I Flexible weighting

I Symbol counting, but give different weight to different symbols
I E.g. lower weight to symbols from goal!

I Combinations

I Interleave different schemes
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Influences on E

I DISCOUNT

I Different experts (heuristic evaluation functions)
I Only one expert per saturation phase

I Otter

I Interleaves size/age selection
I Larry Wos: ”The optimal pick-given ration is 5”

I Waldmeister

I Larry is right in general, wrong in detail
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The Second System Effect

The general tendency is to over-design the second system,
using all the ideas and frills that were cautiously sidetracked on
the first one. The result, as Ovid says, is a “big pile.”

— Frederick P. Brooks, Jr.
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Given-Clause Selection in E

I Domain Specific Language (DSL) for clause selection scheme

I Arbitrary number of queues
I Each queue ordered by:

I Unparameterized priority function
I Parameterized heuristic evaluation function

I Clauses picked using weighted round-robbin scheme
I Example:

I 4 clauses from queue 1
I 2 clauses from queue 2
I 2 clauses from queue 3
I Start over at queue 1

Second-system effect gone wild

57



The Influence of Clause Selection
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Exercise: Playing with E

I Download and install E from http://www.eprover.org

I Run it some of the provided examples

I Play with the parameters

I Take a guided tour through the source
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Conclusion
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Conclusion

I After 25 years, superposition is still the best general-purpose
calculus for first-order logic with equality

I Good implementations are available

I E
I SPASS
I Prover 9
I Vampire

I . . . but further improvements are possible

I Search control heuristics are still crucial

And part of the future will be part of the afternoon session!
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Image Sources

I Jaques Herbrand: Public Domain via Wikimedia

I Clipart: http://openclipart.org
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