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Abstract

We introduce a reinforcement learning environment for deriving useful “lemma” facts
to aid existing automated theorem provers: agents receive reward for making deductions
which reduce system effort. This forms a challenging reinforcement task with applications
for practical theorem proving. We present and train an exemplar deep neural agent for the
environment and demonstrate deduction of helpful formulae for unseen, harder problems
once trained on similar, easy problems. The environment is fully general and can accom-
modate any automated theorem prover, deduction system or reinforcement algorithm.

1 Introduction

We begin with the foibles of automated theorem proving (ATP) systems. Modern ATP systems
can explore a large search space quickly while eliminating redundancies, but even sophisticated
provers can get “stuck” in explosive search areas or fail to exploit promising directions. Such
conventional systems are also sensitive to their input: adding unhelpful axioms or using a
different formulation of the same problem can result in losing a proof. However, the opposite
is also true: adding useful lemmas — perhaps not found otherwise until significantly later in
proof search — can cause a system to find a proof much more quickly.

To exploit the situation we train agents to select helpful formulae for an existing ATP from a
set provided by some inference system. During training episodes on easier problems, agents are
provided the problem statement combined with previously-selected formulae, and are presented
with a set of new formulae derived from existing formulae by the inference system. After
the agent selects a formula, a reward or punishment signal is then administered depending on
whether the ATP found the deduction helpful, or unhelpful. The relationship is symbiotic:

1. The agent learns to select helpful inputs for the ATP

2. The ATP provides an approximate reward signal to guide agent learning

The former is practically useful for improving the performance of existing theorem provers:
if an agent provides sufficiently useful input a proof can be brought within the the resource
limits of the user, turning a timeout into a proof. The latter is not as directly useful — it is
unlikely that the agent makes a good ATP by itself — but it makes an interesting tradeoff.
The agent must learn to deal with the quirks of the underlying prover, but the learning signal
dispenses reward or punishment more readily than simple reward schemes. It further appears
that learning to help an existing system find proofs is a good proxy for learning to find proofs:
during evaluation we found that agents occasionally found a proof independently of the ATP.

Well-trained agents may be of huge practical significance: as well as improved performance
on problems in the domain of interest, the generality of this approach means that some amount
of engineering effort can be removed. For example, the importance of parameter tuning for a
given problem domain may be reduced, or some ad-hoc heuristic can be learned effectively.



Reinforced External Guidance for Theorem Provers Rawson, Bhayat and Reger

2 Background

Many traditionally-distinct fields are combined for this work: conventional theorem-proving
technology forms a setting for reinforcement learning, itself using a deep neural network as a
sophisticated function approximator. Graph neural network methods are employed to control
the highly-duplicated syntactic structure of logical data. We provide only brief background
here, as these large areas of study are used merely as tools for the practical reasoning task.

2.1 Automated Theorem Proving

This work is deliberately agnostic to the particular theorem-proving technology used, but we
use the archetypal superposition system Vampire [26] as a research vehicle. The system can
prove many hard theorems in first-order logic, such as those found in the widely-used TPTP [31]
problem set. Recently, the system has been extended to support problems expressed in a higher-
order logic [2]. Vampire in its default mode follows a typical routine when trying to prove a
conjecture from a set of axioms. First, the conjecture is negated and the problem converted to
a set of formulae in clause normal form (“clausification”); if an empty clause can be derived
from this set it amounts to proof by contradiction. The prover then explores a quickly-growing
search space by applying generating inferences from these formulae, searching for the empty
clause. Fair clause selection algorithms such as those used in Discount [4] are employed
to search efficiently without losing completeness. Simplifying and/or deleting inferences may
continuously eliminate redundant clauses in the search space and thus accelerate proof search.

2.2 ATP Folklore

Arcane knowledge has accumulated about the development of strong ATP systems [27]. One
folklore maxim states that a proof is either found quickly, or not at all [23]. This, combined
with the fact that ATP systems have many parameters which can be tuned individually, invites
portfolio modes [24]: systems try many different combinations of settings (“strategies”) to solve
a problem, restarting for each attempt. Another states that presenting relevant lemmas to a
system early is useful, as finding a key formula during search can produce a proof in short order.

2.3 Machine Learning and Theorem Proving

Despite the high degree of sophistication present in systems for automated reasoning, they still
do not yet have the intuition of a human mathematician. Previous work has aimed to have
systems learn from past experience proving theorems in a variety of ways. Premise selection [11]
is the learning problem of selecting only those axioms relevant to a proof attempt, preventing
extraneous formulae from slowing search. Selecting appropriate prover parameters for a given
problem is another angle of attack, either statically [15] or mid-search [21].

A difficult but promising area of work has aimed to integrate some form of learned guidance
inside a theorem prover [16], but here there is a trade-off between the performance of the
theorem prover and the accuracy of guidance: the more expensive a learned heuristic is to
evaluate, the slower the resulting search (even if it is better). Initial efforts have been made to
apply reinforcement learning techniques to guiding theorem proving, notably by biasing Monte-
Carlo tree search with learned approximations [12]. One problem observed by the reinforcement
FLoP system [36] is the sparsity of reward available in theorem-proving environments.
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2.4 Reinforcement Learning

Reinforcement learning (RL) deals with agents learning to take optimal actions in an environ-
ment that dispenses some reward [32]. There are a number of algorithms that solve variations of
this problem, such as Q-learning. In Q-learning, agents learn to approximate a function Q(s, a)
that represents the long-term reward expected from taking action a in state s. Reinforcement
learning can use deep neural networks as function approximators, as in the DQN algorithm used
to play classic Atari games [18]. A recurring issue in online RL algorithms (the state of the art
for some time) such as DQN is the amount of computation required to continuously generate
relatively few training examples. This is exacerbated in our approach with computationally-
expensive ATP system invocations and data-hungry deep neural networks. Offline RL [1] has
received less attention historically, but the appeal of collecting a dataset of environment inter-
actions ahead of time and training without interaction drives a modern resurgence in interest.

2.5 Graph Neural Networks

Directed graphs are a natural representation for logical formulae, with several desirable proper-
ties [34]. Graphs have proven difficult to process with available learning algorithms, but recent
success on a number of benchmarks has popularised neural networks based upon learned graph
convolutions [13]. Such networks pass (conceptual) messages between connected nodes in a
graph, with information propagating at a maximum rate of one “hop” per layer. A typical
graph convolution scenario assumes that each node has some real vector of size n attached,
which we call channels. A simplified graph convolution function f is

Hi+1 = f(Hi, A) = σ (AHiWi)

where Hi is the node feature matrix at layer i (nodes × channels), A is the graph adjacency
matrix, Wi is a learned weight matrix, and σ is an activation function such as ReLU [19].
Common modifications include normalising the adjacency matrix in some way and adding the
identity matrix I to the adjacency matrix so that each node’s own data can be included in the
output of a convolution step [13]. In this work we use a directed adjacency matrix A and

f(Hi, A) = σ
(
D̂−1ÂHiWi

)
where D̂ is the degree matrix of Â = A + I. This is a row-normalisation of the adjacency
matrix: we did not find symmetric normalisation employed elsewhere to be useful in this case.

2.6 Residual Networks

The size and complexity of the graphs involved in our task suggest relatively deep networks
are required to propagate sufficient information, and this is consistent with our experience.
Deep networks are difficult to train in practice, motivating various network architectures with
skip connections (such as highway networks [30], residual networks [7] or densely-connected
networks [9]), in addition to general-purpose techniques such as batch normalisation [10]. We
use a residual network for this work: the specific architecture was not found systematically.

3 Motivation and Learning Task

Previous work on applying RL techniques to automated theorem proving has encountered ob-
stacles to practicality, both in the sparsity of reward in theorem proving (either a proof is
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Algorithm 1: RL environment allocating reward from an existing ATP

Parameter: conventional ATP system A
Parameter: 1-step inference system infer
Parameter: maximum steps T
Input: learned (stochastic) agent policy π
Input: training problem P , easily solved by A
Output: selected actions at receiving rewards rt at step t
begin

load and optionally preprocess P , obtaining axioms and conjectures
selected ← conjectures
actions ← axioms ∪ infer(selected)
run A(axioms ∪ selected) to get initial score s0
for t← 1 to T do

sample action at ∈ actions according to π
axioms ← axioms \ {at}
selected ← selected ∪ {at}
actions ← axioms ∪ infer(selected)
st ← A(axioms ∪ selected)
compute rt from st, then report (at, rt)

end

end

found, or it is not — no reward can be reasonably dispensed until the agent finds it) and with
relatively weak initial performance of the ATP/agent hybrid. By separating agent and ATP,
our approach partially side-steps these issues in exchange for agents specialising to particular
system behaviour: instead of attempting to learn some policy for a formal calculus, agents learn
to help a concrete ATP system. This represents a different problem to that found in previous
work directly combining RL and theorem proving. Below, we codify the new environment.

3.1 Necessity of Reinforcement Learning

At first this might appear to be a supervised learning problem: simply try a number of deduc-
tions, observe their effect on the prover and classify them as helpful or unhelpful. Unfortunately,
deductions do not exist in isolation: consider two deductions that are mildly unhelpful alone
but when combined produce a rapid proof, or two deductions which are mildly helpful alone
but produce explosive proof search when combined. Further, the ordering of deductions mat-
ter: provers typically process inputs sequentially in some order with effect on proof search.
Therefore, the task must be approached as a reinforcement learning exercise, maximising the
long-term reward possible to achieve from making some deduction in the here-and-now.

3.2 Rules of Play

A naive approach for listing possible deductions takes all available input formulae and enu-
merates all possible 1-step deductions between them. While this works, with O(n2) possible
binary deductions it is prohibitive on some problems. Instead, we take an approach similar
to a given-clause loop: formulae are split into a selected set (initially empty, or the negated
conjecture for refutational provers) and an actions set (remaining axioms and 1-step deductions
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from selected). Agents may select a formula from the actions group to move to the selected
group, updating actions with any new inferences. After each step, the ATP system runs on the
remaining axioms and the selected set in order to establish a reward. The RL task is therefore:

� current state: disjoint sets of remaining axioms and selected

� possible actions: not-yet-selected axioms and 1-step deductions from selected

� a reward function based upon the underlying ATP system

In the specific case of Vampire, all formulae are converted to clause normal form in a prepro-
cessing step first, so all formulae mentioned are clauses. Tracking which clauses are derived
from the conjecture allows for the separation of conjecture and axiom clauses: this has the
pleasant side-effect of making the environment somewhat goal-directed in this case. Clauses
are fed into Vampire in such a way that clauses in selected are processed first: this allows for
clauses selected by the agent to have a much larger impact (in either direction) on proof search.

3.3 Reward Function

Intuitively, we would like to measure the amount that a deduction contributes to a prover
finding a proof more easily. There are many possible reward functions, such as the difference
in the total number of formulae generated, number of proof search loops, or dispensing reward
when the deduction appears in proof output. All of these are easily measured and consistent
across multiple runs. However, any fixed statistic is susceptible to the complexity of the ATP
system: it is for example possible for a deduction to reduce the amount of formulae generated
during search while simultaneously slowing the prover down due to more-involved search steps.
Another possible unfortunate case is rewarding formulae which appear in the final proof, where
a deduction which made a large section of search space redundant — but did not appear in the
proof — is not rewarded.

Instead we measure the number of user-space instructions executed by the ATP to find a
proof, as reported by the Linux utility perf [5]. The negation of this can be used as a scoring
function: the maximum score is 0 (no instructions required to find a proof), and one score is
better than another if it took fewer instructions. In practice it is helpful to subtract a constant
number of instructions representing ATP start-up: this can be measured by proving a trivial
statement. While there is some “jitter” incurred by using this method, this is comparatively
small with respect to the difference caused by input changes. A reward function is defined in
terms of this score: if a set of agent deductions scores st and after a new deduction is made it
scores st+1, a possible reward is st+1 − st. To normalise rewards across different problems, the
initial score without deductions s0 is used as a baseline, so that the final reward function is

rt =
st+1 − st

s0

While the maximum episode reward is now +1, it is possible for agents to produce unboundedly
negative episodes with unwise deductions. Some RL algorithms used in our initial experiments
were unstable in the presence of this kind of unbounded punishment. To restrict this, if the
cumulative episode reward at any point is less than -1 (meaning that the ATP needed twice
as many instructions as originally), the episode can be terminated. This early termination was
found to stabilise training with misbehaving algorithms as episode rewards are now limited to
the range [-1, 1]. Timeouts therefore result in an episode reward of -1, finding a proof outright
by deduction results in +1. However, this restriction was not used with our final approach:
there we allow arbitrary negative reward.
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t selected axioms infer(selected) choice st rt cumulative reward

1 1,2,3,4,5,6 2 -7 0.3 0.3
2 1 2,3,4,5,6 5 -8 -0.1 0.2
3 1,5 2,3,4,6 10 10 ∞ -1.2 -1

1 1,2,3,4,5,6 3 -9 0.1 0.1
2 3 1,2,4,5,6 1 -8 0.1 0.2
3 3,1 2,4,5,6 8 6 -9 -0.1 0.1
4 3,1,6 2,4,5 8 8 -2 0.7 0.8
. . .

Figure 1: Example training episodes illustrating the environment. Baseline score s0 is -10.

3.4 Example

Consider the following problem in (very) classical first-order logic to illustrate the environment.
We have a knowledge base:

1. All men are mortal.

2. Socrates is a man.

3. Mortals eat olives.

4. Meletus is a man.

5. Mortals wear sandals.

6. Hemlock is unpleasant.

and we wish to prove the conjecture “Socrates eats olives”. Only 1, 2 and 3 are required for the
proof: 4 and 5 are related but unhelpful and 6 is completely unrelated. A fictional inference
system might come up with the following valid deductions given some subsets of these axioms:

7. Socrates is mortal.

8. All men eat olives.

9. Meletus is mortal.

10. All men wear sandals.

11. Hemlock is not pleasant.

12. Mortals eat olives and wear sandals.

Among these deductions, some are helpful and others are not. 7 is the first step of the proof,
while 8 is a helpful lemma: these are useful individually, but are not more useful when combined.
9 and 10 are meaningful but irrelevant, while 11 and 12 are redundant. Developers and users
of ATP systems are no doubt familiar with more advanced but similar deduction behaviours.

Figure 1 shows some example episodes with a fictional (and terrible) ATP. In the first,
the agent selects 1, a helpful axiom. Processing this axiom early reduces the amount of work
required and produces a positive reward. The agent then selects 5, which is unhelpful but does
not affect the prover too much, returning a slight negative reward. This allows the deduction of
10, which the agent then selects, thinking that this seems like a helpful lemma. Unfortunately,
this causes an explosion of facts related to sandals inside the ATP, resulting in a timeout. The
agent might learn to avoid sandal facts in the future when proving conjectures about olives.
After some training, the agent returns to this problem for another go. This time it does much
better: it successfully deduces 8, while not selecting anything too unhelpful.
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Figure 2: Illustrating task difficulty with a uniform random policy on GRP001-1.

3.5 Environment Properties

This setting creates an episodic RL task with a discrete, deterministic action space and some-
what stochastic reward. Any algorithm for solving it must be highly sample-efficient, as each
sample requires running an ATP system to completion. The task is also relatively difficult
when compared to other benchmark RL tasks: even returning zero reward requires following a
narrow set of actions, mistakes are punished harshly, and delayed reward is common.

Some properties of this environment set it apart from typical RL tasks. Training and testing
are distinguished meaningfully in this environment, since in testing we cannot in general receive
rewards during test-time: if we could always solve the problem, this work would not be necessary.
Another difference is the ability to backtrack: while this is in principle possible with episode
restarts in other environments, this is not typically exploited.

Figure 2 shows the episode reward obtained by running a random policy repeatedly on a
single problem from the TPTP set, GRP001-11. The general trend is downward, and progres-
sively steeper as the growing number of random formulae start to interfere with proof search.
Figure 2 also shows the distribution of instructions required from running a random policy
for 50 steps, then running the prover again. A small number of random explorations improve
on the original problem, but the majority are unhelpful and damage ATP performance. This
demonstrates a key feature of this environment: making these selections for the ATP can be
helpful, but a random policy is harmful more often than not. Can an agent learn to do better?

4 Approach

At this point there are two practical problems to solve: train an agent to perform well on this
RL task, and subsequently use the trained agent in some way to improve ATP performance.

4.1 Online Reinforcement Learning

We implemented a number of different conventional online RL algorithms in search of perfor-
mance, but none were particularly successful. Significant engineering effort, manual tuning and

1The Vampire ATP and inference system described later is used for illustrative purposes here.
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reducing the task to that of learning a policy for a single problem produced very few positive re-
sults. DQN [18] (value function estimation), REINFORCE [35] (policy gradients) and A3C [17]
(actor-critic with parallelism) were all implemented, but would not reliably converge in reason-
able time on the single-problem case and performed poorly when required to generalise. DQN
with a large replay buffer was the best-behaved among these. Even when algorithms behaved
well, learned policies were prone to “forgetting” good policies as training continued. Impractical
amounts of computation were required to gain any measurable episode reward in all cases.

While these shortcomings are known difficulties in deep reinforcement learning, we also
suspect that current online methods are not well-suited for this task. The relatively large
amount of compute required for assigning reward means that algorithms must learn quickly
from relatively small amounts of data in order to deliver visible progress. DQN’s use of a replay
buffer allows re-use of samples: this may explain why it outperformed other methods for this
task. Moreover, the performance of these algorithms is also typically evaluated on control and
game-playing tasks such as MuJoCo [33], presumably very different from this one.

4.2 Offline Reinforcement Learning

To reduce the amount of computational effort required, offline RL techniques are promising.
Offline approaches are known to work well on heuristic search tasks such as two-player strategy
games [28], but it is not clear how to adapt these techniques to our task, especially if expensive
backtracking search at test time is avoided. At this point applying algorithms from literature
was abandoned in favour of an ad-hoc practical approach which works well on this task.

First, a large tree of possible states is explored from a training problem. Each state is
evaluated by the target ATP, and the results propagated upwards through the tree to provide
an estimate of the long-term discounted reward from taking a given action in a given state.
Toward the leaves of the tree, this estimate becomes myopic: this is accepted as a limitation of
this work for now. In practice this seems not to matter, perhaps the better-quality estimates
for actions taken at the start of an episode have more impact on long-term performance. We
leave placing greater emphasis on better estimates during training as future work.

Once this estimate for long-term reward is obtained, we produce a target Boltzmann dis-
tribution π̂(s) over the possible actions in a given state s from these rewards: the better the
long-term reward, the more likely the action. Finally, we train a function approximator to
estimate this distribution as π(s) by minimising the KL-divergence DKL(π̂||π). We again em-
phasise the lack of theoretical backing for this approach, but note that this appears to be better
in practice than merely training the agent to select the action with the greatest estimated re-
ward. In the event that the agent picks an action incorrectly, this biases training so that the
“best of the rest” is preferred rather than treating all non-optimal actions equally. Such a
stochastic policy also fits well with the approach taken in 4.6.

4.3 Data Generation

The fundamental problem of generating training data for offline learning is matching the dis-
tribution of data to “real-world” data, that seen by fully-trained agents during testing. If an
agent sees only data from good situations, then it is incapable of getting itself out of a bad one.
Conversely, given only bad situations, it is unlikely to fully exploit good choices. Therefore,
simple exploration techniques such as best-first search (too optimistic) or breadth-first search
(too pessimistic) are unlikely to produce good training distributions. Instead, we use a UCT-
maximising search [14] similar to that employed in AlphaGo and rlCoP, but without random
playouts. Playouts (and associated leaf value estimates) are replaced by an ATP invocation
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Figure 3: Encoding states with directed graphs. Note auxiliary nodes and edges encoding
function argument order, and “marker” nodes differentiating formula roles in the overall state.

to compute reward for the leaf’s state. This information is propagated upwards to estimate
maximum discounted rewards for branches. Leaves which exceed resource limits or have no
possible inferences are considered closed, and branches are closed if all their children are.

This approach balances exploration (expanding rarely-visited parts of the search tree) and
exploitation (expanding promising parts of the search tree), and therefore provides a somewhat
better distribution of training examples for the agent. After a round of training, a tree of
states and corresponding discounted reward estimates for their children is generated. Previous
approaches have used the number of visits to child states to induce a probability distribution on
actions. However, this is not particularly efficient in our case: leaf nodes are all visited once but
have significantly different rewards. We take a Boltzmann distribution over a state’s estimated
discounted rewards (with manually-tuned temperature τ) and use the resulting probabilities.

4.4 State Encoding

In order to represent the syntactic, duplicative structure of states and actions, we use a graphical
representation. Formulae are first parsed into a syntax tree, and common sub-trees (such as
shared symbols and compound terms) are merged to form a directed acyclic graph, preserving
logically-distinct variables. Symbol and variable names are then discarded and replaced with
generic “symbol” or “variable” labels, as distinct nodes encode distinct symbols after merging.

As noted in the motivation of FormulaNet [34], a limitation of directed graphs for this
purpose is the lack of ordering between immediate children of a node: f(a, b) encodes to the
same graph as f(b, a): this is remedied by adding auxiliary nodes and edges to represent
each argument position. With this modification, the encoding becomes lossless, as a logically-
equivalent state can be recovered from the encoding of that state. Additionally, the order in
which formulae are given to the ATP can make significant difference to system performance:
this is encoded by adding directed edges between top-level formula nodes. No attempt was
made to add further information to the graph, although in future auxiliary data might be
used to communicate prover-level information such as term orderings or formula parents to the
agent. Figure 3 shows both a state graph fragment encoding a particular first-order term, and
a complete graph encoding initial state of a propositional problem: if ¬P , and P ∨Q, then Q.
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4.5 Network Architecture

The neural network architecture (Figure 4) employed to process and learn from data of this kind
is quite involved, and we present it only briefly here as a practical instrument. For motivation
and details, refer to work on benchmark logical tasks [22] or more general work [7]. In order:

Embedding An embedding layer produces a real vector x ∈ Rn from each nodes’ integer label.

Residual Modules A number of residual modules in sequence follow. Each module trans-
forms the input twice and then adds the unmodified input. Each transformation is two
convolutions which each halve the number of channels: one with the adjacency matrix,
and one with its transpose, which are then immediately recombined — see Figure 5.

Action Projection After the convolution steps, only action nodes are retained.

Output Each nodes’ final vector and all intermediate vectors are input into a typical output
stage with a hidden layer. Using intermediate vectors (as in dense networks) improved
network performance, but full DenseNet-style connectivity between all layers did not.

ReLU activation is used throughout the network except after embedding and output layers.
Batch normalisation is used before both convolutional stages in residual modules in “full pre-
activation” [8] configuration. Training used mini-batch stochastic gradient descent with Nes-
terov momentum, L2 regularisation and a cyclic learning rate with fixed triangular policy [29].
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Table 1: Tunable parameters for various parts of the system.

Generation Network Training

parameter value parameter value parameter value

exploration factor c 1 residual modules 16 min. learning rate 0.0001
temperature τ 5 layers per module 2 max. learning rate 0.001
discount factor γ 0.99 node channels 64 cycle period 20000

hidden layer neurons 1024 batch size 64
L2 weight penalty 0.0001
momentum 0.95

4.6 Application of Learned Policy to ATP Systems

The end result of a successful training routine in our environment is a learned policy π selecting
an action a for the given state s — or, in the stochastic case, producing a probability distribution
over available actions. Although seemingly useful, it is not immediately obvious what to do
with this object to improve ATP performance on problems not solved within resource limits.

To avoid the difficult engineering and inevitable performance penalties experienced when
adding learned guidance to existing theorem provers, we take a simplistic fire-and-forget ap-
proach: a fixed number of deductions are made one after another according to the policy, then
the agent’s work is finished and the unmodified ATP runs on the derived problem unhindered
by guidance penalties. An effect similar to portfolio modes can be achieved by repeating this
process with a stochastic policy so that from an original problem P a random process of derived
problems P1, P2, P3 . . . can be produced for the ATP to attempt. We do not claim that this is
optimal, and leave variations such as best-first search or Monte-Carlo methods as future work.

5 Experiments

We perform three experiments of increasing difficulty to exercise the environment, test our
solution method and investigate practical uses for this work. The first is a pilot study both
training and testing on a single easy problem: this is of no practical use, but provides a sanity
check for the system. We then show that on a very limited problem domain (synthesising
Church numerals), the system can learn to identify patterns so that harder problems can be
brought within reach by pointing the system in the correct direction. Finally, an entire TPTP
domain (GRP, group theory) is selected to show the practical use case for this work. An online
repository2 contains scripts and data that (i) were used to produce these experiments, and (ii)
can be adapted for similar work.

5.1 Experimental Setup

We set up our experiments in the context of the Vampire system. A deterministic configuration
of Vampire is used as the underlying ATP, and a special mode is used as the inference system,
although in full generality this could employ a separate inference system. The mode performs
all 1-step inferences in Vampire’s calculus from a set of clauses efficiently, while removing
redundancies. Clauses are kept in textual form until conversion is required for processing by

2https://github.com/MichaelRawson/paar20
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Figure 6: Kernel density estimates showing distribution of relative instructions required for
Vampire to solve problems derived from GRP001-1 with a learned (left) and random (right)
policy. 1000 samples per distribution, Gaussian kernel, natural logarithmic scale for clarity.

the neural network. The neural network implementation and training uses the PyTorch [20]
library for GPU acceleration. Tunable parameters for the system are listed in Table 1.

5.2 Pilot: GRP001-1

We trained an agent as described above on approximately 5000 samples generated from GRP001-1,
a relatively easy problem for Vampire. The experiment was a success: convergence was assured,
compute requirements significantly reduced, and the resulting learned policy is markedly better
than a random policy. To quantify the performance of different policies, we first run the learned
stochastic policy for 50 steps to generate a derived problem, then measure the number of in-
structions required for Vampire to solve the derived problem, relative to that required to solve
the original problem. The distribution generated by our learned policy compared to a uniform
random policy is shown in Figure 6. The best episode with learned policy produced a derived
problem requiring only 28% of the instructions required to solve the unmodified problem.

5.3 Small Domain: Synthesising Church Numerals

The Vampire theorem prover has been extended to support higher-order logic (HOL). This is
achieved by implementing a recently-developed modification of first-order superposition which
is complete for HOL [2]: the calculus represents an unfolding of higher-order unification into
superposition. This differs from standard first-order superposition mainly in the addition of
an inference rule, narrow. In essence, narrow involves rewriting with a combinator equation
left-to-right. The approach is a new method for higher-order theorem proving and is yet to
be fully evaluated, but preliminary investigations suggest that on problems requiring complex
higher-order unification, it is at a disadvantage in comparison to calculi based on λ-calculus.

Church numerals are representations of natural numbers using higher-order functions [3]:
problems involving such numerals often require the synthesis of complex unifiers. Problems
that posit the existence of a particular numeral require unification (or narrowing in case of
Vampire) to synthesise this numeral. An example is “there exists a Church numeral n such
that n×n = n+n”: clearly n = 2 is a constructive proof for this problem, but this is not trivial
for systems attempting problems involving larger values of n. With recurring structures and

12



Reinforced External Guidance for Theorem Provers Rawson, Bhayat and Reger

an explosive search space, this is a promising domain for application of our learning method.
We curate a set of training problems which synthesise the numeral 2 (which Vampire solves
easily), and attempt to learn to improve performance where larger numerals are required.

While the overall approach here is the same, some extra details appear in the formulae
(types, function application operators and a finite set of combinators necessary for the HOL
calculus), which should be treated semantically in the state-encoding graph. For example,
explicit function applications are treated as normal first-order function applications, and the
combinators each receive a special node label of their own.

Training on this domain was more difficult than initially expected: as well as the signif-
icant technical complexity involved, environment dynamics are unusual compared to typical
first-order problems. We found that it was relatively rare for the ATP to solve a modified prob-
lem (possibly due to the explosive nature of some derived clauses), but that occasionally the
learning system found a proof outright during training or testing. This somewhat negates our
system’s main advantage of incrementally dispensing reward, and furthermore makes it difficult
to generate large training datasets.

Results are therefore somewhat mixed: trained policies solved the training problems signif-
icantly more frequently than a uniform random policy. Both trained and random policies were
capable of reducing time taken for problems test problems involving synthesis of the church
numeral 3, but it was more difficult to show that training helps here. While this is not particu-
larly encouraging, we report the result anyway to demonstrate the strengths and weaknesses of
the approach. We expect that future work, especially tuning system options to produce a more
graduated reward, will produce more concrete results: we have at least shown that modifying
the input problem can significantly help the ATP system.

5.4 Large Domain: Group Theory

We attempt the ultimate task for this kind of approach, generalising from easier problems to
related harder problems: we envisage a future ATP tuning system in where a large corpus of
easier problems allow training to attempt a few remaining unsolved problems, a problem of
significant interest for the community [23].

The TPTP GRP domain is used for this study, containing a large number of first-order
problems with a range of difficulty. The configuration of Vampire used for the pilot study can
solve 384 of the problems in this domain in under 1 second: these were used as training problems
while the remaining 706 problems form the test set. It is unclear to what extent the problems
within GRP are actually similar from the ATP perspective: this is a reasonable criticism, but we
expect that in practical problem sets similarity is equally unclear. Sufficient data can be easily
generated from these training problems: we generated approximately 100,000 data in under
a day with modest parallelism on commodity desktop hardware. Network training continued
until loss on a small held-out validation set failed to improve.

We note at this point the difficulties of evaluating any new ATP feature or modification [25].
In our case the situation is only worsened by the necessary presence of non-determinism, the
relatively strong effect of starting afresh in first-order theorem proving (c.f. portfolio modes)
and the very large differences in performance that can be caused by modifying problems. As a
compromise, we evaluate four configurations of Vampire on the test set of problems in GRP:

1. 6 runs of a uniform-random policy for 10 steps, producing 6 derived problems for Vampire
to attempt within a time limit of 10 seconds.

2. 6 runs of the learned stochastic policy for 10 steps, as with the uniform policy.
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Table 2: Results for 4 Vampire configurations on harder problems in GRP.

configuration solved unique

baseline (10s) 191 0
uniform random policy (6× 10s) 206 0
learned stochastic policy (6× 10s) 234 7
baseline (60s) 275 26

3. Vampire running as usual with a time limit of 10 seconds. This forms a lower baseline
point of comparison against policy configurations.

4. Vampire running continuously for 60 seconds as the upper point of comparison.

Results are shown in Table 2. First, a learned policy improves by some margin over a uni-
form random policy, although it is difficult to make arguments about significance here without
prohibitive computational cost. Manual inspection of random/learned policy behaviour on a
few test problems tends to show that learned policies produce fewer timeouts, but where solu-
tions are found the distribution of instructions required is not significantly different. Further,
it appears that problems where the learned policy performs well are similar to problems in
the training set: this is discouraging from the point of view of learning general heuristics for
Vampire, but encouraging for the idea of learning from easy problems in a hard problem set.

Overall, the 60-second baseline is stronger in terms of total number of problems solved than
either of the 6×10 second runs, but the learned policy solves 7 problems that the 60-second run
cannot, lending some credence to the idea that generating useful lemma clauses is worthwhile
for first-order theorem proving. Even without learning, this approach is potentially useful for
some sort of portfolio mode: compare the uniform random policy to the 10-second run.

6 Research Directions

This early work in a new area allows many possible developments. As well as the typical
optimisation, further exploration and application to a wider range of settings (e.g. validating
the architecture with a broader selection of ATP systems), we feel there are two fundamental
areas that may produce disproportionate improvement in our approach.

1. Neural network architectures specific to theorem proving or to structured reasoning tasks
in general are presently under-developed. In particular, the network we use here is a
modestly-tweaked adaptation of a design originally intended to classify images, a task
that almost certainly places very different demands on function approximators.

2. More fundamentally, the offline RL method developed to solve this task in reasonable
time and with reasonable convergence is somewhat suspect from an RL standpoint: we
have no theoretical guarantee that our agent is learning anything beyond optimising for
a distribution we thought relevant (although practical results show that it is at least
partially useful). Further detailed research is required to either shore this approach up
theoretically, or find an existing method in the RL literature that has similar performance.

In this work we focussed on specialising to a particular domain, leaving the implicit bias to
a particular ATP system in the background. Human engineers have spent significant time
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engineering good heuristics for existing systems that work well across many different domains:
future experiments might also include a very large, cross-domain experiment to focus on the
ATP system, rather than the domain of application. Developments in interpretable models [6]
may even allow for automatic discovery of good ATP heuristics for manual implementation.

7 Conclusions

A novel reinforcement learning task for aiding practical automated reasoning systems by deduc-
ing helpful lemmas is motivated and implemented. It has some advantages over other methods
for combining automated reasoning and reinforcement learning, in exchange for learning a policy
specialised to concrete ATP systems rather than a formal proof calculus. Successfully solving
such a task in general has significant potential practical benefit for ATP systems.

In this initial work, we set out the RL task and show that it is at least partially tractable for
specific domains by means of practical experiment. We develop a bespoke offline RL method
for this task to combat the significant computational cost incurred, then show that it trains to
a useful policy within a single-problem environment. Subsequently, we show that this approach
has good initial performance on more difficult practical reasoning settings. When suitably
trained, our exemplar deep neural agent can select lemma facts which reduce the time required
sufficiently to bring a difficult proof within resource limits that would not otherwise be found.
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[5] Maria Dimakopoulou, Stéphane Eranian, Nectarios Koziris, and Nicholas Bambos. Reliable and
efficient performance monitoring in Linux. In SC’16: Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis, pages 396–408. IEEE, 2016.

[6] Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, Franco Turini, Fosca Giannotti, and Dino
Pedreschi. A survey of methods for explaining black box models. ACM computing surveys (CSUR),
51(5):1–42, 2018.

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual
networks. In European conference on computer vision, pages 630–645. Springer, 2016.

[9] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 4700–4708, 2017.

[10] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

15



Reinforced External Guidance for Theorem Provers Rawson, Bhayat and Reger

[11] Geoffrey Irving, Christian Szegedy, Alexander A Alemi, Niklas Een, Francois Chollet, and Josef
Urban. DeepMath — deep sequence models for premise selection. In Advances in Neural Infor-
mation Processing Systems, pages 2235–2243, 2016.

[12] Cezary Kaliszyk, Josef Urban, Henryk Michalewski, and Miroslav Oľsák. Reinforcement learning
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