
This space is reserved for the EPiC Series header, do not use it

Evaluation of Axiom Selection Techniques

Qinghua Liu1, Zishi Wu2, Zihao Wang2, and Geoff Sutcliffe2

1 Southwest Jiaotong University, China, qhliu@my.swjtu.edu.cn
2 University of Miami, USA, zishi@cs.miami.edu,zxw526@miami.edu,geoff@cs.miami.edu

Abstract

“Large theory” problems in Automated Theorem Proving (ATP) have been defined as
having many functions and predicates, and many axioms of which only a few are required
for the proof of a theorem. One key to solving large theory problems is selecting a subset
of the axioms that is adequate for finding a proof. The main contribution of this paper is
metrics for evaluating axiom selection techniques without having to run an ATP system
on the problem formed from the selected axioms and the problem’s conjecture. This paper
additionally presents three new axiom selection techniques. The new techniques, and the
axiom selection in the Vampire ATP system, are evaluated using the metrics.

1 Introduction

“Large theory” problems in Automated Theorem Proving (ATP) have been defined [22] as
having many functions and predicates, and many axioms of which only a few are required for
the proof of a theorem. Large theory problems are often found in corpora that contain very
many problems, e.g., the MPTP2078 corpus [1], the Mizar 40 corpus [7], and the GRUNGE
corpus [2]. Large theory problems present challenges to ATP systems, mainly because of the
large search space generated by the large number of axioms. Thus, one key to solving large
theory problems is selecting a subset of the axioms that is adequate for finding a proof. There
has been significant and successful research on this topic, e.g., [16, 23, 13, 11, 5, 12, 1, 4, 15].
Many techniques are based on the occurrences of symbols in the formulae, e.g., the SInE method
[5] and its derivatives. The fact that large theory problems often occur in large corpora makes
the application of machine learning techniques [10] viable, e.g., as in the MaLARea system [25].

Evaluation of axiom selection techniques is typically done by:

1. Choosing a corpus of large theory problems that are known to be theorems.

2. For each problem in the corpus, selecting a subset of the problem’s axioms.

3. Running an ATP system on the reduced problem formed from the selected axioms and
the problem’s conjecture.

In the third step of this process, a proof indicates an adequate selection (the quality of which can
then be evaluated), and a countermodel indicates an inadequate selection. As the development
of axiom selection techniques progresses, this approach requires repeating steps 2 and 3 to
evaluate progress. Evaluation needs to be done on large corpora, making this a time consuming
process. As a consequence, to move things along faster, it is often necessary to impose a small
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time limit on each ATP system run. Time limits (and other practical forms of incompleteness)
cause timeouts, and a timeout in the third step provides no information - the selection might be
inadequate, or the selection might be adequate but the reduced problem is too hard because too
many (unnecessary) axioms were selected, or the time limit is too small. The results are also
influenced by the choice of ATP system. Overall, this process for evaluating axiom selection
techniques is problematic.

The main contribution of this paper is metrics for evaluating axiom selection techniques
without having to run an ATP system on the reduced problems. While the “proof is in the
pudding” and it is eventually necessary to evaluate by running an ATP system, the metrics
described in this paper provide a first-pass evaluation that allows axiom selection techniques
to be rapidly tested and refined. The approach has the advantage of being independent of a
chosen ATP system. This paper additionally presents three new axiom selection techniques.
The new techniques and the axiom selection [5] in the Vampire [9] ATP system are evaluated
using the proposed metrics.

This paper is structured as follows: Section 2 describes the evaluation metrics. Section 3
describes a relatedness measure between formulae, and the three new axiom selection techniques
that are based on that measure. Section 4 provides evaluation results, including an initial
evaluation of the metrics themselves. Section 5 concludes.

2 Axiom Selection and the Evaluation Metrics

The axiom selection evaluation metrics measure how precisely a set of selected axioms matches
a known minimally adequate set of axioms. Two types of axiom selection techniques are con-
sidered:

• Ranking techniques, which take the problem’s axioms as input, rank them according to
how likely they are judged to be necessary for a proof, and select the axioms that are
ranked above some cut-off criterion. This technique is used in, e.g., Isabelle’s Sledgeham-
mer [14].

• Projection techniques, which take the problem’s axioms as input and directly return a
selection of axioms. (Ranking is thus a special case of projection.) This technique is used
in, e.g., Vampire.

2.1 The MPTP2078 Problem Corpus

In this work the MPTP2078 corpus1, based on the Mizar Mathematical Library [17], was used
for development. The MPTP2078 has two versions of each of its 2078 problems: the bushy
(small) versions that contain only the Mizar axioms that a knowledgeable user selected for
finding a proof of the conjecture, and the chainy versions that contain all the axioms that
precede the conjecture in the Mizar library order. The bushy problems have between 10 and
67 axioms, while the chainy versions have between 10 and 4563 axioms.

In order to extract minimally adequate sets of axioms for each problem, Vampire and E [18]
were run on the problems, using the StarExec [21] Miami2 cluster with a 300s CPU time limit.
The computers have an octa-core Intel(R) Xeon(R) E5-2667 3.20GHz CPU, 128GB memory,
and run the CentOS Linux release 7.4.1708 operating system. This produced proofs for 1486 of

1https://github.com/JUrban/MPTP2078
2https://starexec.ccs.miami.edu
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the bushy problems (1474 by Vampire and 1263 by E) and 1345 of the chainy problems (1333
by Vampire and 815 by E). For each proof found, the axioms used in the proof were extracted
as an minimally adequate set of axioms, and a new problem was formed from that minimally
adequate set with the problem’s conjecture. These new problems were dubbed the pruney
problems. Additionally, in testing the new axiom selection techniques described in Section 3,
some further different minimally adequate sets were found and further pruney problems were
created. This resulted in a further 65 pruney problems for the bushy problems, and a further
24 pruney problems for the chainy problems. For some problems multiple minimally adequate
sets of axioms were found, resulting in a total of 1829 pruney problems for the 1551 bushy
problems, and a total of 3093 pruney problems for the 1369 chainy problems.

The pruney problems provide minimally adequate sets of axioms against which selected sets
of axioms can be compared. The smallest fraction of axioms in a minimally adequate set ranges
from 0.01 to 1.0 for the bushy problems, and from 0.0002 to 0.36 for the chainy problems.
The average fractions are 0.29 and 0.01, respectively. These fractions show that precise axiom
selection could significantly reduce the number of axioms that need to be used, which in turn
normally significantly reduces the search space of an ATP system. As might be expected, the
numbers are more extreme for the larger chainy problems.

2.2 The Metrics

Define the following basic measures:
• The Number of Ax ioms in a Problem: NAxP.

• The Number of axioms Selected: NSel.

• The Number of axioms U sed in a Proof, i.e., the cardinality of a minimally adequate
set: NUiP. NUiP is 0 if no axioms need to be used, i.e., the conjecture is a theorem.

• In a ranked list of axioms, the number of axioms down to the lowest ranked axiom in a
minimally adequate set, i.e., the Number of axioms N eeded from the Ranking: NNRa.

The axiom selection evaluation metrics are listed below. In all cases the range is [0.0, 1.0].

Precision. If the axiom selection technique selects an adequate set of axioms, i.e., a superset
of one or more of the known minimally adequate sets of axioms, then:

• If the minimum NUiP = 0, and NSel= 0, then 1.00

• Else the maximum NUiP/NSel

If the selection technique selects an inadequate set then the precision is 0.00. Larger values
are better. The intuition here is of a probability that using the selection will result in a proof
(which is 0.00 if an inadequate set is selected).

Selectivity. NSel/NAxP. This measures the fraction of axioms selected. 1.00 results from
selecting all the axioms - the base case. Smaller values are better, provided an adequate set of
axioms is selected.

Ranking precision. (Applicable to only ranking techniques.) If the axiom selection tech-
nique selects an adequate set of axioms, then:

• If the minimum NUiP = 0, and NSel= 0, then 1.00

• Else the maximum NNRa/NSel

If the technique selects an inadequate set, then 0.00. This measures how precisely the technique
chooses the “best ones” from the ranked list of axioms. Larger values are better.
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Ranking density. (Applicable to only ranking techniques.) If NUiP = NNRa = 0, then 1.00,
else NUiP/NNRa. This measures the quality of the ranking - axioms in a minimally adequate
set should be ranked highly, which in turn allows a smaller number to be selected if the ranking
precision is good. Larger values are better.

Average precision/selectivity/ranking precision/ranking density. For a set of prob-
lems, the average over the problems.

Adequacy. For a set of problems, the fraction of problems for which the axiom selection
technique selects an adequate set of axioms. Larger values are better.

Adequate precision/selectivity/ranking precision/ranking density. For a set of prob-
lems, the average over the problems for which the axiom selection technique selects an adequate
set of axioms.

3 Our Axiom Selection Techniques

The motivation for developing these metrics was based on a need to evaluate new axiom selection
techniques being developed by the first three authors. These techniques are described in this
section, and their performance according to the metrics is evaluated in Section 4. It turns out
that a very simple technique performs surprisingly well on the MPTP2078 corpus.

All of the new techniques are based on how strongly two formulae are related (as is the case in
many axiom selection techniques). In this work a novel measure of relatedness is used, which is
described in Section 3.1. The individual new techniques are then described in Sections 3.2 to 3.4.

3.1 Formula Dissimilarity and Similarity

The relatedness between two formulae is computed first as a dissimilarity between the two
formulae, which is also later converted to a similarity.

The dissimilarity between two terms or atoms is an extended version of the Hutchinson dis-
tance [6]. For two terms or atoms ∆1 and ∆2, their least general generalization ∆ = lgg(∆1,∆2),
if it exists, is a term or atom ∆ such that there are substitutions θ1 and θ2, ∆θ1 = ∆1 and
∆θ2 = ∆2, and there is no term or atom ∆′ and substitutions σ, σ1, σ2 such that σ is not
just a renaming substitution, ∆σ = ∆′, ∆′σ1 = ∆1, and ∆′σ2 = ∆2. If lgg(∆1,∆2) does not
exist, e.g., neither ∆1 nor ∆2 are variables and their principal symbols are different, then the
dissimilarity dsim(∆1,∆2) =∞. Otherwise:

Divide θi into two parts, θvi and θfi :

θvi = {Xi,1 7→ Zi,1, . . . , Xi,mi
7→ Zi,mi

} θfi = {Yi,1 7→ fi,1, . . . , Yi,ni
7→ fi,ni

}

where Xi,j and Yi,j are the substituted variables, Zi,j are substituting variables, and fi,j are
substituting functional terms. Let

• wv be a weight for variables (currently set to 13),

• wf be a weight function for non-variable symbols (currently set to 2 for all symbols),

3The values of 1 and 2 for wv and wf were adopted from their use in E, place greater emphasis on non-
variable substitutions, and are small enough to avoid large dissimilarity values. The use of ln(x + 1) for g(x)
below was motivated by it’s common adoption as a continuous increasing function, to usefully dampen the
impact of variable substututions on dissimilarity values.
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• V (X,∆) be the set of occurrences of the variable X in ∆,

• N(X,∆) be the depth of a particular occurrence of the variable X in ∆, e.g.,
N(X, p(X, f(X)) = 1 for the first occurrence and 2 for the second occurrence,

• Wv(X,∆) be wv × (|V (X,∆)| +
∑
U∈V (X,∆)N(U,∆)), i.e., the weighted sum of the

number of occurrences of X in ∆ and the depths of the occurrences of X in ∆, e.g.,
Wv(X, p(X, f(X)) = wv × (2 + (1 + 2)) = 5,

• Wf (∆) be the sum of the weights (using wf ) of the non-variable symbols occurring in ∆,

• g(x) be a continuous increasing function R 7→ R such that g(0) = 0 and g(x1 + x2) ≤
g(x1) + g(x2) for x1, x2 ≥ 0 (currently set to ln(x+ 1)).

Then, Sf and Sv are functions that map θvi and θfi to real numbers:

Sv(θ
v
i ) =

mi∑
j=1

g(Wv(Zi,j ,∆i)−Wv(Xi,j ,∆)) (1)

Sf (θfi ) =

ni∑
j=1

(|V (Yi,j ,∆)| ×Wf (fi,j)) (2)

Sv(θ) measures the difference between the usage of substituting variables in ∆i and the usage
of substituted variables in ∆, over the substitutions made in ∆ by θvi . Sf (θ) measures the total

function symbol weight of the substituting terms, over the substitutions made in ∆ by θfi . The
dissimilarity between two terms or atoms ∆1 and ∆2 is then:

dsim(∆1,∆2) =

√
[Sv(θv1) + Sv(θv2)]2 + [Sf (θf1 ) + Sf (θf2 )]2 (3)

The dissimilarity measures the combined substitution “effort” required to convert the least
general generalization to those terms or atoms.

Let Φ1 and Φ2 be two formulae, containing the atoms {∆1,1, . . . ,∆1,n} and {∆2,1, . . . ,∆2,m}
respectively. Let S6=∞ be the set of pairs (∆1,i,∆2,j) for which dsim(∆1,i,∆2,j) 6= ∞. If
S6=∞ = ∅, i.e., all pairs of atoms in Φ1 and Φ2 are infinitely dissimilar, then the dissimilarity
dsim(Φ1,Φ2) =∞. Otherwise:

dsim(Φ1,Φ2) =

∑
(∆1,i,∆2,j)∈S6=∞

dsim(∆1,i,∆2,j)

|S6=∞|
× n×m
|S6=∞|

(4)

The first term is the average dissimilarity between pairs of atoms that are not infinitely dis-
similar. The second term penalizes the first by the excess of atom pairs whose dissimilarity
is infinite. Intuitively, the dissimilarity between two formulae measures the extent to which
inference between them might not be possible by virtue of the dissimilarity of their atoms.

For two formulae Φ1 and Φ2, their similarity sim(Φ1,Φ2) is defined in the context of a set
of formulae F , Φ1,Φ2 ∈ F :

maxdsim(F) = maxφi,φj∈F (dsim(φi, φj) 6=∞) (5)

sim(Φ1,Φ2,F) = max(0,maxdsim(F)− dsim(Φ1,Φ2)) (6)

If the dissimilarity is 0, then the similarity is the largest dissimilarity that is not ∞. If the
dissimilarity is greater than 0 and not ∞, then the similarity is the difference between the
largest dissimilarity that is not ∞ and the dissimilarity. If the dissimilarity is ∞ or is equal to
the largest dissimilarity that is not ∞, then the similarity is 0.
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3.2 Q∞
This axiom selection technique takes a problem consisting of a conjecture C and axioms A,
and selects all axioms Φ ∈ A such that dsim(C,Φ) 6= ∞. This simply means that each axiom
contains at least one atom whose predicate symbol matches that of an atom in the conjecture.

3.3 Spectral Clustering

This axiom selection technique views the formulae of a problem as nodes of a complete undi-
rected graph, with the similarities between the formulae as the edge weights. Spectral clustering
[26] is then used to cluster together similar nodes, and the axioms in the cluster containing the
conjecture are selected. This process requires three steps: determining the number of clusters,
choosing the initial centroids for the clusters, and applying k-means clustering.

The initial centroids for the clustering are extracted from a feature matrix consisting of the
eigenvectors of the normalized graph Laplacian matrix [26], computed from the graph’s adja-
cency matrix with edges weighted by similarity. The rows of the feature matrix corresponding
to the conjecture node and to the k − 1 (see below for how k is computed) axiom nodes with
highest degree centrality are used as the initial centroids for the clustering.

To determine the number of clusters for a problem in the MPTP2078 corpus, the three
step process was applied to each problem with the number of clusters ranging from two to half
the number of formulae in the problem. The precision was computed each time, and the best
number of clusters recorded. A median regression line was fitted to this data (separately for
the bushy and chainy problems), as shown in Figure 1. The upper two plots are for a problem
set of 325 smaller problems (see Section 4 for details of the testing problem sets), and the lower
plot is for the 1551 bushy problems. While the fit of the regression lines is awful, they were used
to set the number of clusters k for problems in the corpus, based on the number of formulae in
each problem. For the 1551 bushy problems it turns out that two clusters is always optimal,
regardless of the number of axioms. It was not possible to compute a regression line for the
1369 chainy problems with the time and computing resources available.

3.4 Greedy Tree plus Nearest Neighbours

This axiom selection technique views the formulae of a problem as nodes of a complete undi-
rected graph, with the similarities between the formulae as the edge weights. Figure 2 provides
a simple illustrative example, in which C is the conjecture and As are the axioms (the figure
omits edges that do not affect the example). Starting at the conjecture, a greedy tree is built
by iteratively visiting all the axioms most similar to the current leaves of the tree, until axioms
that have no similarity (or equivalently, infinite dissimilarity) to the conjecture are reached.
These infinitely dissimilar nodes are ignored. In Figure 2 the thicker edges are those that are
followed, and the axioms with thicker circles are those at which the tree growth stops because
they have no similarity to the conjecture. At that stage the light grey axioms are in the tree.
As a final step, all the unvisited axioms most similar to the axioms in the greedy tree are added
to the tree. In Figure 2, that adds the dark grey axioms to the tree. The axioms in the tree
are selected - those are the non-white axiom in the Figure 2..

4 Evaluation Results

The new axiom selection techniques and the axiom selection in the Vampire ATP system were
evaluated using the metrics. No particular effort was moade to optimize the implementation
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Figure 1: Best number of clusters vs. Number of formulae
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Figure 2: A greedy tree

of the new selection techniques; rather, the evaluation aimed to demonstrate the usefulness of
the metrics, and as such no CPU times are presented below. Two problem sets from each of
the bushy and chainy parts of the MPTP2078 corpus were used. The first set was selected by
taking the 325 chainy problems with less than 500 axioms and for which minimally adequate
axiom sets of axioms (pruney problems) are known, and taking the corresponding 325 bushy
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problems. The second set was the 1551 bushy problems and 1369 chainy problems for which
minimally adequate axiom sets (pruney problems) are known. The smaller set was useful for
initial quick testing, and also necessary because some of the new techniques could not analyse
the chainy problems set with the time and computing resources available.

Tables 1 and 2 show the results, including a row for the base case in which all axioms are
selected. The columns are the Precision (Prcn), Selectivity (Sely), Ranking precision (RPrn),
Ranking density (RDen), Adequacy (Adeq), and the Adequate precision/selectivity/ranking
precision/ranking density.

325 Bushy problems Average Adequate
Technique Prcn Sely RPrn RDen Adeq Prcn Sely RPrn RDen
Base 0.35 1.00 - - 1.00 0.35 1.00 - -
Vampire 4.4 0.32 0.80 - - 0.80 0.39 0.84 - -
Q∞ 0.43 0.54 0.62 0.52 0.74 0.58 0.61 0.84 0.71
Spectral Cl. 0.24 0.57 - - 0.66 0.36 0.79 - -
Greedy Tree+NN 0.36 0.57 - - 0.66 0.36 0.79 - -

325 Chainy problems Average Adequate
Technique Prcn Sely RPrn RDen Adeq Prcn Sely RPrn RDen
Base 0.06 1.00 - - 1.00 0.06 1.00 - -
Vampire 4.4 0.08 0.55 - - 0.94 0.09 0.56 - -
Q∞ 0.08 0.53 0.57 0.21 0.85 0.09 0.56 0.67 0.25
Spectral Cl. 0.05 0.48 - - 0.65 0.08 0.63 - -
Greedy Tree+NN 0.05 0.79 - - 0.86 0.06 0.85 - -

Table 1: Results for the 325 smaller problems

1551 Bushy problems Average Adequate
Technique Prcn Sely RPrn RDen Adeq Prcn Sely RPrn RDen
Base 0.30 1.00 - - 1.00 0.30 1.00 - -
Vampire 4.4 0.21 0.69 - - 0.58 0.35 0.76 - -
Q∞ 0.33 0.54 0.55 0.41 0.68 0.48 0.59 0.80 0.60
Spectral Cl. 0.25 0.69 - - 0.76 0.33 0.83 - -

1369 Chainy problems Average Adequate
Technique Prcn Sely RPrn RDen Adeq Prcn Sely RPrn RDen
Base 0.02 1.00 - - 1.00 0.02 1.00 - -
Vampire 4.4 0.03 0.40 - - 0.87 0.04 0.41 - -
Q∞ 0.03 0.53 0.46 0.07 0.81 0.04 0.56 0.56 0.09

Table 2: Results for all problems with known minimally adequate axiom sets

For the smaller set of 325 bushy problems Q∞ performs the best, with the highest precision
and lowest selectivity. It also has a 74% adequacy. Moving up to the 325 chainy problems
Q∞ and Vampire have the highest precision, with Q∞ having slightly higher selectivity, and
Vampire better adequacy. For the 1551 bushy problems Q∞ is again the top performer, now in
terms of precision, selectivity, and adequacy. Spectral clustering also performs reasonably well,

8



Evaluation of Axiom Selection Techniques Liu, Wu, Wang, Sutcliffe

with a better precision than Vampire, and with the cluster containing the conjecture (recall from
Section 3.3 that two clusters is optimal, and hence used here) containing 69% of the axioms
on average. Finally, for the 1369 chainy problems Q∞ and Vampire again have the highest
precision, with Vampire having the best selectivity and adequacy. Overall, Q∞ performs the
best on the bushy problems, with Vampire doing slightly better on the chainy problems. It is
surprising that the very simple Q∞ technique performs as well as it does, when compared to
the mature (and more complex) Vampire selection technique.

The adequacy numbers have to be viewed carefully - it is easy to get an optimal adequacy
simply by selecting all axioms and thus having pessimal selectivity. It is interesting to contrast
the average and adequate precision values. The average precision for the base case is better
than that of some of the selection techniques because of the zero precision assigned when an
inadequate set of axioms is selected. An adequate precision close to the base case, as for, e.g.,
Spectral Clustering and Greedy Tree+NN on both sets of 325 problems, indicates that doing
the axiom selection is probably wasted effort.

There is a correlation, but not a particularly strong correlation, between the number of
axioms in a problem and the precision of the Vampire and Q∞ axiom selections, e.g., around
40% for the chainy problems. This suggests that the axiom selection techniques might scale
well to larger problems.

Overall, the precision values are disappointingly low, especially for the chainy problems.
For Q∞ the ranking density is similarly low, so that even with perfect ranking precision the
raw precision cannot be very good. Figure 3 shows the distributions of the precision values
for the chainy problems. In each plot the left set of points are for those problems where an
adequate set of axioms was selected, and the right set of point are for those problems where an
inadequate set of axioms was selected. For the majority of problems the precision in less that
0.1, i.e., less than 10% of selected axioms are used in a proof.

Figure 3: Distribution of precision values for chainy problems

4.1 Evaluating the Metrics

As was noted in the introduction to this paper, while metrics such as those presented in this
paper are useful for quick evaluation of axiom selection techniques, the “proof is in the pudding”.
The quality of the metrics needs to be established by comparing them with eventual ATP
system performance. An initial evaluation of the precision metric has been performed by using
the Vampire and Q∞ axiom selections, and looking at the performance of E on the resultant
reduced problems. This was done for the 1551 bushy problems and 1369 chainy problems
for which there are known minimally adequate axiom sets, so that the precision could be
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computed. The testing was done with a 300s CPU time limit on computers with a dual-core
Intel(R) Xeon(R) E5-2609 2.50GHz CPU, 8GB memory, and running the CentOS Linux release
7.6.1810 operating system. The results are shown in Table 3.

In all four cases the precision of the unsolved problems is much lower than for the solved
problems - the precision metric aligns correctly with the solvability of the reduced problems.
The numbers of problems with precision 0.00 and 1.00 also align with the numbers of solutions,
with higher numbers of solved problems with precision 1.00, and higher numbers of unsolved
problems with precision 0.00. Overall, these results indicate that the precision metric does
correctly evaluate the quality of the axiom selection.

The attentive reader might have noticed that there are some solved problems with precision
0.00, which is weird because the precision should be 0.00 only if the selected axioms are not an
adequate set (Section 2.2). This indicates that these experiments revealed some new minimally
adequate sets of axioms for some problems in the MPTP2078 corpus, and thus that some further
pruney problems need to be created.

1551 Bushy Vampire selection Q∞ selection
problems Solved Unsolved Solved Unsolved
# Problems 848 (55%) 703 (45%) 969 (62%) 582 (38%)
Avg Prcn 0.35 0.03 0.48 0.07
# Prcn 0.00 5 ( 1%) 646 (92%) 3 ( 0%) 487 (84%)
# Prcn 1.00 7 ( 1%) 0 ( 0%) 63 ( 7%) 0 ( 0%)

1369 Chainy Vampire selection Q∞ selection
problems Solved Unsolved Solved Unolved
# Problems 901 (66%) 468 (34%) 812 (59%) 557 (41%)
Avg Prcn 0.04 0.02 0.04 0.01
# Prcn 0.00 19 ( 2%) 159 (34%) 11 ( 1%) 243 (44%)
# Prcn 1.00 0 ( 0%) 0 ( 0%) 0 ( 0%) 0 ( 0%)

Table 3: Evaluation of Vampire and Q∞ axiom selection wrt E

5 Conclusion

The main contribution of this paper is metrics for evaluating axiom selection techniques without
having to run an ATP system on the reduced problems. Three new axiom selection techniques
have also been presented. Results from evaluating the new techniques and the axiom selection
in the Vampire ATP system have been presented.

Future work includes a more comprehensive evaluation of the metrics, to confirm that the
metrics do provide a meaningful evaluation of the axiom selection techniques. It will also be
interesting to apply the metrics to the axiom selection techniques found in other ATP systems
such as E, GKC [24], iProver [8], Leo-III [19], and MaLARea.

The results show that there is lots of room for further research and improvement in axiom
selection. We are currently investigating the use of network propagation [20], adopted from the
analysis of protein-protein interaction networks [3], for analysing the formula similarity graphs.
One interesting possibility is pipelining axiom selection tools so that the first in the pipeline
receives the original problem, it’s output becomes the input to the second in the pipeline, and
so on. Finally, the three new axiom selection techniques all build on the dissimilarity and
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similarity measures described in Section 3.1. Further development and improvement of those
measures, or their complete replacement, would have consequential impacts downstream.
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