
Efficient Implementation of Large-Scale Watchlists

Constantin Ruhdorfer and Stephan Schulz

DHBW Stuttgart
mail@ruhdorfer.me schulz@eprover.org

Abstract

In this work, we explore techniques for improving the performance of the automated theorem proving

system E when dealing with large watchlists. A watchlist can focus the proof search towards so-called

hints, likely useful intermediate results provided externally. Recently, hints have been automatically

extracted from previous proofs, creating massive watchlists and thus making evaluation of new clauses

against the wachtlist a performance bottleneck. We introduce a new index for the frequent special case

of unit clause hints, taking advantage of the fact that subsumption can be implemented much more

efficiently for unit clauses than for the general case. We implement several strategies for exploiting

the structure and properties of equational unit clauses. Additionally, we have added a new soft sub-

sumption mechanism to E that can abstract away differences of constant or Skolem symbols, effectively

allowing a less precise match when evaluating a given clause against the watchlist. We have tested the

new mechanisms on a large set of problems taken from the Mizar 40 project, using a large watchlist

containing over 300 000 clauses. We show that the usage of the unit clause index significantly increases

performance with this given watchlist. The use of soft subsumption shows more mixed results. We

believe that most watchlists can take advantage of these techniques and have made them available to

the user via E’s command line interface.

1 Introduction

Automated theorem provers (ATPs or ATP systems) are programs that accept a set of axioms
and a conjecture in a suitable logic, and then try to automatically derive a proof of the conjec-
ture. Many of the most successful theorem provers are based on first-order logic (with equality),
an expressive logic with unambiguous semantics for which relatively mature calculi exist. First
order logic is semi-decidable. In theory, proofs for valid conjectures can always be found, but
proof search for an invalid conjecture may not terminate. This means that an ATP has to
search for proofs in an infinite and highly branching search space. Thus, guiding this search is
of critical importance for the success of the system. For systems based on forward deduction,
the critical choice is which of the many possible intermediate steps should be taken next, i.e.
which new formulas should be deduced. This is usually based on simple syntactic criteria (as
e.g. described in [11]). However, these heuristics are often insufficient to find complex proofs.

One way to improve the proof search is via hints. Originally [13], hints are possible inter-
mediate lemmas provided by the user of the prover. If the prover finds such a lemma (or a
more general one), it can focus its search on this lemma. User hints can come from the user’s
domain expertise and intuition, or possibly from simplified settings. In recent years, we have
utilized the same mechanism with a very different source of hints, namely intermediate results
contributing to proofs of other theorems in the domain [3]. The system can iteratively build
a database of results that are often useful in the domain. In contrast to manually provided
hints, the number of hints mined from existing proofs can often be extremely large, and hence
evaluating new formulas against the hint set can become quite expensive.

In this work, we are interested in two aspects of the field at hand: Firstly, we want to
improve the efficiency of using large sets of hints in guiding a theorem prover (more concretely,

Efficient Watchlists Ruhdorfer and Schulz

the equational theorem prover E [7, 10]). Secondly, we explore a variety of notions about what
it means for a hint to match a new formula (or more specifically, clause), with the aim of
broadening the potential influence of a hint to also influence the selection of clauses that are
similar to the hint, not only those that are strictly more general.

2 Preliminiaries

First-order logic with equality We will assume two disjoint sets F and V where F is the
set of function symbols and V the set of variable symbols. Function symbols have an associated
arity which we will denote with f/n for symbol f and arity n ∈ N. Constants are function
symbols with n = 0.

We will typically use a, b, c to denote constants, f, g, h to denote function symbols and either
x, y, z or X1, . . . ,XN to denote variables.

The set of syntactically correct terms is denoted by Term(F ,V), where Term(F ,V) is the
smallest set that satisfies the following conditions:

1. X ∈ Term(F ,V) for all X ∈ V
2. f/n ∈ F , s1, . . . , sn ∈ Term(F ,V) implies f(s1, . . . , sn) ∈ Term(F ,V)

An (equational) atom is an unordered pair of terms, written as s' t. Observe that we handle
the non-equational case as a special case where we encode non-equational atoms as equalities
with the reserved constant $true, e.g. p(a) ' $true. We will typically write non-equational
literals in the conventional manner for convenience (e.g. p(a)). A literal is either an atom, or
a negated atom. We write a negative literal as s 6' t and define a negation operator on literals
as s' t = s 6' t and s 6' t = s' t. We use s'̇t if we do not want to specify the polarity of a
literal, or, in a less precise way, let l, l1, l2, . . . stand for arbitrary literals. In this notation ' is
commutative.

A clause is a multiset of literals {l1, l2, ..., ln}, usually written and always interpreted as a
disjunction l1 ∨ l2 ∨ ...∨ ln. A unit clause is a clause containing only one literal. We denote the
set of all clauses as Clauses(F ,V) and the empty clause as �.

A substitution is a mapping σ : V → Term(F ,V) with the property that Dom(σ) = {x ∈
V | σ(x) 6= x} is finite. This mapping can be extended to terms, atoms, literals and clauses in
the obvious way. If σ is a substitution, we call σ(t), σ(l), σ(C) instances of t, l, or C.

Similarly, a match from a term (atom, literal, clause) s to another t is a substitution σ such
that σ(s) ≡ t, where ≡ is the syntactic identity.

In most theorem provers for classical first-order logic, proofs are found via contradiction. In
other words proof search tries to establish if a given set of clauses is unsatisfiable. For generating
calculi, new clauses are deduced via a set of inference rules that take one or more (most often
two) clauses as premises, and generate a new clause entailed by these premises. If this process
eventually derives the empty clause, unsatisfiability has been established (the empty clause is
inherently unsatisfiable, and so is any set of clauses that entails it).

Subsumption is a syntactic relation between two clauses. A clause C subsumes another clause
D, if one of its instances is a multi-subset of the the other, i.e. if σ(C) ⊆ D. A subsuming
clause is more general than the subsumed clause, i.e. the subsumed clause is entailed by the
subsuming clause (but not, in general, the other way round). Subsumption plays a double role in
this work. On the one hand, in most calculi we can ignore subsumed clauses, and subsumption
(the removal of subsumed clauses from the proof search) is a major and important optimisation
technique. On the other hand, if a clause subsumed another, it is considered “at least as good”
as the first one. The original notion of a clause matching a hint is based on subsumption. We

2

Efficient Watchlists Ruhdorfer and Schulz

do not require a clause to be identical to a hint to prefer it, but we also prefer clauses that
subsume a hint (but note that we further generalise this relation later).

Positions in a term A potential position p ∈ N∗ in a term is defined as a sequence over
natural numbers. The empty position is denoted with the special symbol ε.

The set of positions in a term t is denoted with pos(t) and defined recursively by case
distinction: If t only consists of a variable symbol v ∈ V then pos(t) = ε. If on the other hand
t ≡ f(t1, ..., tn) then pos(t) = {ε} ∪ {i.p | 1 ≤ i ≤ n, p ∈ pos(ti)} with n ∈ N∗. A position
p ∈ pos(t) of a term t can be used to refer to the subterm of t at p. To be more exact: if p = ε,
then t|p = t. Otherwise, p ≡ i.p′ and t ≡ f(t1, . . . , tn). In that case, tp = ti|p′ . The top symbol
of x ∈ V is top(x) = x and the top symbol of f(t1, . . . , tn) is top(f(t1, . . . , tn)) = f .

2.1 Proof search

E is a saturating theorem prover based on the superposition calculus [1]. To prove a conjecture,
axioms and the negated conjecture are converted to clause normal form, resulting in a set of
clauses that is unsatisfiable if and only if the conjecture holds. The proof state thus is a set
of clauses, and the proof search is realised by saturating this set of clauses by adding logical
consequences that can be deduced from existing clauses by application of a number of inference
rules. If this process generates the empty clause as an explicit witness of unsatisfiability, the
proof has been concluded.

In practice, this proof search is realised via the given-clause algorithm. The proof state is
represented by two disjoint sets of clauses, the set U of unprocessed clauses, and the set P of
processed clauses. The algorithm repeatedly picks a clause g from U , computes all possible
consequences between this given clause and all clauses in P , and adds them to U . It then adds
g (the given clause) to P . This maintains the invariant that all direct consequences of clauses
in P have been computed. In addition to these generating inferences, the algorithm can use
simplifying rules to replace clauses by simpler clauses, or to delete redundant clauses.

The most critical choice point for the given-clause algorithm is the selection of the given
clause for each iteration of the main loop. This is traditionally controlled by heuristic evalu-
ations, based on symbol counting (smaller clauses are preferred), clause age (older clauses are
preferred), and various combinations and refinements of these measures (compare [12]).

2.2 Watchlist

Large parts of this work focus around the watchlist technique which was originally developed by
Robert Veroff who named it the hint strategy [13]. The strategy was developed for guiding ATP
programs in their proof search by comparing newly generated clauses against a list of hints.
Such a list of hints is user-provided and usually contains lemmas, facts or otherwise clauses the
user suspects might be relevant to the given problem. This technique was first implemented
into Otter [5].

In the E ATP system the watchlist mechanism is implemented two-fold as a dynamic and
a static variant [2]. Regardless of the variant used the list is loaded on start-up and stored
as a Clause-Set where it is simplified like processed clauses. A Clause-Set is a internal data
structure in E that stores clauses using a doubly linked list and provides access to its members
via various indices. Every newly generated or processed clause is compared against the watchlist
by checking whether or not the new clause matches one or more clauses in the watchlist. If it
does it is prioritized for processing.

3

Efficient Watchlists Ruhdorfer and Schulz

2.3 Indexing techniques

One of the most important factors when it comes to the performance of ATP systems is efficient
indexing. Indexing helps to avoid, or at least reduce, time spent on sequential search within
large sets of clauses or terms. E has included several different indices for a while, including
(perfect) discrimination tree indexing [6], feature vector indexing [9] and fingerprint indexing
[8].

E has been using feature vector indexing for non-unit subsumption [9], and indexes only
the processed set of clauses P . Feature vector indexing is particularly suitable for indexing
relatively large multi-literal clauses, since it handles the complexity of equation- and literal
permutation by using features that are invariant under these permutations. This is a major
advantage compared to other approaches of handling subsumption via indices. It does not,
however, come into play for relatively small unit clauses, for which better indices exist. One
of which is fingerprint indexing which is a technique that samples positions in terms for its
indexing representation. We can adjust these sampled positions in a way that takes advantage
of the fact that every unit clause exactly consist out two terms (more on that later). First, we
will introduce fingerprint indexing for this purpose.

Fingerprint Indexing A fingerprint index [8] is as trie over fingerprints fp of terms. The
general fingerprint feature function gfpf : Term(F ,V)× N∗ → F ′ where F ′ = F] {A, B, N}
is defined by case distinction:

gfpf(t, p) =

A if p ∈ pos(t), t|p ∈ V
top(t|p) if p ∈ pos(t), t|p 6∈ V
B if p = q.r, q ∈ pos(t) and t|q ∈ V for some q

N otherwise

Here top(x) is x if x ∈ V and f if x ≡ f(t1, ..., tn). Given that the fingerprint feature function
is a function fpf : Term(F, V) → F ′ and is defined by fpf(t) = gfpf(t, p) for a fixed p ∈ N∗.
Lastly the fingerprint function is defined by fp : Term(F ,V) → (F ′)n for a fixed n ∈ N. A
fingerprint is a vector of elements of F ′ and is calculated by fp(t) for a given term t.

For an arbitrary fpf and two terms s and t assume two values u = fpf(s) and v = fpf(t).
An overview for the compatibility of unification and matching from s onto t, given u and v, is
presented in Figure 1.

Unification
f1 f2 A B N

f1 Y N Y Y N
f2 N Y Y Y N
A Y Y Y Y N
B Y Y Y Y Y
N N N N Y Y

Matching
f1 f2 A B N

f1 Y N N N N
f2 N Y N N N
A Y Y Y N N
B Y Y Y Y Y
N N N N N Y

Figure 1: Compatibility for unification and matching where f1 and f2 are arbitrary but distinct.
Taken from [8].

4

Efficient Watchlists Ruhdorfer and Schulz

3 Implementation

When we originally introduced the watchlist feature, we expected to work with fairly small
watchlists, and decided to use feature vector indexing for all hint matching. However, watchlists
now contain several hundred thousand clauses, and evaluating new clauses against the watchlist
has become a major bottleneck. To reduce this bottleneck, we have split the watchlist index
into a pair of unit and non-unit clause indices, to decrease access times by storing fewer clauses
in either by using the most appropriate indexing technique for either set. For a similar idea see
[3].

Unit clause index We have implemented a new unit clause index in E based on fingerprint
indexing. Since this is a technique for term and not clause indexing we exploit the structure of
unit clauses to generate an indexing representation for the given unit clause. We use the fact
that all unit clauses are of the form {lterm '̇ rterm} to construct a new term, represented by a
$EQN cell of the form '̇(lterm, rterm), over which we calculate the fingerprint. We do that by
alternating between lterm and rterm for sampling positions. Since all indexed terms start with
one kind of equality symbol (e.g. ' or 6') we can skip it when constructing the fingerprint for
a term. The ε position is therefore never sampled.

Clauses that are not orientable are inserted twice into the index since changing the orien-
tation of a clause also changes its fingerprint. In the worst-case this would lead to the size of
index doubling. We therefore checked old runs of E and found that around 15% of clauses were
not orientable and would therefore be inserted twice. Although this is a considerate increase
we guess that this would have a negligible impact on performance while designing this data
structure. Inserted clauses are simply stored as a pointer in the leaf of the fingerprint trie using
a splay tree.

We present an example index in Figure 2 which assumes an example fingerprint function
FPW4 that samples at (1, 2, 1.1, 2.1) and F = {f/2, g/1, a/0, b/0, c/0}.

We have implemented several fingerprint functions to cover a wide variety of needs. We
started with functions that assume full equality in the terms they sample which means that
they sample both sides equally: NoIdx (no unit clause index), FPW2, FPW4, FPW6, FPW8
and FPW10 (see Table 1 for details). Although E is an equality based ATP system not all
problems are purely equational or equational at all. The same also applies to watchlists. E
already categorizes problems based on whether they are non-equational N , somewhat equational
S and purely equational P . We use the same mechanism to classify the degree of equality in
the given watchlists.

Based on that we alter the strategy used to sample the positions. This is since with increas-
ingly less equational watchlist the right side of a term is more likely to simply be $true and there
is no useful information to be sampled. To address this we also introduced a left only (marked
with ”L”, e.g. FPW2L) and a left leaning (marked with ”LL”, e.g. FPW2LL) version of each
fingerprint function. The left only version will skip position ε and continue to only sample posi-
tions on the left side, e.g. FPW2L samples at 1, 1.1 and FPW6L at 1, 1.1, 1.1, 1.1.1, 1.2.1, 1.1.2.
The left leaning version will sample roughly between 2/3 and 3/4 of the positions from the left
side, depending on the size of the fingerprint function. Since FPW2 samples so few positions
FPW2LL is the same function as FPW2L. For an overview over all strategies please consult
Table 1.

While the left leaning version surely is more useful for somewhat equational clause sets, using
the strategy will still result in many sampled positions that are non-existent and therefore not
useful when it comes to matching. We therefore propose yet another strategy to be used for

5

Efficient Watchlists Ruhdorfer and Schulz

g

g,f g,f,A

g,f,A,b g(X1) ' f(b, a)

g,f,A,A g(X1) ' f(X2, b)

g,A g,A,A g,A,A,N
g(X1) ' X2
g(X1) ' X1

f f,c f,c,a f,c,a,N f(a) ' c

g

f

A

b

A

A

A N

f

c a N

Figure 2: Example unit clause index given FPW4

partly equational clause sets which we will denote by ”*Flex” (e.g. FPW2Flex). A flex type
strategy is one where we first classify the input based on whether or not the right side of the
term is $true. We then use an L type sampling method on the term if it is or a balanced one
if it is not. On the one hand this allows us to better exploit the structure of the given term
while on the other hand this will result in the index returning some terms that are not actually
a match if they had been sampled with the same fingerprint function. This is since now their
fingerprints might be sampled from different positions. While that seems troublesome at first
this is not really an issue for two reasons: (i) It is unlikely that this will affect many terms
since one unmatchable symbol in the fingerprint will already reject the match and (ii) since
fingerprint indexing is an non-perfect indexing method to begin with we need to check whether
the given clause subsumes the every returned clause anyway. In the worst case we will need to
check slightly more results for subsumption.

We implemented all these options into E and made them available through Es domain-
specific language (DSL). On top of that we also implemented an automatic mode (available
as ”auto”) that maps a N watchlist to an ”LL” type function, an S watchlist to an ”L” type
function and a P watchlist to a normal strategy. As a basis for that we used ”FPW6” since we
expect it to perform well across many different watchlists.

Clause abstraction We have also implemented a clause abstraction mechanism in E for the
watchlist feature. The mechanism supports two modes of operation: One abstracting constants
and one abstracting skolem symbols. If turned on our implementation will rewrite all clauses
that are inserted into or checked against the watchlist to adhere to the abstraction. This
effectively allows for less precise matches against the watchlist.

6

Efficient Watchlists Ruhdorfer and Schulz

Strategy name Positions sampled

NoIdx -
FPW2 1, 2
FPW2L 1, 1.1
FPW2Flex FPW2 or FPW2L (see text)
FPW4 1, 2, 1.1, 2.1
FPW4L 1, 1.1, 1.2, 1.1.1
FPW4LL 1, 2, 1.1, 1.2,
FPW6 1, 2, 1.1, 2.1, 1.1.1, 2.1.1
FPW6L 1, 1.1, 1.1, 1.1.1, 1.2.1, 1.1.2
FPW6LL 1, 2, 1.1, 2.1, 1.1.1, 1.2.1
FPW6Flex FPW6 or FPW6L (see text)
FPW8 1, 2, 1.1, 1.2, 2.1, 2.2, 1.1.1, 2.1.1
FPW8L 1, 1.1, 1.2, 1.1.1, 1.2.1, 1.1.2, 1.1.1.1, 1.1.1.2
FPW8LL 1, 2, 1.1, 2.1, 1.1.1, 1.2.1, 1.1.2, 2.1.1
FPW10 1, 2, 1.1, 1.2, 2.1, 2.2, 1.1.1, 1.1.2, 2.1.1, 2.1.2
FPW10L 1, 1.1, 1.2, 1.1.1, 1.2.1, 1.1.2, 1.1.1.1, 1.2.1.1, 1.1.2.1, 1.1.1.2
FPW10LL 1, 2, 1.1, 2.1, 1.1.1, 1.2.1, 1.1.2, 2.1.1, 1.1.1.1, 2.1.1.1

Table 1: Sampling strategies overview

If constants are to be abstracted all constants are rewritten to the first constant met during
the proof for an untyped problem and for a typed one to the first constant met with the appropri-
ate sort. That is given a clause c1 = {f(b, c)'̇g(X1), g(X1)'̇g(a)}, F = {f/2, g/1, a/0, b/0, c/0}
and the first met constant a we will rewrite the clause c1 to c′1 = {f(a, a)'̇g(X1), g(X1)'̇g(a)}
assuming a, b, c share the same sort.

The mechanism works similarly for abstracting skolem symbols where we rewrite them to
the first met skolem symbol with the same type. We have also made this an available option
to turn on through Es DSL.

4 Experimental Results

We tested on Intel Xeon E5-2698 v3 CPUs at 2.30 GHz using the Linux 3.19.0-25-generic
kernel in 64-bit mode. All tests were run with a time limit of 720 seconds and a limit of 10.000
generated clauses. For orchestrating the experiments we used the ATPy library1.

1Written by Jan Jakub̊uv; Online accessible at https://github.com/ai4reason/pyprove

7

Efficient Watchlists Ruhdorfer and Schulz

4.1 Unit clause index

For testing we used a strategy2 provided by the automated reasoning group at Czech Technical
University in Prague who also provided a watchlist based on previous runs of the system. The
watchlist contained 367.408 clauses of which 153.997 are unit. The strategy was run against a
tenth of the Mizar 40 project [4] amounting to 5787 problems. We have made all of this data
and the E version used available at http://eprover.eu/E-eu/SoftWatch.html.

All runs Successfull runs3

Strategy # proofs Total time Mean time Total time Mean time

NoIdx (baseline) 1679 462880.8 79.9 59131.6 35.2
FPW2 1685 397159.8 68.6 49357.8 29.2
FPW2L 1694 346104.6 59.7 37460.5 22.1
FPW2Flex 1686 405478.3 70.0 50220.2 29.7
FPW4 1684 402009.4 69.4 49601.9 29.4
FPW4L 1688 413876.4 71.5 51165.3 30.3
FPW4LL 1688 416879.8 72.0 51639.3 30.5
FPW6 1685 397808.6 68.7 49398.9 29.3
FPW6L 1688 407316.0 70.3 50617.3 29.9
FPW6LL 1685 408941.3 70.6 50594.4 30.0
FPW6Flex 1689 407502.0 70.4 50673.4 30.0
FPW8 1686 399834.2 69.1 49678.4 29.4
FPW8L 1689 407277.4 70.3 50638.9 29.9
FPW8LL 1686 408242.1 70.5 50574.7 29.9
FPW10 1685 400546.6 69.2 49778.3 29.5
FPW10L 1689 409653.3 70.7 51000.8 30.1
FPW10LL 1686 409560.7 70.7 50808.7 30.1

Table 2: Performance of various indices (in seconds).

Table 2 shows different versions of the index and their performance. Observe that we
compare our implementation against a version of E that only uses feature vector indexing as an
indexing technique for the watchlist. This version is refereed to as “Conventional” or “NoIdx”
(no index) since it is missing the unit clause index. To measure performance we observe the
runtime E given the set of problems. We chose to compare runtimes since the proof search
for any given problem nearly always stays the same between different indexing strategies. To
verify that the runs indeed stay the same we compared a random subsample of proof searches.
In our comparisons we will differentiate between the runtime for all problems and only those
that were deemed successful 3.

2The exact options given were:
−−definitional−cnf=24 −−split−aggressive −−simul−paramod −−forward−context−sr −−destructive−er−
aggressive −−destructive−er −−prefer−initial−clauses −tKBO6 −winvfreqrank −c1 −Ginvfreq −F1 −−
delete−bad−limit=150000000 −WSelectMaxLComplexAvoidPosPred −H’(1∗ConjectureTermPrefixWeight(
PreferProcessed,1,3,0.1,5,0,0.1,1,4),1∗ConjectureTermPrefixWeight(PreferWatchlist,1,3,0.5,100,0,0.2,0.2,4),1∗
Refinedweight(PreferWatchlist,4,300,4,4,0.7),1∗RelevanceLevelWeight2(PreferWatchlist
,0,1,2,1,1,1,200,200,2.5,9999.9,9999.9),1∗StaggeredWeight(PreferWatchlist,1),1∗SymbolTypeweight(
PreferWatchlist,18,7,−2,5,9999.9,2,1.5),2∗Clauseweight(PreferWatchlist,20,9999,4),2∗ConjectureSymbolWeight
(PreferWatchlist,9999,20,50,−1,50,3,3,0.5),2∗StaggeredWeight(PreferWatchlist,2))’ −−free−numbers

3Runs with exit status ”Theorem” or ”CounterSatisfiable”

8

http://eprover.eu/E-eu/SoftWatch.html

Efficient Watchlists Ruhdorfer and Schulz

We expected to find similar results compared with the original fingerprint paper [8]. Meaning
that we expected to find that a fingerprint size of 6 is a good balance of trie depth and clause
distribution. Although comparing FPW6 with the no indexed version yields an improvement of
16.35% for all runs and 19.65% for all runs that were successful we find that other strategies were
even more successful. Surprisingly FPW2L yielded the best performance performing 28.86%
for all runs and 44.87% for all successful runs.

While this index increases performance on average Figure 3 shows that the actual perfor-
mance is dependent on the problem itself. Please note the figures’ logarithmic scale. Notice
that most strategies perform very similar. This very likely is an effect of testing on the same
watchlist where all strategies perform well, but one can exploit some inherent structure of
the watchlist better. The “auto” strategy is not listed since for the watchlist tested it would
evaluate to the performance of FPW6LL.

(a) FPW2L runtime comparison (in seconds). (b) FPW6 runtime comparison (in seconds).

Figure 3: Conventional vs FPW6 vs FPW2L

Lastly, we were interested in examining wether the different strategies solve the same prob-
lems or instead if they are proving different problems. We found that they overwhelmingly do.
That is to say the intersection of problems solved by all strategies, which is a very limiting fac-
tor, is 1668 problems big (includes the baseline). Given that most strategies solve around 1680
problems this means that the overlap of solved problems is 99%. We compiled the runtimes on
these 1668 problems in Table 3.

The problems solved by all strategies are very likely the easier problems in the whole set.
We therefore might expect the performance timings to be better than the the runtimes observed
in Table 2 but this is not the case.

4.2 Validating the use of fingerprint indexing

One central claim of this paper is that exploiting the structure of unit clauses leads to better
performance compared to a standard feature vector index. This claim can easily be verified
by comparing the performance of E when either indexing technique is only filled with unit
clauses. This can be achieved by using a watchlist that only contains unit clauses. We do that

9

Efficient Watchlists Ruhdorfer and Schulz

Index Total time Mean time

NoIdx (baseline) 58499.3 35.1
FPW2 48716.8 29.1
FPW2L 36409.3 21.8
FPW4 49043.4 29.3
FPW4L 50299.4 30.1
FPW4LL 50757.9 30.4
FPW6 48756.3 29.2
FPW6L 49765.5 29.8
FPW6LL 49932.8 29.9
FPW8 48968.1 29.3
FPW8L 49727.5 29.7
FPW8LL 49824.9 29.8
FPW10 49061.0 29.3
FPW10L 50070.1 30.0
FPW10LL 50044.4 29.9

Table 3: Performance of various indices on problems every strategy solved (in seconds).

by removing all non-unit clauses from the watchlist described above. We did not alter the set
of problems.

All runs Successfull runs3

Index # proofs Total time Mean time Total time Mean time

FVI (baseline) 1409 80189.6 13.8 13935.6 9.8
FPW2 1412 31460.9 5.4 6560.4 4.6
FPW2L 1410 43707.7 7.6 9434.5 6.7
FPW4 1415 45400.1 7.8 10006.0 7.0
FPW4L 1413 42495.9 7.3 9466.7 6.7
FPW4LL 1409 45186.3 7.8 9937.3 7.0
FPW6 1413 46181.0 7.9 10159.6 7.1
FPW6L 1415 41666.4 6.3 8928.4 7.2
FPW6LL 1414 38294.2 6.6 8182.9 5.8
FPW8 1412 46142.1 7.9 10188.5 7.2
FPW8L 1416 43763.7 7.6 9622.5 6.8
FPW8LL 1410 44122.2 7.6 9695.4 6.8
FPW10 1416 46537.6 8.0 10262.2 7.2
FPW10L 1410 45082.0 7.8 9967.4 7.1
FPW10LL 1409 43593.1 7.5 9666.9 6.9

Table 4: Performance of various indices on a unit clause only watchlist (in seconds).

Table 4 shows that a fingerprint index using the FPW2 fpf significantly outperforms all
other used indices but especially standard feature vector indexing. This does indeed verify that
exploiting the structure of unit clauses for sampling yields better performance. Notice that the
fastest strategy FPW2 does not solve the most problems. This is most likely due to random

10

Efficient Watchlists Ruhdorfer and Schulz

variations in the proof search.

(a) All runs (in seconds). (b) Successful runs (in seconds).

Figure 4: FPW2 vs standard Feature Vector Indexing using only unit clauses.

Figure 4 shows that this is true across all problems when comparing runtimes. Interestingly
a trie depth of only two outperforms all other strategies tried which goes against the original
papers finding where a balance of trie depth and leaf size performs best [8].

4.3 Clause Abstraction

We used a similar test setup for determining performance of the clause abstraction feature.
We have used the previous options for the prover (as stated in footnote 2) together with either
adding the flag−−watchlist−clause−abstraction=constant or−−watchlist−clause−abstraction
=skolem respectively. The results are shown in Table 5.

All runs Successfull runs3

Strategy # proofs Total time Mean time Total time Mean time

No 1679 462880.8 79.9 59131.6 35.2
Constant 1612 796494.2 137.6 96920.8 60.1
Skolem 1612 770005.3 133.0 96920.8 60.1

Table 5: Performance of various clause abstraction strategies (in seconds).

We find that the performance varies from problem to problem. This is especially true when
abstracting constant symbols where some problems started to run out of time. Compare this
to just one problem for all other strategies tested (see Figure 3). This effect is clearly visible in
the scatter plot Figure 5a.

11

Efficient Watchlists Ruhdorfer and Schulz

(a) Constant abstraction (in seconds). (b) Skolem symbol abstraction (in seconds).

Figure 5: Conventional vs clause abstraction

5 Future Work

We have identified at least two more interesting areas of study. Firstly instead of rewriting
a skolem symbol to one of the same arity, we would also be interested in rewriting complete
skolem terms to a constant. Secondly, we are also interested in generalizing the idea of splitting
the watchlist indices into even more smaller ones to increase performance.

6 Conclusion

In this work, we have presented a special unit clause index for the watchlist feature based on
fingerprint indexing. We explored the performance for several strategies with that index given
a large watchlist of 300 000 clauses and showed that the index largely increases performance
compared to a version without the index. We conclude that the performance of the index is
dependent on the watchlist, its structure and the strategy used. We believe that most watchlists
can benefit from this index.

We have also introduced some mechanism to E that allow for less precise matches on the
watchlist. While that showed more mixed results in terms of performance it is an interesting
topic that would benefit from additional exploration.

Acknowledgements: Special thanks to the Automated Reasoning Group at Czech Techni-
cal University in Prague for providing the watchlist, the problem files and the experimental
environment.

12

Efficient Watchlists Ruhdorfer and Schulz

References

[1] Leo Bachmair and Harald Ganzinger. Rewrite-Based Equational Theorem Proving with Selection
and Simplification. Journal of Logic and Computation, 3(4):217–247, 1994.

[2] Zarathustra Goertzel, Jan Jakub̊uv, Stephan Schulz, and Josef Urban. ProofWatch: Watchlist
guidance for large theories in E. In Jeremy Avigad and Assia Mahboubi, editors, Interactive
Theorem Proving: 9th International Conference, Oxford, UK, pages 270–288. Springer, 2018.

[3] Zarathustra Goertzel, Jan Jakubuv, and Josef Urban. Enigmawatch: Proofwatch meets ENIGMA.
CoRR, abs/1905.09565, 2019.

[4] Cezary Kaliszyk and Josef Urban. Mizar 40 for mizar 40. CoRR, abs/1310.2805, 2013.

[5] William McCune. Otter 2.0. In Mark E. Stickel, editor, 10th International Conference on Auto-
mated Deduction, pages 663–664, Berlin, Heidelberg, 1990. Springer Berlin Heidelberg.

[6] William McCune. Experiments with discrimination-tree indexing and path indexing for term
retrieval. J. Autom. Reason., 9(2):147–167, October 1992.

[7] Stephan Schulz. E – A Brainiac Theorem Prover. Journal of AI Communications, 15(2/3):111–126,
2002.

[8] Stephan Schulz. Fingerprint Indexing for Paramodulation and Rewriting. In Bernhard Gramlich,
Ulrike Sattler, and Dale Miller, editors, Proc. of the 6th IJCAR, Manchester, volume 7364 of
LNAI, pages 477–483. Springer, 2012.

[9] Stephan Schulz. Simple and Efficient Clause Subsumption with Feature Vector Indexing. In
Maria Paola Bonacina and Mark E. Stickel, editors, Automated Reasoning and Mathematics: Es-
says in Memory of William W. McCune, volume 7788 of LNAI, pages 45–67. Springer, 2013.

[10] Stephan Schulz, Simon Cruanes, and Petar Vukmirović. Faster, higher, stronger: E 2.3. In Pacal
Fontaine, editor, Proc. of the 27th CADE, Natal, Brasil, number 11716 in LNAI, pages 495–507.
Springer, 2019.

[11] Stephan Schulz and Martin Möhrmann. Performance of clause selection heuristics for saturation-
based theorem proving. In Nicola Olivetti and Ashish Tiwari, editors, Proc. of the 8th IJCAR,
Coimbra, volume 9706 of LNAI, pages 330–345. Springer, 2016.

[12] Stephan Schulz and Martin Möhrmann. Performance of clause selection heuristics for saturation-
based theorem proving. In Proceedings of the 8th International Joint Conference on Automated
Reasoning - Volume 9706, page 330–345, Berlin, Heidelberg, 2016. Springer-Verlag.

[13] Robert Veroff. Using hints to increase the effectiveness of an automated reasoning program: Case
studies. Journal of Automated Reasoning, 16(3):223–239, Jun 1996.

13

	Introduction
	Preliminiaries
	Proof search
	Watchlist
	Indexing techniques

	Implementation
	Experimental Results
	Unit clause index
	Validating the use of fingerprint indexing
	Clause Abstraction

	Future Work
	Conclusion

