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Abstract

The problem of answering Boolean conjunctive queries over the guarded fragment is
decidable, however, as yet no practical decision procedure exists. In this paper, we present
a resolution decision procedure to address this problem. In particular, we show that using
a top-variable refinement, the separation rule and a form of dynamic renaming, one can
rewrite Boolean conjunctive queries into a set of guarded clauses, so that querying the
guarded fragment can be reduced to deciding the guarded fragment. As far as we know, this
provides the first practical decision procedure for answering Boolean conjunctive queries
over the guarded fragment.

1 Introduction

Answering queries over knowledge bases is at the heart of knowledge representation research. In
this work, we are interested in the problem of answering Boolean conjunctive queries. A Boolean
conjunctive query (BCQ) is a first-order formula of the form q = ∃xϕ(x) where ϕ is a conjunction
of atoms, in which only constants and variables are arguments. Given a Boolean conjunctive
query q, a set of rules Σ and a database D, our aim is to check whether Σ ∪D |= q. Important
problems in many research areas, such as query evaluation, query entailment [5] and query
containment in database research [12], and constraint-satisfaction problem and homomorphism
problems in general AI research [34] can be recast as BCQ answering problems.

In this work, we consider the case when the rules Σ are expressed in the guarded fragment [2].
Formulas in the guarded fragment (GF) are equlity-free first-order formulas without function
symbols, in which the quantification is restricted to the form ∃x(G ∧ ϕ) such that the atom G
contains all the free variables of ϕ. Satisfiability in many decidable propositional modal logics
such as K, D, S3, S4 and B can be encoded as satisfiability of formulas in GF. GF inherits
robust decidability, captured by the tree model property [33], from modal logic [21, 24], hence,
there are intense investigation from a theoretical perspective for GF [20, 2, 21] and practical
decision procedures have been developed for it [23, 13, 16, 37].

In ontology-mediated query answering systems [10], the description logic ALCHOI and
its fragments [28, 11, 29, 30], and guarded existential rules [9] are commonly used ontologi-
cal languages. A description axioms easily maps to guarded formulas in which the arities of
predicate symbols and the number of variables are limited. Also, guarded existential rules are
Horn guarded formulas. Querying GF is known to be 2ExpTime-complete [6], however, as yet
there has been insufficient effort to develop practical querying procedures. In this work, we
present a resolution decision procedure to solve BCQ answering problems in GF. Resolution
provides a powerful method for developing practical decision procedures as has been shown
in [13, 17, 16, 18, 25, 26, 4] for example.

One of the main challenges in this work is the handling of query formulas, since these
formulas, e.g., ∃xyz(Rxy ∧ Ryz), are beyond GF. By simply negating a BCQ, one can obtain
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a query clause: a clause containing only negative literals in which only variables and constants
are arguments, such as ¬Rxy ∨ ¬Ryz. One can take query clauses as (hyper-)graphs where
variables are vertices and literals are edges. Then we use a separation rule Sep [31], which is
also referred to as ‘splitting through new predicate symbol’ [27], and the splitting rule Split [3]
to cut branches off query clauses. Each ‘cut branch’ follows the guardedness pattern, namely is
a guarded clause. In general, we found that if a query clause Q is acyclic, one can rewrite Q into
a set of guarded clauses by exhaustively applying separation and splitting to Q. That an acyclic
BCQ can be equivalently rewritten as a guarded formula is also reflected in other works [19, 7].
If a query clause is cyclic, after cutting all branches, one can obtain a new query clause Q
that only consists of variable cycles, i.e., each variable in Q connects two distinct literals that
share some overlapping variables. We use top variable resolution TRes to handle such query
clauses, so that by resolving multiple literals in Q, the variable cycles are broken. Then we use
a dynamic renaming technique T-Trans, to transform a TRes-resolvent into a query clause
and a set of guarded clauses. We show that only finitely many definers are introduced by Sep
and T-Trans.

Top variable resolution TRes is inspired by the ‘MAXVAR’ technique in deciding the loosely
guarded fragment [13, 16], which later adjusted in [37] to solve BCQs answering problem over
the Horn loosely guarded fragment. Interestingly, we discovered that separation and splitting
in query rewriting behaves like GYO-reduction represented in [36], where cyclic queries q [35]
are identified by recursively removing ‘ears’ in the hypergraph of q. A similar query rewriting
procedure is ‘squid decomposition’ [8], aiming to rewrite BCQs over Datalog+/− using the
chase approach [1]. In a squid decomposition, a query is regarded as a squid-like graph in which
branches are ‘tentacles’ and variable cycles are ‘heads’. Squid decomposition finds ground atoms
that are complementary in the squid head, then ground unit resolution is used to eliminate the
heads. Our approach first uses Sep and Split to cut all ‘tentacles’, and then uses TRes
to break cycles in ‘heads’. Hence, grounding is not necessary. By appropriately applying
separation, splitting, top variable resolution and a form of dynamic renaming, query clauses
can be effectively rewritten into a set of guarded clauses or be shown that no further inference
on these query clauses are necessary.

Having a set of guarded clauses, another task is building an inference system to reason with
these clauses. Existing inference systems for GF are either based on tableau (see [23, 22]) or
resolution (see [13, 16, 37]). Our aim is to develop an inference system in line with the framework
in [3], as it provides a powerful system unifying many different resolution refinement that exist
in different forms of standard resolution, hyper-resolution and selection-based resolution. We
develop our system as a variation of [16, 37], which are the only existing systems that decide GF,
so that we can take advantage of simplification rules and notions of redundancy elimination.
In particular, our inference system can be combined with the rewriting procedure, giving us as
a query answering system for answering BCQs for GF.

2 Preliminaries

Let C, F, P denote pairwise disjoint discrete sets of constant symbols c, function symbols
f and predicate symbols P , respectively. A term is either a variable or a constant or an
expression f(t1, . . . , tn) where f is a n-ary function symbol and t1, ..., tn are terms. A compound
term is a term that is neither a variable nor a constant. A ground term is a term containing
no variables. An atom is an expression P (t1, . . . , tn), where P is an n-ary predicate symbol
and t1, . . . , tn are terms. A literal is an atom A (a positive literal) or a negated atom ¬A (a
negative literal). The terms t1, . . . , tn in literal L = P (t1, . . . , tn) are the arguments of L. A
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first-order clause is a multiset of literals, presenting a disjunction of literals. An expression can
be a term, an atom, a literal, or a clause. A compound-term literal (clause) is a literal (clause)
that contains at least one compound term argument.

A substitution is a mapping defined on variables, where variables denoting terms are mapped
to terms. By Eσ we denote the result of applying the substitution σ to an expression E and call
Eσ an instance of E. An expression E′ is a variant of an expression E if there exists a variable
substitution σ such that E′σ = Eσ. A substitution σ is a unifier of two terms s and t if sσ = tσ;
it is a most general unifier (mgu), if for every unifier θ of s and t, there is a substitution ρ such
that σρ = θ. σρ denotes the composition of σ and ρ as mappings. A simultaneous most general
unifier σ is an mgu of two sequences of terms s1, . . . , sn and t1, . . . , tn such that siσ = tiσ for
each 1 ≤ i ≤ n. As common, we use the term mgu to denote the notion of simultaneous mgu.

We use dep(t) to denote the depth of a term t, formally defined as: if t is a variable
or a constant, then dep(t) = 0; and if t is a compound term f(u1, . . . , un), then dep(t) =
1 + max({dep(ui) | 1 ≤ i ≤ n}). In a first-order clause C, the length of C means the number
of literals occurring in C, denoted as len(C), and the depth of C means the deepest term depth
in C, denoted as dep(C). Let x, A, A, C denote a sequence of variables, a sequence of atoms,
a set of atoms and a set of clauses, respectively. Let var(t), var(C) and var(An) be sets of
variables in a term t, a clause C and a sequence of atoms An, respectively.

The rule set Σ denotes a set of first-order formulas and the database D denotes a set of
ground atoms. A Boolean conjunctive query (BCQ) q is a first-order formula of the form ∃xϕ(x)
where ϕ is a conjunction of atoms, in which arguments are only constants and variables. Thus
we can answer a Boolean conjunctive query Σ ∪D |= q by checking whether Σ ∪D ∪ ¬q |= ⊥.
In this work, we particularly focus on the case when Σ is expressed in GF without function
symbols and equality.

3 From Logic Fragments to Clausal Sets

In this section, we provide the formal definitions of GF and define a structural transformation
so that guarded formulas and BCQs can be converted into suitable sets of clauses.

Definition 1 (Guarded Fragment). Without equality and function symbols, the guarded frag-
ment (GF) is a class of first-order formulas, inductively defined as follows:

1. > and ⊥ belong to GF .

2. If A is an atom, then A belongs to GF .

3. GF is closed under Boolean combinations.

4. Let F belong to GF and G be an atom. Then ∀x(G → F ) and ∃x(G ∧ F ) belong to GF
if all free variables of F are among variables of G. G is referred to guard.

Clausal Transformation. We now introduce the clausal transformation for GF and BCQs.
We use Q-Trans to denote our clausal transformation, which is a variation of the structural
transformation used in [13, 16, 37]. We explicitly assume that all free variables are existentially
quantified, and formulas are transformed into prenex normal form before Skolemisation. Due to
the page limit, we refer readers to [15] for detailed notions of clausal transformation techniques.

If an input formula is a BCQ, then we simply negate the BCQ to obtain a query clause.
Using Q-Trans, a guarded formula F can be transformed into a set of clauses as follows:

3



Querying the Guarded Fragment via Resolution Zheng and Schmidt

1. Add existential quantifiers for all free variables in F and transform F into negation normal
form, obtaining the formula Fnnf .

2. Apply the structural transformation: introduce fresh predicate symbols di∀ for universally
quantified subformulas, obtaining Fstr.

3. Transform Fstr into prenex normal form and apply Skolemisation, obtaining Fsko.

4. Drop all universal quantifiers and transform Fsko into conjunctive normal form, obtaining
a set of guarded clauses.

A literal L is flat if each argument in L is either a constant or a variable. A literal L
is simple [16] if each argument in L is either a variable or a constant or a compound term
f(u1, . . . , un) where each ui is a variable or a constant. A clause C is called simple (flat) if all
literals in C are simple (flat). A clause C is covering if each compound term t in C satisfies
that var(t) = var(C).

Definition 2. A query clause is a flat first-order clause containing only negative literals.

Definition 3. A guarded clause C is a simple and covering first-order clause satisfying the
following conditions:

1. C is either ground, or

2. C contains a negative flat literal ¬G satisfying that var(C) = var(G). G is referred to as
guard.

4 Top Variable Inference System

In this section, we present the top variable based inference system from [37], inspired by [13],
which is enhanced with the splitting rule. The system is defined in the spirit of [3] and provides
a decision procedure for the loosely guarded fragment and querying the Horn loosely guarded
fragment [37]. The loosely guarded fragment [32] strictly subsumes GF by allowing multiple
guards that enjoy variable co-occurrence property. Based on the system in [37], we build a
system for querying the whole of GF.

Let � be a strict ordering, called a precedence, on the symbols in C, F and P. An ordering �
on expressions is liftable if E1 � E2 implies E1σ � E2σ for all expressions E1, E2 and all
substitutions σ. An ordering � on literals is admissible, if i) it is well-founded and total on
ground literals, and liftable, ii) ¬A � A for all ground atoms A, iii) if B � A, then B � ¬A for
all ground atoms A and B. A ground literal L is �-maximal with respect to a ground clause C
if for any L′ in C, L � L′, and L is strictly �-maximal with respect to C if for any L′ in C,
L � L′. A non-ground literal L is (strictly) maximal with respect to a non-ground clause C
if and only if there is a ground substitution σ such that Lσ is (strictly) maximal with respect
to Cσ, that is, for all L′ in C, Lσ � L′σ (Lσ � L′σ). A selection function Select(C) selects
a possibly empty set of occurrences of negative literals in a clause C with no other restriction
imposed. Inferences are only performed on eligible literals. A literal L is eligible in a clause C
if either nothing is selected by the selection function Select(C) and L is a �-maximal literal
with respect to C, or L is selected by Select(C).

As a default setting, all premises in resolution rules are variable-disjoint. The top variable
based inference system contains following rules:

N
Deduct:

if C is a conclusion of either Res, or TRes, or Fact, derived
from clauses in N .N ∪ {C}
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N ∪ {C ∨D}
Split: if C and D are non-empty and variable-disjoint.

N ∪ {C} | N ∪ {D}
C ∨A1 ∨A2

Fact:
if i) no literal is selected in C, ii) A1 is �-maximal with
respect to C. σ is an mgu of A1 and A2.(C ∨A1)σ

B ∨D1 ¬A ∨D
Res:

if i) either A is selected, or nothing is selected in ¬A ∨D
and ¬A is the maximal literal, ii) B is strictly �-maximal
with respect to D1. σ is an mgu of A and B.(D1 ∨D)σ

B1 ∨D1 . . . Bm ∨Dm . . . Bn ∨Dn ¬A1 ∨ . . . ∨ ¬Am ∨ . . . ∨ ¬An ∨D
TRes:

(D1 ∨ . . . ∨Dm ∨ ¬Am+1 ∨ . . . ∨ ¬An ∨D)σ

if i) there exists an mgu σ′ such that Biσ
′ = Aiσ

′ for each i such that 1 ≤ i ≤ n, making
¬A1 ∨ . . . ∨ ¬Am top-variable literals and being selected, and D is positive, iv) no literal is
selected in D1, . . . , Dn and B1, . . . , Bn are strictly �-maximal with respect to D1, . . . , Dn,
respectively. σ is an mgu such that Biσ = Aiσ for all i such that 1 ≤ i ≤ m.

The top-variable literals are computed using ComputeTop(C1, . . . , Cn, C) in three steps:

1. Without producing or adding the resolvent, compute an mgu σ′ among C1 = B1 ∨
D1, . . . , Cn = Bn ∨Dn and C = ¬A1 ∨ . . . ∨ ¬An ∨D such that Biσ

′ = Aiσ
′ for each i

satisfying that 1 ≤ i ≤ n.

2. Compute the variable order >v and =v over variables in ¬A1 ∨ . . . ∨ ¬An: x >v y if
dep(xσ′) > dep(yσ′) and x =v y if dep(xσ′) = dep(yσ′).

3. Based on >v and =v, identify the maximal variables in ¬A1 ∨ . . . ∨ ¬An, which we call
the top variables. The top-variable literals for an application of TRes to C are literals in
C containing at least one top variable.

We use T-Refine to denote the following resolution refinement: i) a lexicographic path
ordering �lpo [14] based on a precedence that any function symbol is larger than constant
symbols, and any constant symbol is larger than predicate symbols, ii) selection functions and
iii) Algorithm 1, which determines applications of �lpo and selection functions on clauses.

Algorithm 1 computes for a given clause C, the eligible literals in it. Eligible literals are
either the (strictly) �lpo-maximal literals in C, denoted as Max(C); or selected literals in C,

Algorithm 1: Computing eligible literals in a clause C

Input: A query clause or a guarded clause C
Output: Eligible literals in C

1 if C is ground then
2 return Max(C); . Negative or positive premise in Res or TRes

3 else if C has negative compound terms then
4 return Select(C); . Negative premises in Res

5 else if C has positive compound terms then
6 return Max(C); . Positive premises in Res or TRes

7 else if C is a guarded clause then
8 return SelectG(C); . Negative premises in Res

9 else
10 return SelectT(C); . Negative premises in TRes
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denoted as: Select(C), SelectG(C) and SelectT(C). Select(C) selects one of negative compound
literals in C, SelectG(C) selects one of guards in C, and SelectT(C) is described in Algorithm
2 below.

Algorithm 2: Computing eligible literals using SelectT

1 Select all negative literals in C, denoted as Lall;
2 Find side premises C1, . . . , Cn of C ; . Satisfying Condition i) in TRes

3 if C1, . . . , Cn are in the given clausal set then
4 Ltop = ComputeTop(C1, . . . , Cn, C) ; . Computing top-variable literals in C
5 return Ltop ; . TRes is applicable

6 else return Lall ; . Select Lall if there are no adequate side premises for C

We use T-Inf to denote a top variable based inference system containing the rules: Deduct,
Split, Fact, Res, TRes using the refinement T-Refine.

Theorem 1 ([3, 37, 16]). Let N be a set of clauses that is saturated up to redundancy with
respect to T-Inf. Then, N is unsatisfiable if and only if N contains an empty clause.

5 Rewriting Query Clauses

We use the separation and splitting rules to ‘cut branches’ in query clauses. A clause is inde-
composable if it cannot be partitioned into two non-empty variable-disjoint subclauses. Using
Split, any decomposable query clause can be reduced to a set of indecomposable query clauses.
Hence from now on, we assume all query clauses are indecomposable query clauses.

Given a query clause Q, we use the notion of surface literal to divide variables in Q into
two kinds of variables, i.e., chained-variables and isolated variables. We say L is a surface
literal in a query clause Q if for any L′ in Q that is distinct from L, var(L) 6⊂ var(L′). Let
surface literals in a query clause Q be L1, . . . , Ln where n ≥ 1. Then the chained variables in
Q are variables among

⋃
i,j∈n

var(Li) ∩ var(Lj) whenever var(Li) 6= var(Lj), i.e., variables that

link distinct surface literals containing different sets of variables, and isolated variables are the
other non-chained variables. Now we can present the separation rule:

N ∪ {C ∨A ∨D}
Sep:

if i) x = var(A) ∩ var(D), ii) var(C) ⊆ var(A),
iii) A contains isolated variables, iv) ds is a fresh
predicate symbol.N ∪ {C ∨A ∨ ds(x),¬ds(x) ∨D}

Sep is a replacement rule in which C ∨ A ∨D is immediately replaced by C ∨ A ∨ ds(x) and
¬ds(x) ∨D.

We say a query clause containing only chained variables is a chained-only query clause
and a query clause containing only isolated variables is an isolated-only query clause. E.g.,
¬A(x1, x2)∨¬B(x2, x3)∨¬C(x3, x4)∨¬D(x4, x1) is a chained-only query clause where x1, x2, x3
and x4 are all chained variables, whereas ¬A(x1, x2, x3) ∨ ¬B(x2, x3) is an isolated-only query
clause where x1, x2 and x3 are all isolated variables. According to the definition of chained
variables, if a query clause Q contains no chained variables, then either Q contains only one
surface literal, or all surface literals in Q share the same variables. Therefore

Lemma 1. An indecomposable isolated-only query clause is a guarded clause.

Now we look at how Sep rewrites indecomposable query clauses.
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Lemma 2. Exhaustively applying Sep to an indecomposable query clause Q transforms Q into

1. guarded clauses if Q is an acyclic query clause, or

2. guarded clauses and a chained-only query clause if Q is a cyclic query clause.

So far we have considered how Sep rewrites query clauses. However, Sep itself is not
sufficient to handle chained-only query clauses such as ¬A1xy ∨ ¬A2yz ∨ ¬A3xz, where there
exists a so-called ‘variable cycle’ among x, y and z. We employ the TRes rule to break such
variable cycles while avoiding term depth increase in derived clauses.

Example 1. Given a chained-only query clause Q and a set of guarded clauses C1, . . . , C6:

Q = ¬A1xy ∨ ¬A2yz ∨ ¬A3zx ∨ ¬B1zu ∨ ¬B2uw ∨ ¬B3wz

C1 = A1(fxy, x) ∨D(gxy) ∨ ¬G1xy C2 = A2(fxy, fxy) ∨ ¬G2xy C3 = A3(x, fxy) ∨ ¬G3xy

C4 = B1(fxy, x) ∨ ¬G4xy C5 = B2(fxy, fxy) ∨ ¬G5xy C6 = B3(x, fxy) ∨ ¬G6xy

ComputeTop(Q,C1, . . . , C6) computes the mgu σ′ = {x/f(f(f(x1, y1), y′), y∗), y/f(f(x1, y1), y′),
u/f(x1, y1), z/f(f(x1, y1), y′), w/f(x1, y1)} among Q and C1, . . . , C6. Hence x is the only top
variable in Q, so that TRes is performed on Q, C1 and C3, deriving R = ¬G1xy ∨ ¬G3xy ∨
D(gxy) ∨ ¬A2xx ∨ ¬B1xu ∨ ¬B2uw ∨ ¬B3wx.

The first two figures in Figure 1 illustrate the variable relations of the flat literals in query
clause Q and in TRes-resolvent R of Example 1. A cycle among x, y and z in Q is broken
by TRes. The new challenge in Example 1 is that R is neither a guarded clause nor a query
clause. On such resolvents we use the following structural transformation: we introduce fresh
predicate symbols dt, and use ¬dtxy to replace the literals that are introduced to the query
clause, so that R is transformed into: ¬G1xy ∨ ¬G3xy ∨D(gxy) ∨ dtxy and ¬dtxy ∨ ¬A2xx ∨
¬B1xu ∨ ¬B2uw ∨ ¬B3wx. The former is a guarded clause and the latter is a query clause.

Definition 4. Let TRes derive the resolvent (¬Am+1 ∨ . . . ∨ ¬An ∨ D1 ∨ . . . ∨ Dm ∨ D)σ
using guarded clauses A1 ∨D1, . . . , An ∨Dn as the side premises, a chained-only query clause
Q = ¬A1 ∨ . . . ∨ ¬An as the main premise and a substitution σ such that Biσ = Aiσ for all i
such that 1 ≤ i ≤ m as an mgu. Then T-Trans introduces fresh predicate symbols dt, called
T-definer, to transform R into a set of clauses, in this manner: Let X1, . . . , Xt be top variables
in Q. Then we partition X1, . . . , Xt into sets S such that i) each pair of sets contain no common
variable, and ii) each pair of variables in a set co-occurs in a literal of Q. Then for each set
in S containing variables X , we introduce a T-definer for Dσ if X occur in A.

x

y z

A1

u

w

A2

A3

B1

B2 B3

Q:

y x u

w

G1, G3 B1

B2 B3

R: A2

x u

w

dt B1

B2 B3

Q1: A2

x u

w

B1

B2 B3

y

Q2:

Figure 1: Variable relations of flat literals in Q, R, Q1 and Q2. From Q to R, TRes breaks
the variable cycle among x, y and z in Q. From R to Q1, T-Trans transforms R into a query
clause Q1. From Q1 to Q2, Sep cut off branches containing A2 and dt, from Q1.
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Lemma 3. Let Q be a chained-only query clause and C be a set of guarded clauses, T-Trans
transforms TRes-resolvents of Q and C into a set of guarded clauses and a query clause, of
which the length is smaller than that of Q.

Using T-Trans, R in Example 1 produces a query clause Q1 = ¬dtxy ∨ ¬A2xx ∨ ¬B1xu ∨
¬B2uw∨¬B3wx and a guarded clause dtxy∨¬G1xy∨¬G3xy∨D(gxy) with a T-definer dt. The
newly derived query clause Q1 has branches, hence one can use Sep to cut the branch ¬dtxy ∨
¬A2xx from Q1 by introducing an S-definer ds, obtaining a guarded clause dsx∨¬dtxy∨¬A2xx
and a query clause Q2 = ¬dsx∨¬B1xu∨¬B2uw∨¬B3wx, which is a chained-only query clause.
Then one can break the cycle in Q2 by TRes and derives a resolvent that can be later renamed
into guarded clauses using T-Trans. The last two figures in Figure 1 show the variable relations
in Q1 and Q2 (the unary ¬dsx is omitted). We can see how Sep has cut off Q1’s branches.

Noticing that all the ‘byproducts’ of Sep, TRes and T-Trans are guarded clauses, we
realise that, given a query clause Q, these rules only produce guarded clauses. In fact, we found
that the given query clause will eventually be reduced to either a guarded clause or chained-
only query clauses that no inferences can be performed on. Algorithm 3 formally describe
such a query rewriting procedure, namely Q-Rewrite. Sep(Q) is a function that applies Sep
to a query clause Q, outputting a guarded clause C, and either an isolated-only query clause
(hence guarded, Lemma 2) or a chained-only query clause. TRes(Q, C′) denotes a function that
applies TRes to a chained-only query clause Q and a set of guarded clauses C′, and outputs
the resolvent R. T-Trans(R) is a function that applies T-Trans to R, deriving a set of guarded
clause C and a query clause Q.

Algorithm 3: Query rewriting procedure Q-Rewrite

Input: A query clause Q, a set of guarded clauses C
Output: A set of guarded clauses C′ and possibly chained-only query clauses

1 while Q is not a guarded clause do
2 Q,C = Sep(Q) ; . Apply Sep to the given query clause Q
3 C′ = C ∪ {C};
4 if Q is a chained-only query clause then
5 if TRes is applicable on Q then
6 R = TRes(Q, C′) ; . Apply TRes to chained-only query clauses Q
7 Q,C = T-Trans(R) ; . Apply T-Trans to the TRes resolvents

8 C′ = C′ ∪ {C};
9 else

10 return Q, C′ ; . No rule can be performed on Q

11 return C′

6 Querying the Guarded Fragment

Since it is known that T-Inf decides guarded clauses [16, 13], we consider the new rules Sep
and T-Trans. We show the new rules preserve satisfiability equivalence, therefore

Lemma 4. In any application of Sep and T-Trans, the premise is satisfiable if and only if
the conclusions are satisfiable.
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Lemma 5. Sep and T-Trans only introduce a finitely bounded number of definers.

We can show that T-Inf combined with Q-Rewrite is sound and refutationally complete.

Theorem 2. Let N be a set of clauses that is saturated up to redundancy with respect to T-Inf
and Q-Rewrite. Then, N is unsatisfiable if and only if N contains an empty clause.

We can conclude that:

Theorem 3. T-Inf and Q-Rewrite decides guarded clauses and query clauses. Hence together
with the clausal transformation Q-Trans, T-Inf and Q-Rewrite solve the problem of Boolean
conjunctive query answering for the guarded fragment.

7 Conclusion and Future Work

In this paper, we present, as far as we know, the first practical rewriting procedure Q-Rewrite
that rewrites a query clause into a set of clauses that can be decide by T-Inf, and as far as we
know, the first query answering system that solves BCQ answering for the guarded fragment.

During the investigation of querying for the guarded fragment, we found it interesting that
the same resolution-based techniques in automated reasoning are connected to techniques found
in the database literature. Since the mainstream query answering procedure in database re-
search uses a tableau-like chase approach [1], it would be interesting to see how a resolution-
based approach performs in practice. We will implement the proposed procedure and conduct
empirical evaluations as future works.

References

[1] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases: The Logical Level.
Addison-Wesley Longman Publishing Co., Inc., 1995.

[2] Hajnal Andréka, István Németi, and Johan van Benthem. Modal languages and bounded fragments
of predicate logic. J. Philos. Logic, 27(3):217–274, 1998.

[3] Leo Bachmair and Harald Ganzinger. Resolution theorem proving. In Alan Robinson and Andrei
Voronkov, editors, Handbook of Automated Reasoning, pages 19–99. Elsevier and MIT Press, 2001.

[4] Leo Bachmair, Harald Ganzinger, and Uwe Waldmann. Superposition with simplification as a
decision procedure for the monadic class with equality. In Proc. Computational Logic and Proof
Theory, volume 713 of LNCS, pages 83–96. Springer, 1993.

[5] Jean-François Baget, Michel Leclére, Marie-Laure Mugnier, and Eric Salvat. On rules with exis-
tential variables: Walking the decidability line. Artif. Int., 175(9):1620–1654, 2011.
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