
Equality Preprocessing in Connection Calculi

Benjamin. E. Oliver1 and Jens Otten2

1 University of Oslo, Oslo, Norway
benjamin.e.oliver@gmail.com

2 University of Oslo, Oslo, Norway
jeotten@ifi.uio.no

Abstract

Equality is a fundamental concept in first-order reasoning, yet for connection based proof methods
a notoriously challenging one to handle efficiently. While paramodulation is a popular technique for
resolution and related calculi, there is no single practical successful solution for connection based ap-
proaches. We present an extensible system for equality preprocessing in connection calculi (EPICC)
that can be used as a tool in reducing the search space of problems that contain equality. We specify a
number of preprocessing rules, describe an implementation of these rules and compare it with existing
approaches for dealing with equality in connection calculi.

1 Introduction
Equality is an essential concept when reasoning about everyday life. Knowing that London is the capital
of the United Kingdom and that the United Kingdom and the UK are equal, i.e. they denote the same
country, lets us deduce that London is the capital of the UK. Indeed, it is not surprising that the largest
collection of problems for automated reasoning or, more specifically, automated theorem proving (ATP),
the TPTP library [17], uses equality in the formalisation of a vast number of problems. Yet, for a concept
so ubiquitous its automation is not straightforward.

In mathematics and first-order logic, equality is usually represented by “=” and the above statement
could (in short) be encoded using the first-order formula

(a = b ∧ P(a))⇒ P(b)

In order to solve this problem, ATP systems have to incorporate techniques for equality. While paramod-
ulation [15] is a successful technique for dealing with equality in the popular resolution method [16],
the situation is more complicated for tableau or connection calculi [9, 4]. For example, rigid E-
unification [8] is not decidable and its use practically infeasible due to its complexity [7]. A more
restricted technique called bounded rigid E-unification has been implemented in the tableau prover
ePrincess [2, 3], but cannot easily be extended to connection calculi.

So far, the most successful technique for dealing with equality in connection calculi, as also imple-
mented in the leanCoP prover [10, 13], adds the equality axioms and then uses restricted backtrack-
ing [11] to limit the amount of redundancy caused by the equality axioms. But as observed in the yearly
system competitions CASC, the relative performance of leanCoP compared to other provers on prob-
lems with equality is significantly lower than its relative performance on problems without equality [18].

In this paper we present a framework for preprocessing techniques in order to simplify problems
containing equality. Even though the presented approach can be used in combination with any ATP
procedure, we have implemented, tested and evaluated it in combination with the connection prover
leanCoP. It is also tested against an implementation of the Modification Method [6], another well-
known preprocessing technique to deal with equality in connection calculi.



Equality Preprocessing in Connection Calculi B. E. Oliver, J. Otten

In Section 2, we first present the details of the underlying matrix method. Section 3 introduces
the preprocessing steps and rules. Section 4 gives details on how these preprocessing rules have been
implemented and combined with leanCoP. In Section 5 this implementation is compared to the equality
technique currently used in leanCoP and an implementation of the Modification Method. The paper
concludes with a summary and brief outlook on further research in Section 6.

2 Preliminaries
In this section some basic concepts and notations are introduced, such as the matrix characterization and
the standard equality axioms.

2.1 First-Order Logic and Matrix Characterization
The standard notation for first-order formulae is used. Terms (denoted by s, t,u,v) are built up from func-
tions (denoted by f ), constants (a,b,c) and variables (denoted by x,y,z). An atomic formula (denoted
by A) is comprised of predicate symbols (denoted by P) and terms. A (first-order) formula (denoted by
F) is built up from atomic formulae, the connectives ¬, ∧, ∨,⇒, and the first-order quantifiers ∀ and ∃.
A literal L has the form A or ¬A. Its complement L is A if L is of the form ¬A; otherwise L is ¬L.

A formula in (disjunctive) clausal form has the form ∃x1 . . .∃xn(C1∨ . . .∨Cn), where each clause Ci
is a conjunction of literals L1, . . . ,Lmi .

1 It is usually represented as a set of clauses {C1, . . . ,Cn}, which
is called a (clausal) matrix M. Every formula F can be translated into a validity-preserving formula F ′

in clausal form.

Definition 2.1 (Matrix). A set of clauses is represented as a matrix. A matrix M of a formula consists
of its clauses {C1, . . . ,Cn}, in which each clause is a set of its literals {L1, . . . ,Lm}.

In the graphical representation of a matrix, its clauses are arranged horizontally, while the literals
of each clause are arranged vertically (see Figure 1).

A connection {P(...),¬P(...)} is a set of two literals with the same predicate symbol, of which
(exactly) one is negated. A first-order or term substitution σ is a mapping from the set of term variables
to the set of terms. In σ(L) and σ(C) all term variables x in L and C are substituted by their image
σ(x). A connection {L1,L2} with σ(L1)=σ(L2) is called σ -complementary. A path through a matrix
M={C1, . . .,Cn} is a set of literals that contains one literal from each clause Ci∈M, i.e. a set ∪n

i=1{L′i}
with L′i∈Ci. The following matrix characterization [5] provides a simple criterion for the validity of a
formula and is the basis of the connection method [4]; see also [1].

Theorem 2.1 (Matrix Characterization). A formula F and its matrix M are valid iff there exists (1) a
multiplicity µ : M→ IN (specifying the number of clause copies), (2) a term substitution σ and (3) a
set of connections S, such that every path through the matrix Mµ of F contains a σ -complementary
connection {L1,L2} ∈ S. In Mµ , clause copies have been added according to µ .


L1

1
...

L1
i

 . . .

Ln
1
...

Ln
j




Figure 1: Graphical representation of a matrix

1Even though the use of a conjunctive clausal form (cnf) is common, a disjunctive clausal form (dnf) is used for historical
and practical reasons; the difference between both forms is marginal (a formula F in dnf is valid iff ¬F in cnf is unsatisfiable).

2



Equality Preprocessing in Connection Calculi B. E. Oliver, J. Otten

2.2 Equality
In order to extend the language to first-order logic with equality, the (predefined) equality predicate
≈ is added. Instead of ≈ (s, t) we use the common infix notation s ≈ t. We also use s 6≈ t as an
abbreviation for ¬(s ≈ t). One way to specify the interpretation (or meaning) of equality is by adding
equality axioms. Once these axioms have been added the equality symbols ≈ and 6≈ can be treated as
uninterpreted predicates.

Definition 2.2 (Equality Axioms). We will use the notation α(M) to denote the set of axiom clauses
that must be generated for the matrix M of a formula and M∪α(M) to indicate the resulting matrix
formed by combining the original matrix and the axioms. If M does not contain equality then α(M) is
an empty set, however if M contains equality, then α(M) is the least set such that:

[x 6≈ x
] [

x≈ y
y 6≈ x

] x≈ y
y≈ z
x 6≈ z

⊆ α(M) (reflexivity, symmetry, transitivity)


x1 ≈ y1

...
xn ≈ yn

f (x1 · · ·xn) 6≈ f (y1 · · ·yn)

 ∈ α(M) (for every function f of arity n in M)


x1 ≈ y1

...
xn ≈ yn

P(x1 · · ·xn)
¬P(y1 · · ·yn)

 ∈ α(M) (for every predicate P of arity n in M)

3 Equality Preprocessing
Unlike the Modification Method and its derivatives, the following approach is not designed to eliminate
equality entirely. Instead, it is best viewed as a set of rules that aim to balance three properties - ease
of implementation, good algorithmic complexity and, finally, improvement of the performance of the
proof procedure. A combination that is difficult to achieve at the same time.

3.1 Basic Notation
3.1.1 Matrix Notation

As both matrices and clauses are really nothing but sets, we will employ a special notation that allows
us to focus on certain properties. The notation M = [C S] is a visual representation of M = {C}∪S, in
which C is a clause and S is a set of clauses. Note that it is perfectly fine for S to be empty. In the same
way we can visualize C = {s ≈ t}∪C by using vector column notation. By combining these we can
pattern match against certain literals and sub-clauses/matrices that are of interest. For example

M =

[[
s≈ t
C

]
S
]

lets us match a clause (C) consisting of the literal s≈ t, the remaining (possibly empty) literal set C and
the remaining (possibly empty) set of clauses S.

3



Equality Preprocessing in Connection Calculi B. E. Oliver, J. Otten

3.1.2 Most General Unifiers

Given a set of equations E = {s1 ≈ t1, . . . ,sn ≈ tn}, a unifier is a (variable) substitution σ such that
s1σ = t1σ , . . . ,snσ = tnσ . Given a set of unifiers U(E) a substitution σ is a most general unifier (mgu)
of E if ∀θ ∈U(E) : θ is an instance of σ .

3.1.3 Rules

The following preprocessing rules should be read top down. If the conditions presented above the bar
hold then one can infer the result below. M1 � M2 means that M2 is a logical consequence of M1, � M
means that M is valid.

3.2 Valid Clauses

Any matrix that contains a clause C consisting only of positive equalities is valid if there exists a most
general unifier (mgu) for C. Note that by this rule, an empty clause is valid.

[
C S

]
∃σ : σ = mgu(C) ∀x ∈ C : x = (s≈ t)

� [C]∪α([C])

As all variables local to C are existentially quantified an mgu for such a clause represents an as-
signment for every variable in C such that every equality literal is true. If the mgu is empty then every
element of C must have been of the form s1 ≈ s1, . . . ,sn ≈ sn. One can construct a new matrix M′
consisting of the clause C extended with the axioms of equality such that the resulting matrix is valid.
As M′ is a subset of M then M∪α(M) is valid. This rule not only provides a termination case for the
reduction algorithm, but allows certain (artificial) theorems to be proven in a very efficient manner.

In order to ensure that the reader is under no illusion, we will take some time to clarify this first rule.
There are three conditions that must be met, read from left to right they are: The presence of a clause C.
The existence of a substitution σ such that σ is the MGU for clause C (this does not preclude the empty
substitution σ = {}). Finally, if the clause C is not empty, then it must only contain positive equality
literals. If these conditions are met, then we can construct a new matrix consisting of the single clause
C. If we union this matrix with the set of all axioms that C generates then the result can be shown to be
valid using first-order logic alone.

As an example, consider the following: {{x ≈ a, f (x) ≈ f (a)}, . . .}. While there may be multiple
ways to prove the validity of such a formula - we can see that all we need to show is that there exists a
value x that is equal to a. Due to the reflexivity of equality such a search is rather straightforward. Even
though the occurrence of such a formula may be uncommon, detecting such a clause can be crucial for
a successful proof search. The exclusion of this rule a can lead to a proof procedure timing out before
reaching the clause in question.

3.3 Contradictions

When considering a formula that is equality free then any clause C that contains P(s) and ¬P(s) is
contradictory and can be removed. This idea can be extended to clauses containing P(s) and ¬P(t) if the
remaining clause C implies that s and t are equal. If we can derive s≈ t in C then both (P(s)∧¬P(t)∧C)

4



Equality Preprocessing in Connection Calculi B. E. Oliver, J. Otten

and (s 6≈ t ∧C) must result in contradictory clauses. P(s1, . . .sn)
¬P(t1, . . . tn)

C

 S

 C � s1 ≈ t1∧·· ·∧ sn ≈ tn

� S∪α(S) iff � M∪α(M)

In the same way as for predicates, if we derive that a≈ b in the remainder of the clause, then it can
not be the case that both a≈ b and a 6≈ b can be true simultaneously.[[

s 6≈ t
C

]
S
]

C � s≈ t

� S∪α(S) iff � M∪α(M)

3.4 Redundancy
Consider a clause that contains two equalities a≈ b and f (a)≈ f (b). If a≈ b is true then f (a)≈ f (b)
follows, meaning that f (a)≈ f (b) is redundant. However, a≈ b does not follow from f (a)≈ f (b). The
same principle can be used to find redundant predicates.[[

s≈ t
C

]
S
]

C � s≈ t

�
[
C S

]
∪α(

[
C S

]
) iff � M∪α(M)

The rule of redundancy is an interesting one. While it may seen advantageous to minimise the number
of literals in a clause, we must remember that our aim is to reduce the search space of the problem. It
may well be the case that an equation or predicate that is redundant in terms of derivability (one could in
theory generate such a literal), is key to the proof of a formula. If this is the case then the responsibility
is on the theorem prover to - in some sense - re-find this literal.

3.5 Pure Clauses
Assume that P(s) ∈ C j. If there does not exist a k such that ¬P(t) ∈ Ck then C j is isolated; the same
holds for ¬P(s) ∈ C j if there is no P(t). An isolated clause may be removed from the matrix. This
general rule is applicable to formulae that contain equality.

3.6 Unsatisfiable Clauses
If a matrix without equality axioms does not contain negated equality then the only instance (of negated
equality) can come from the addition of the equality axioms. A negated equality has to be part of the
connection to make an appropriate path complementary. As every equality axiom apart from reflexivity
contains at least one positive equality again, the only possible connection to make this path complemen-
tary has to be to the literal in the reflexivity axiom. This is equivalent to finding the mgu for the positve
equation. If no mgu exists then the clause is contradictory and can be removed.

[[
s≈ t
C

]
S
]
∃σ : σ = mgu(s≈ t) ∀(u,v) : (u 6≈ v 6∈M)

�
[
σ(C) S

]
∪α(

[
σ(C) S

]
) iff � M∪α(M)

5



Equality Preprocessing in Connection Calculi B. E. Oliver, J. Otten

[[
s≈ t
C

]
S
]
6 ∃σ : σ = mgu(s≈ t) ∀(u,v) : (u 6≈ v 6∈M)

� S∪α(S) iff � M∪α(M)

Thus, if there exists a matrix M that contains positive equality but does not contain negated equality,
then it can be reduced to a matrix M′ that is equality free such that the transformation is sound and
complete.

3.7 Unit Clause
The final rule that we will consider concerns negated unit clauses. Consider a formula of the form where
s and t are variable free:

(s≈ t)⇒ P(s)∨¬P(t)

When converted to disjunctive normal form this will result in a matrix that contains a negated unit
clause: [[

s 6≈ t
] [

P(s)
] [
¬P(t)

]]
If the negated equality clause is used in a proof then every path must pass through it.

If s 6≈ t is contradictory then the original formula was of the form (s ≈ s)⇒ F , in which case the
matrix becomes F . If this is not the case then the following holds[[

s 6≈ t
]

S
]

vars(s 6≈ t) = /0

� M∪α(M) if � S{s 7→ t}∪α(S{s 7→ t})[[
s 6≈ t

]
S
]

vars(s 6≈ t) = /0

� M∪α(M) if � S{t 7→ s}∪α(S{t 7→ s})
where vars(s 6≈ t) is the set of all variables in s 6≈ t and S{t 7→ s} is the set (of remaining clauses) S
in which all terms t have been replaced by the term s. This rule is sound as every path through M
contains the negated equation s 6≈ t, and applications of the equality axioms can be used to replace any
occurrence of s by t or vice versa. While soundness is preserved, completeness of the calculus is lost.
While this may sound problematic, we will see that in “real world” situations such a limitation has little
to no negative impact.

One special case is that when s 6≈ s we know that � M ∪α(M) iff � S∪α(S) by the rule of con-
tradictions 3.3. Out of all of the rules discussed, this one is the most powerful. As we will see in the
evaluation section, the ability to make good choices in terms of choosing a direction (or not applying
the rule) is an important factor.

4 Implementation
The aim of this work is to improve the performance of equality handling for connection calculi – with
a particular focus on the leanCoP theorem prover. As the rules discussed in Section 3 will be run on
large matrices they needed to be performant.

Such an approach has certainly influenced both the design of the EPICC 2 3 run-time system, and
the considerations made when searching for rules to implement. The rules that we have seen in Section 3

2Available for download under the GPL license at http://leancop.de/epicc/.
3The Clojure implementation of the preprocessing steps that does not include the leanCoP core prover can be obtained at

https://github.com/beoliver/clj-epicc.

6

http://leancop.de/epicc/
https://github.com/beoliver/clj-epicc


Equality Preprocessing in Connection Calculi B. E. Oliver, J. Otten

were influenced not only by the nature of the connection calculus, but also the internal representation of
the matrix and the fact that we plan on using it as a preprocessing step. The preprocessing rules of the
previous section have been implemented in the EPICC (Equality Preprocessing in Connection Calculi)
system.

The current version is written in the functional Lisp-like language Clojure that runs on the JVM (Java
Virtual Machine). The data driven approach of the language makes it ideal for prototyping and explo-
ration. The current rule based approach has been developed with portability in mind (an implementation
in Haskell is being actively developed).

The current approach taken by the leanCoP theorem prover is as follows: If a matrix M contains
an equality symbol then the matrix is extended with the axioms of equality before the actual proof
search starts, proving the matrix M∪α(M). EPICC replaces this procedure by first applying the rules
discussed in Section 3, before generating the set of axioms α(M). For the current implementation,
formulae in a disjunctive normal form matrix format are accepted.

Internally, clauses are indexed sets of literals. A matrix is represented as a mapping from clause
indexes to the clauses as well as additional information such as the indexes of clauses that contain
positive/negated equality and a mapping from terms to the clauses that they occur in (an important
factor when it comes to performance). These tables are updated every time a clause is added/removed
from the matrix, meaning that when implementing a rule that, say, only considers clauses containing
positive equality, one does not need to test every clause. The same principle is true when performing
global rewriting – one only needs to update the clauses that a term occurs in. Reductions are expressed in
terms of rules. The concepts of programming against interfaces and using well-defined return values are
common features of many popular languages (both functional and imperative). A local rule is something
that implements two functions.

(defprotocol LocalRule
(candidate-clauses [rule matrix])
(apply-local [rule matrix clause]))

The same idea can be expressed in Haskell using data types.

data Rule = Rule { candidate_clauses :: Matrix -> [Int]
, apply_local :: Matrix -> Clause -> Result }

The function candidate-clauses is responsible for returning a sequence of all of the indexes that
the rule may be applicable to. It is assumed that the search for candidates is cheap. By separating
a rule in this way we gain the ability to arbitrarily terminate the reduction process (either due to time
constraints or having found a solution) while retaining the most current version of the matrix. Moreover,
rules can be added, deleted, and re-ordered in a straightforward manner aiding the development of new
approaches.

As a concrete example, let us consider the rule for valid clauses and how it could be implemented in
the Clojure language (figure 2).

The local rules are most commonly responsible for deciding if a given clause is valid, redundant, or
contradictory. Deletion and termination is handled by the reduction function. Variants exist that allow
a rule to return a new clause, for example removing some s≈ s. In this case the reduction function will
update the matrix to reflect the changes.

4.1 The Supervisor process
A supervisor is used that manages both state changes and termination conditions in order to run the rules.
This supervisor is implemented using a function that continually loops (Clojure’s “loop” keyword can

7



Equality Preprocessing in Connection Calculi B. E. Oliver, J. Otten

[
C S

]
∃σ : σ = mgu(C) ∀x ∈ C : x = (s≈ t)

� [C]∪α([C])

(defrecord Valid_Clause []
LocalRule
(candidate-clauses [rule m]

(filter #(only-pos-eq? (lookup m %)) (pos-eq-clauses m)))
(apply-local-rule [rule m c]

(cond (apply mgu? (formulae c)) (valid "...")
(empty? (neg-eq-clauses m)) (redundant "...")
:else no-op)))

Figure 2: An example of how the rule for valid clauses can be encoded in the Clojure language
.

be thought of as a recursive while loop that allows arguments to be passed) waiting for a termination
condition. This means that a local rule is responsible for deciding if a given clause is valid, redundant or
contradictory. Any deletion, termination or global re-writing is handled by the supervisor not the rule.

The supervisor tracks the state of the matrix as well as keeping a history of all rules that were
applicable (i.e. they did not return NoOp). One result of this is that if a certain application of rules
yields a valid result, then the system can extract the submatrix from the original input, add the axioms
of equality and pass it on to a theorem prover. The rules are run until a terminating condition is met.
Such a condition may either be a timeout, reaching a certain number of iterations, finding a solution or
the previous iteration producing no change. The axioms of equality are added to the resulting matrix
when no more reductions can be performed. It is possible to disable the equality axiom generation if
desired.

Because it is possible for a rule to return “valid” or “invalid”, the supervisor can be seen as a partial
proof procedure. While this functionality is currently not used explicitly by EPICC it was noted that
during testing, the procedure was able to prove the validity of a handful of problems from the TPTP li-
brary directly. In terms of current implementation, the resulting matrix is always passed to the leanCoP
theorem prover. In the case of the rules alone deriving “valid”, the resulting matrix can be proven by
leanCoP .

While this does not affect the correctness of the testing results, it does mean that the EPICC frame-
work requires user to know about which rules they are planning on using. One would imagine that in
a future version of EPICC this information would be handled by the supervisor. Not only would this
allow for a minor optimization in not having to invoke a theorem prover in all cases, but it would make
the system more user friendly.

4.2 Internal representations and data structures
Internally clauses are represented as sets of literals. A matrix is represented as a mapping from clause
indexes to the relevant set of literals (clause). An index represents the position of the clause in input
matrix.

When the matrix is imported, addition information is gathered, such as indexes of clauses that con-
tain positive/negated equality. An internal table is also built up mapping terms to the clauses that they
occur in. The reason for this table is to improve performance when performing term substitutions – by
knowing which clauses contain a term s, the cost of applying the substitution {s→ t} is reduced to the
number of clauses that currently contain the term s (as opposed to naı̈vely applying the substitution to

8



Equality Preprocessing in Connection Calculi B. E. Oliver, J. Otten

every clause). These tables are updated every time a clause is added/removed from the matrix, meaning
that when implementing a rule that, say, only considers clauses containing positive equality, one does
not need to repeatedly check every clause in the input matrix.

5 Evaluation

The equality preprocessing techniques described in Section 3 and implemented in Section 4 were eval-
uated on all 8044 FOF problems contained in the TPTP library v6.4.0.

If a problem did not contain equality, or it caused a parser error then it was ignored. This resulted
in a set of 4672 problems that would be used for testing. For every problem we have verified that the
results are consistent with the TPTP status of the problem. Of the 4672 problems that the tests were run
on, we are particularly interested in the 4189 that have the TPTP status of Theorem.

5.1 Method

Six transformation strategies were compared against each other. The Clojure implementation of the
EPICC system was used to perform all strategies. The first of these strategies simply adds the axioms
of equality. This is the current approach taken by leanCoP and as such the results would provide a
baseline for the remaining five approaches. The second approach performed the Modification Method
(STE). As this is a well known approach for handling equality that can be performed during prepro-
cessing it is interesting to see how it compares to the EPICC techniques described in this paper. The
third approach would not perform any translation, nor would it add the axioms of equality. The remain-
ing three configurations were variations of the EPICC techniques. Such a selection provides us with
the ability to both compare the transformations discussed with the current leanCoP technique and to
compare the transformations with two more approaches.

Each of the six methods were evaluated on all 8044 FOF problems contained in the TPTP library
v6.4.0. TPTP is a library of test problems which supports the testing and evaluation of ATP systems.
The library is divided into problem “domains”. Some examples of the domains are software verification
(SWV and SWW), where it is formally established that a computer program does the task it is designed
for, software creation (SWC), which is used to form a computer program that meets given specifications,
category theory (CAT), general algebra (ALG), graph theory (GRA), and managment (MGT), the study
of systems, and their use and production of resources.

As opposed to reading problems directly from the TPTP library, leanCoP was used to first convert
each of the files into disjunctive normal form. If a formula did not contain equality then it would not
be used in the benchmarking tests. The resulting matrices were saved to disk and individually read by
EPICC.

Every problem in the TPTP library has a status. We will concern ourselves with “Theorem” and
“Non Theorem”. For every problem it was recorded whether the result produced by a method is coherent
with the TPTP status of the problem. This allows us to see which methods result in errors due to the
method not preserving the completeness of the input formula. Such an approach also allows us to verify
that no method implementation results in an unsound theorem prover. The six approaches to be used
were:

• Axioms AX. These results are used To provide a set of baseline results that other methods can be
compared against. The input file is to be read by EPICC and the axioms of equality added before
passing the resulting matrix to leanCoP. This corresponds to the technique the full leanCoP
prover uses.

9



Equality Preprocessing in Connection Calculi B. E. Oliver, J. Otten

• The Modification Method MM. The input is read and Brand’s Modification Method performed on
the matrix before passing it to leanCoP. As we have seen, the Modification Method is an existing
preprocessing technique that can be used to eliminate equality. An implementation was written
that would accept matrices in disjunctive normal form. It should be noted that this implementation
is naı̈ve in the sense that no attempt was made to optimize it. The algorithm is based on the one
outlined in Brands paper [6].

• No axioms NO-AX. The file is read by EPICC and the matrix passed to leanCoP without adding
any axioms of equality. The reason for including this approach is to provide an insight into
the practical need for explicit equality handling. If a formula can be shown to be a theorem
without adding the axioms of equality (i.e. without interpretation of equality) then the clauses
containing equality were redundant. This approach cannot guarantee to preserve the completeness
for formulae containing equality.

• EPICC-1. A configuration of EPICC that preserves the completeness for formulae containing
equality. This is achieved by not applying the NegatedUnitClause rule. The axioms of equality
are added after no more transformations can be applied. The following (complete) rules are used:
EmptyClause, PositiveEqualityMGU, ContradictoryPredicates, ContradictoryNegations, Isolat-
edPredicates.

• EPICC-2. A configuration of EPICC that uses a left-to-right rewrite rule for NegatedUnitClause.
The axioms of equality are added after no more transformations can be applied. The follow-
ing (complete) rules were used: EmptyClause, PositiveEqualityMGU, ContradictoryPredicates,
ContradictoryNegations, IsolatedPredicates extended with a NegatedUnitClause rule which per-
forms rewriting in a left-to-right manner meaning that (s 6≈ t) would result in a global substitution
σ = {s 7→ t}.

• EPICC-3. A configuration of EPICC that uses a custom rewrite rule for NegatedUnitClause.
The axioms of equality are added after no more transformations can be applied. The difference
between this approach and that of EPICC-2 is how the rule NegatedUnitClause decides if a clause
would result in the substitution σ = {s 7→ t}, the substitution σ = {t 7→ s}, or if the unit clause
should be left alone. For example, one of the conditions is that a substitution σ = {s 7→ t} is only
allowed if s does not occur in t.

For every input file (matrix) six different outputs were produced - each corresponding to one of the
strategies listed above. The core (Prolog) prover of leanCoP 2.1 using its complete core strategy
[cut,comp(7)] was then to be invoked for each output and allowed to run for at most ten seconds
before being cancelled. The used core strategy uses restricted backtracking, which is switched off when
a proof search depth of seven is reached [11]. If a timeout occurs, then “timeout” was recorded. The core
prover does not add any axioms of equality. SWI-Prolog version 8.0.2 was used for running leanCoP.

The choice to avoid using the strategy scheduling features of leanCoP was made for two reasons.
As the strategy [cut,comp(7)] is complete we know that if running leanCoP on the output of one
of the six configurations being tested results in “Non Theorem” and the TPTP library has it marked with
the status “Theorem”, then that configuration did not preserve the completeness of the input formula. If
we were to use strategy scheduling then leanCoP would ignore the result “Non Theorem” if the internal
strategy that proved the result was not complete (for example [scut]). While we would eventually
achieve the same result due to the last strategy that leanCoP employs ([def]) being complete, we
might run out of time before this occurred. Secondly, we are interested in the effect that the transfor-
mations themselves have on the performance. It is assumed that if a particular leanCoP strategy is
effective then that improvement would be seen across all transformations. Such a decision is certainly

10



Equality Preprocessing in Connection Calculi B. E. Oliver, J. Otten

open to debate. It may well be the case that a particular strategy of leanCoP amplifies the effect of a
particular transformation. However, as we wish to generalise the implementation of the theorem prover,
such an event is beyond the scope of this work.

All evaluations were conducted on a six-core 2.2 GHz Intel Core i7 Macbook Pro with 16 GB of
RAM running MacOS 10.14.4. Each input file was parsed by the Clojure implementation of the EPICC
system and any transformations performed before invoking leanCoP on the output. EPICC was run
using Clojure 1.10.0 and Java 1.8.0 181.

When calculating the amount of time that a proof procedure takes, the results do not take into account
the amount of time that was spent performing the transformation.

5.2 Experimental Results

Of the 8044 FOF problems contained in the tptp library 4672 problems contain equality. Of the 4672
problems containing equality that the tests were run on, we are particularly interested in the 4189 prob-
lems that have the tptp status of “Theorem”. We will consider all results with respect to these 4189
problems. The reason for only considering the results of formulae that have the TPTP status of “The-
orem” is because three of the methods tested (NO-AX, EPICC-2 and EPICC-3) are known to not
preserve the completeness of the input formula in the general case. In the case of the transformation
NO-AX it is simply because it does not include the axioms of equality. For the other two it is due to
their use of the NegatedUnitClause rule. Thus, if we get the result “Non Theorem” when using these
methods, we do not know if it was derived because the original formula in the tptp library is a non
theorem, or if it was due to the method of transformation.

Table 1 provides an overview of the results. Table 2 presents the results aggregated by problem diffi-
culty, while table 3 presents the results broken down by domain. The three methods that use techniques
described in this paper (EPICC-1, EPICC-2 and EPICC-3) outperform all other methods including
the standard leanCoP approach (AX) in the number of theorems proven under ten seconds. Of all the
methods tested, the Modification Method (MM) has the worst performance. While no optimizations
were made to this method, the fact that the standard approach of AX (that also includes no optimization)
resulted in 795 more proofs certainly suggests leanCoP handles the increase of search space introduced
by the axioms of AX better than the increase of search space due to the large number of new clauses
introduced by MM.

Of the three EPICC approaches, the performance of the complete method EPICC-1 is only
marginally better than AX. This suggests that (for the problems considered) the re-writing rule Negate-
dUnitClause has a major impact. It would seem that either the (complete) methods described in Section
3 do little to reduce search space, or that the conditions required for their application are unfortunately
not met frequently. EPICC-2 performs better than EPICC-1. EPICC-2 uses a left-to-right rewrite
strategy for the NegatedUnitClause rule. The method that leads to the most proofs being found is
EPICC-3. EPICC-3 uses a slightly less aggressive rewrite strategy for the NegatedUnitClause com-
pared to EPICC-2.

5.2.1 New Proofs

Figure 3 presents a visualization of the the 200 proofs found that could not be found using the stan-
dard AX approach. This graphic can be though of as an alternative to a Venn diagram. Multiple dots
underneath a bar indicate that those solutions were found by multiple methods. The intersection row
shows the cardinalilty of the intersections. The solutions column indicates the number of solutions that
a particular method found that the standard AX approach could not. For example - of the 166 solutions
that EPICC-3 found, 97 were found by exactly one other method, namely EPICC-2.

11



Equality Preprocessing in Connection Calculi B. E. Oliver, J. Otten

AX MM NO-AX EPICC-1 EPICC-2 EPICC-3
proved 969 174 725 973 1002 1099

0 to 1sec. 814 116 629 814 841 922
1 to 10sec. 154 58 96 159 161 177

not proven by AX - 11 31 9 109 166

Table 1: Summary of different equality handling techniques for the 4189 considered problems

AX MM NO-AX EPICC-1 EPICC-2 EPICC-3
rating total
0.0 to 0.09 706 496 144 373 498 476 524
0.1 to 0.19 441 221 25 147 219 238 259
0.2 to 0.29 388 96 4 73 98 112 124
0.3 to 0.39 351 73 0 68 74 88 94
0.4 to 0.49 374 46 0 32 47 49 52
0.5 to 0.59 360 22 0 16 22 23 30
0.6 to 0.69 275 8 0 7 8 9 9
0.7 to 0.79 297 6 0 8 6 6 6
0.8 to 0.89 324 1 0 1 1 1 1
0.9 to 0.99 247 0 0 0 0 0 0
1.0 426 0 0 0 0 0 0
total 4189 969 173 725 973 1002 1099

Table 2: All theorems proved under 10 seconds aggregated by problem rating. A bold font denotes the
best performing method(s).

We can see that not only does EPICC-3 find the most (166), but that many of the alternative methods
appear to be subsumed by it. Indeed EPICC-3 found 54 solutions that no other method could. EPICC-2
only managed to find a single (unique) solution that EPICC-3 (or any other method) could not. EPICC-
1 found no unique solutions.

The Modification method MM returned 6 unique solutions which is quite interesting considering that
it only found 11 solutions in total that the axiomatic approach could not. Indeed its general performance
was poor managing to find only 174 proofs (roughly 16% of the total achieved by EPICC-3) and never
managing to find a solution for a problem with a rating higher than the 0.2 bracket. However, it cannot
be ignored that new proofs were found that no other method could produce.

Perhaps the most striking of all the results are those of the NO-AX approach which managed to
prove a total of 31 theorems that the standard approach could not, with 26 of those being unique to this
method. Such a high percentage (84%) of unique solutions is not that surprising if we consider the fact
that by not adding axioms the search space is drastically reduced. The fact that NO-AX returned 508
false negatives (Table 4) supports this assumption. Indeed it is worthy of note that the NO-AX approach
proved two more theorems within the 0.7 rating range than any other method, namely SEU205+1 (0.77)
and SEU241+2 (0.73).

We see that for the most part the proofs of EPICC-3 are a superset of the proofs of EPICC-2 and
EPICC-1. Thus a combination of EPICC-3, NO-AX and MM would find 199 of the 200.

12



Equality Preprocessing in Connection Calculi B. E. Oliver, J. Otten

AX MM NO-AX EPICC-1 EPICC-2 EPICC-3
Domain total
AGT 52 17 9 17 17 17 17
ALG 148 25 2 12 25 18 25
CAT 13 2 0 2 2 2 2
COM 24 6 2 5 6 6 6
CSR 28 3 1 1 3 2 3
GEO 114 9 1 6 9 10 10
GRA 18 3 0 3 4 3 4
GRP 79 6 0 4 6 5 5
HAL 6 1 0 1 1 1 1
KLE 224 16 4 3 16 14 16
KRS 14 9 0 10 10 10 10
LAT 105 14 6 13 16 16 16
MGT 45 16 6 13 16 14 17
MSC 1 1 1 0 1 1 1
NLP 15 1 0 2 1 1 1
NUM 558 155 23 122 152 145 158
PRO 63 9 0 11 9 9 9
PUZ 10 3 3 0 3 1 3
REL 108 1 0 0 1 0 1
RNG 152 32 5 24 34 29 39
SCT 79 6 0 6 6 6 6
SET 441 194 37 147 194 179 197
SEU 750 195 22 131 195 183 196
SWB 113 14 5 8 14 14 14
SWC 422 32 11 1 32 116 136
SWV 318 154 30 148 155 155 161
SWW 248 33 1 31 33 33 33
SYN 14 6 4 0 6 6 6
TOP 27 6 0 4 6 6 6
total 4189 969 173 725 973 1002 1099

Table 3: All theorems proved under 10 seconds aggregated by problem domain. A bold font denotes
the best performing method(s).

AX MM NO-AX EPICC-1 EPICC-2 EPICC-3
false negatives 0 0 508 0 2 0
% of results 0% 0% 12% 0% 0.05% 0%

Table 4: Evaluation of false negatives returned for the 4189 considered problems. A false negative
occurs when an input theorem is transformed into an invalid formula.

13



Equality Preprocessing in Connection Calculi B. E. Oliver, J. Otten

MM
NO-AX

EPICC-1
intersection

EPICC-2
EPICC-3

97 54 26 7 6 3 2 1 1 1 1 1

11
31

9
200

109
166

solutions

Figure 3: Visualising the “uniqueness” of the 200 proofs that could not be found using the standard
leanCoP approach (AX).

6 Conclusion

The present paper introduces EPICC, a preprocessing technique for dealing with equality when proving
formulae in (classical) first-order logic. Even though this technique can be used with any proof search
calculus, it is in particular useful for tableau or connection calculi as integration of equality into these
calculi is not straightforward.

The preprocessing technique has been specified using a set of rules for simplifying or modifying a
matrix representing the original formula in clausal form. The rules have been implemented and tested
with the connection prover leanCoP. This EPICC approach was compared to the modification method
and the standard approach of adding the equality axioms to the original matrix.

Using the EPICC approach leanCoP was able to prove significantly more problems of the TPTP
library than using its standard technique of just adding the equality axioms. This is in particular true for
problems from the “Software Creation” (SWC) domain of the TPTP library (Figure 4). An interesting,
yet to our knowledge so far undocumented, fact is that many of the problems in the TPTP library
containing equality can be proved without any equality handling, i.e. treating the equality symbol as
uninterpreted predicate symbol. The Modification Method proves significantly less problems than all
other approaches. While the performance of the Modification Method may look undesirable, there were
a handful of instances when it was the only approach that yielded a solution.

Future research work includes extending and optimizing the existent preprocessing rules. Further-
more, the adaptation and integration of similar preprocessing techniques into the non-clausal connection
prover nanoCoP [12] or the non-classical provers ileanCoP and MleanCoP for first-order intuitionis-
tic and modal logic [14] is currently investigated.

14



Equality Preprocessing in Connection Calculi B. E. Oliver, J. Otten

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Aggregated TPTP 6.4.0 rating

Pe
rc

en
ta

ge
of

pr
ob

le
m

s
so

lv
ed

<
10

se
c.

All domains

AX
EPICC-3

MM

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Aggregated TPTP 6.4.0 rating

SWC domain

AX
EPICC-3

MM

Figure 4: Percentage of theorems proven w.r.t. problem rating

Acknowledgements

The authors would like to thank the reviewers of a previous version of this paper for their comments.

References
[1] P. B. Andrews. Refutations by matings. IEEE Transactions on Computers, C-25(8):801–807, Aug 1976.
[2] Peter Backeman and Philipp Rümmer. Efficient algorithms for bounded rigid E-unification. In Hans De Niv-

elle, editor, Automated Reasoning with Analytic Tableaux and Related Methods, pages 70–85, Heidelberg,
2015. Springer.

[3] Peter Backeman and Philipp Rümmer. Theorem proving with bounded rigid E-unification. In Amy P. Felty
and Aart Middeldorp, editors, Automated Deduction – CADE-25, pages 572–587, Heidelberg, 2015. Springer.

[4] Wolfgang Bibel. Matings in matrices. Commun. ACM, 26(11):844–852, 1983.
[5] Wolfgang Bibel. Automated theorem proving. Artificial intelligence. F. Vieweg und Sohn, Wiesbaden, 2nd

edition, 1987.
[6] D. Brand. Proving theorems with the modification method. SIAM Journal on Computing, 4(4):412–430, 1975.
[7] Anatoli Degtyarev and Andrei Voronkov. Simultaneous rigid E-unification is undecidable. In Hans

Kleine Büning, editor, Computer Science Logic, pages 178–190, Heidelberg, 1996. Springer.
[8] Jean Gallier, Paliath Narendran, Stan Raatz, and Wayne Snyder. Theorem proving using equational matings

and rigid E-unification. J. ACM, 39(2):377–430, April 1992.
[9] Reiner Hähnle. Tableaux and related methods. In Alan Robinson and Andrei Voronkov, editors, Handbook of

Automated Reasoning, volume I, chapter 3, pages 101–178. Elsevier Science, Amsterdam, 2001.
[10] Jens Otten. leanCoP 2.0 and ileanCoP 1.2: High performance lean theorem proving in classical and intu-

itionistic logic. In Alessandro Armando, Peter Baumgartner, and Gilles Dowek, editors, IJCAR 2008, volume
5195 of LNAI, pages 283–291, Heidelberg, 2008. Springer.

[11] Jens Otten. Restricting backtracking in connection calculi. AI Commun., 23(2–3):159–182, 2010.
[12] Jens Otten. nanoCoP: A non-clausal connection prover. In Nicola Olivetti and Ashish Tiwari, editors, IJCAR

2016, volume 9706 of LNAI, pages 302–312, Heidelberg, 2016. Springer.
[13] Jens Otten and Wolfgang Bibel. leanCoP: lean connection-based theorem proving. Journal of Symbolic

Computation, 36(1–2):139–161, 2003.

15



Equality Preprocessing in Connection Calculi B. E. Oliver, J. Otten

[14] Jens Otten and Wolfgang Bibel. Advances in connection-based automated theorem proving. In J. Bowen,
M. Hinchey, and E.-R. Olderog, editors, Provably Correct Systems, Heidelberg, 2017. Springer.

[15] G. Robinson and L. Wos. Paramodulation and theorem-proving in first-order theories with equality. In Jörg H.
Siekmann and Graham Wrightson, editors, Automation of Reasoning: 2: Classical Papers on Computational
Logic 1967–1970, pages 298–313. Springer, Heidelberg, 1983.

[16] J. A. Robinson. A machine-oriented logic based on the resolution principle. Journal of ACM, 12:23–41, 1965.
[17] G. Sutcliffe. The TPTP Problem Library and Associated Infrastructure. From CNF to TH0, TPTP v6.4.0.

Journal of Automated Reasoning, 59(4):483–502, 2017.
[18] G. Sutcliffe. The 9th IJCAR Automated Theorem Proving System Competition - CASC-29. AI Communica-

tions, 31(6):495–507, 2018.

16


	Introduction
	Preliminaries
	First-Order Logic and Matrix Characterization
	Equality

	Equality Preprocessing
	Basic Notation
	Matrix Notation
	Most General Unifiers
	Rules

	Valid Clauses
	Contradictions
	Redundancy
	Pure Clauses
	Unsatisfiable Clauses
	Unit Clause

	Implementation
	The Supervisor process
	Internal representations and data structures

	Evaluation
	Method
	Experimental Results
	New Proofs


	Conclusion

