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Abstract

We present a pragmatic approach to extending a Boolean-free higher-order superposi-
tion calculus to support Boolean reasoning. Our approach extends inference rules that have
been used only in a �rst-order setting, uses some well-known rules previously implemented
in higher-order provers, as well as new rules. We have implemented the approach in the
Zipperposition theorem prover. The evaluation shows highly competitive performance of
our approach and clear improvement over previous techniques.

1 Introduction

In the last decades, automatic theorem provers have been used successfully as backends to �ham-
mers� in proof assistants [16,24] and to software veri�ers [14]. Most advanced provers, such as
CVC4 [4], E [28], and Vampire [20], are based on �rst-order logic, whereas most frontends that
use them are based on versions of higher-order logic. Thus, there is a large gap in expressiveness
between front- and backends. This gap is bridged using well-known translations from higher-
order to �rst-order logic [22, 26]. However, translations are usually less e�cient than native
support [3,5,35]. The distinguishing features of higher-order logic used by proof assistants that
the translation must eliminate include λ-binders, function extensionality � the property that
functions are equal if they agree on every argument, described by the axiom ∀(x, y : τ → ν).
(∀(z : τ). x z ≈ y z)⇒ x ≈ y, and formulas occurring as arguments of function symbols [22].

A group of authors including Vukmirovi¢ [5] recently designed a complete calculus for ex-
tensional Boolean-free higher-order logic. This calculus is an extension of superposition, the
calculus used in most successful provers such as E or Vampire. The extension removes the need
to translate the �rst two above mentioned features of higher-order logic. Kotelnikov et al. [18,19]
extended the language of �rst-order logic to support the third feature of higher-order logic that
requires translation. They described two approaches: one based on calculus-level treatment of
Booleans and the other, which requires no changes to the calculus, based on preprocessing.

To fully bridge the gap between higher-order and �rst-order tools, we combine the two ap-
proaches: we use the e�cient higher-order superposition calculus and extend it with inference
rules that reason with Boolean terms. In early work, Kotelnikov et al. [19] have described a
FOOL paramodulation rule that, under some order requirements, removes the need for the ax-
iom describing the Boolean domain � ∀(p : o). p ≈ > ∨ p ≈ ⊥. In this approach, it is assumed
that a problem with formulas occurring as arguments of symbols is translated to �rst-order logic.

The backbone of our approach is based on an extension of this rule to higher-order logic.
Namely, we do not translate away any Boolean structure that is nested inside non-Boolean
terms and allow our rule to hoist the nested Booleans to the literal level. Then, we clausify the
resulting formula (i.e., a clause that contains formulas in literals) using a new rule.

An important feature that we inherit by building on top of Bentkamp et al. [5] is support
for (function) extensionality. Moving to higher-order logic with Booleans also means that we
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need to consider Boolean extensionality : ∀(p : o)(q : o). (p ⇔ q) ⇒ p ≈ q. We extend the rules
of Bentkamp et al. that treat function extensionality to support Boolean extensionality as well.

Rules that extend the two orthogonal approaches form the basis of our support for Boolean
reasoning (Section 3). In addition, we have implemented rules that are inspired by the ones
used in the higher-order provers Leo-III [30] and Satallax [10], such as elimination of Leibniz
equality, primitive instantiation and treatment of choice operator [1]. We have also designed
new rules that use higher-order uni�cation to resolve Boolean formulas that are hoisted to literal
level, delay clausi�cation of non-atomic literals, reason about formulas under λ-binders, and
many others. Even though the rules we use are inspired by the ones of refutationally complete
higher-order provers, we do not guarantee completeness of our extension of λ-superposition.

We compare our native approach with two alternatives based on preprocessing (Section 4).
First, we compare it to an axiomatization of the theory of Booleans. Second, inspired by work
of Kotelnikov et al. [18], we implemented the preprocessing approach that does not require
introduction of Boolean axioms. We also discuss some examples, coming from TPTP [32], that
illustrate advantages and disadvantages of our approach (Section 5).

Our approach is implemented in the Zipperposition theorem prover [12,13]. Zipperposition
is an easily extensible open source prover that Bentkamp et al. used to implement their higher-
order superposition calculus. We further extend their implementation.

We performed an extensive evaluation of our approach (Section 6). In addition to evaluating
di�erent con�gurations of our new rules, we have compared them to full higher-order provers
CVC4, Leo-III, Satallax and Vampire. The results suggest that it is bene�cial to natively sup-
port Boolean reasoning � the approach outperforms preprocessing-based approaches. Further-
more, it is very competitive with state-of-the-art higher order provers. We discuss the di�erences
between our approach and the approaches we base on, as well as related approaches (Section 7).

2 Background

We base our work on Bentkamp et al.'s [5] extensional polymorphic clausal higher-order logic.
We extend the syntax of this logic by adding logical connectives to the language of terms. The
semantic of the logic is extended by interpreting Boolean type o as a two-element domain. This
amounts to extending Bentkamp et al's fragment of higher-order logic to full-higher order logic
(HOL). Our notation, de�nitions and the following text are largely based on Bentkamp et al.'s.

A signature is a quadruple (Σty,Vty,Σ,V) where Σty is a set of type constructors, Vty is a
set of type variables and Σ and V are sets of constants and term variables, respectively. We
require nullary type constructors ι and o, as well as binary constructor → to be in Σty. A
type τ, υ is either a type variable α ∈ Vty or of the form κ(τ1, . . . τn) where κ is an n-ary type
constructor. We write κ for κ(), τ → υ for → (τ, υ), and we abbreviate tuples (a1, . . . , an) as
an for n ≥ 0. Similarly, we drop parentheses to shorten τ1 → (· · · → (τn−1 → τn) · · · ) into
τ1 → · · · → τn. Each symbol in Σ is assigned a type declaration of the form Παn. τ where all
variables occurring in τ are among αn.

Function symbols a, b, f, g, . . . are elements of Σ; their type declarations are written as f :
Παn. τ . Term variables from the set V are written x, y, z . . . and we denote their types as
x : τ . When the type is not important, we omit type declarations. We assume that symbols
>,⊥,¬,∧,∨,⇒,⇔ with their standard meanings and type declarations are elements of Σ.
Furthermore, we assume that polymorphic symbols ∀ and ∃ with type declarations Πα. (α →
o)→ o and ≈ : Πα. α→ α→ o are in Σ, with their standard meanings. All these symbols are
called logical symbols. We write binary logical symbols in in�x notation.
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Terms are de�ned inductively as follows. Variables x : τ are terms of type τ . If f : Παn. τ
is in Σ and υn is a tuple of types, called type arguments, then f〈υn〉 (written as f if n = 0,
or if type arguments can be inferred from the context) is a term of type τ{αn 7→ υn}, called
constant. If x is a variable of type τ and s is a term of type υ then λx. s is a term of type τ → υ.
If s and t are of type τ → υ and τ , respectively, then s t is a term of type υ. We call terms of
Boolean type (o) formulas and denote them by f, g, h, . . .; we use p, q, r, . . . for variables whose
result type is o and p, q, r for constants with the same result type. We shorten iterated lambda
abstraction λx1. . . . λxn. s to λxn. s, and iterated application (s t1) · · · tn to s tn. We assume
the standard notion of free and bound variables, capture-avoiding substitutions σ, ρ, θ, . . ., and
α-, β-, η-conversion. Unless stated otherwise, we view terms as αβη-equivalence classes, with
η-long β-reduced form as the representative. Each term s can be uniquely written as λxm. a tn
where a is either variable or constant and m,n ≥ 0; we call a the head of s. We say that a term
a tn is written in spine notation [11]. Following our previous work [34], we de�ne nonstandard
notion of subterms and positions inductively as a graceful extension of the �rst-order counter-
parts: a term s is a subterm of itself at position ε. If s is a subterm of ti at position p then s
is a subterm of a tn at position i.p, where a is a head. If s is a subterm of t at position p then
s is a subterm of λx. t at position 1.p. We use s|p to denote subterm of s at position p.

Given a formula f we call its Boolean subterm f |p a top-level Boolean if for all proper
pre�xes q of p, the head of f |q is a logical constant. Otherwise, we call it a nested Boolean. For
example, in the formula f = h a ≈ g (p⇒ q) ∨ ¬p, f |1 and f |2 are top-level Booleans, whereas
f |1.2.1 is a nested Boolean (as well as its subterms). Only top-level Booleans are allowed in
�rst-order logic, whereas nested Booleans are characteristic for higher-order logic. A formula is
called an atom if it is of the form a tn, where a is a non-logical head, or of the form s ≈ t, where
if s or t are of type o, and one of them has a logical head, the other one must be > or ⊥. A
literal L is an atom or its negation. A clause C is a multiset of literals, interpreted and written
(abusing ∨) disjunctively as L1 ∨ · · · ∨ Ln. We write s 6≈ t for ¬(s ≈ t). We say a variable is
free in a clause C if it is not bound inside any subterm of a literal in C.

3 The Native Approach

Some support for Booleans was already present in Zipperposition before we started extending
the calculus of Bentkamp et al. In this section, we start by describing the internals of Zipper-
position responsible for reasoning with Booleans. We continue by describing 15 rules that we
have implemented. For ease of presentation we divide them in three categories. We assume
some familiarity with the superposition calculus [2] and adopt the notation used by Schulz [27].

3.1 Support for Booleans in Zipperposition

Zipperposition is an open source1 prover written in OCaml. From its inception, it was designed
as a prover that supports easy extension of its base superposition calculus to various theories,
including arithmetic, induction and limited support for higher-order logic [12].

In Zipperposition, applications are represented in �attened, spine notation. In addition, Zip-
perposition uses associativity of ∧ and ∨ to �atten out the nested applications of these symbols.
For example, terms p ∧ (q ∧ r) and (p ∧ q) ∧ r are internally stored as ∧ p q r. Zipperposition's
support for λ-terms is used to represent quanti�ed nested Booleans: formulas ∀x. f and ∃x. f
are represented as ∀ (λx. f) and ∃ (λx. f). After clausi�cation of the input problem, no nested
Booleans will be modi�ed or renamed using fresh predicate symbols.

1https://github.com/sneeuwballen/zipperposition
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The version of Zipperposition preceding our modi�cations distinguished between equational
and non-equational literals. Following E [28], we modi�ed Zipperposition to represent all literals
equationally: a non-equational literal f is stored as f ≈ >, whereas ¬f is stored as f 6≈ >.
Equations of the form f ≈ ⊥ and f 6≈ ⊥ are transformed into f 6≈ > and f ≈ >, respectively.

3.2 Core Rules

Kotelnikov et al. [19], to the best of our knowledge, pioneered the approach of extending a
�rst-order superposition prover to support nested Booleans. They call e�ects of including the
axiom ∀(p : o). p ≈ > ∨ p ≈ ⊥ a �recipe for disaster�. To combat the explosive behavior of
the axiom, they imposed the following two requirements to the simpli�cation order � (which
is a parameter to the superposition calculus): > � ⊥ and > and ⊥ are two smallest ground
terms with respect to �. If these two requirements are met, there is no self-paramodulation
of the clause and only paramodulation possible is from literal p ≈ > of the mentioned axiom
into a Boolean subterm of another clause. Finally, Kotelnikov et al. replace the axiom with the
inference rule FOOL Paramodulation (FP):

C[f ]
FP

C[>] ∨ f ≈ ⊥

where f is a nested non-variable Boolean subterm of clause C, di�erent from > and ⊥. In addi-
tion, they translate the initial problem containing nested Booleans to �rst-order logic without
interpreted Booleans; thus, symbols > and ⊥, and type o correspond to proxy symbols and
types introduced during the translation.

We created two rules that are syntactically similar to FP but are adapted for higher-order
logic with one key distinction � we do not perform any translation:

C[f ]
Cases

C[⊥] ∨ f ≈ >

C[f ]
CasesSimp

C[⊥] ∨ f ≈ > C[>] ∨ f 6≈ >

The double line in the de�nition of CasesSimp denotes that the premise is replaced by conclu-
sions; obviously, the prover that uses the rules should not include them both at the same time.
In addition, since literals f ≈ ⊥ are represented as negative equations f 6≈ >, which cannot be
used to paramodulate from, we change the �rst requirement on the order to ⊥ � >.

These two rules hoist Boolean subterms f to the literal level; therefore, some results of
Cases and CasesSimp will have literals of the form f ≈ > (or f 6≈ >) where f is not an atom.
This introduces the need for the rule called eager clausi�cation (EC):

C
EC

D1 · · · Dm

We say that a clause is standard if all of its literals are of the form s ≈̇ t, where s and t are
not Booleans or of the form f ≈̇ >, where the head of f is not a logical symbol and ≈̇ denotes
≈ or 6≈. The rule EC is applicable if clause C = L1 ∨ · · · ∨ Ln is not standard. The resulting
clauses Dm represent the result of clausi�cation of the formula ∀x. L1 ∨ · · · ∨ Ln where x are
all free variables of C. Using Boolean extensionality, Zipperposition's clausi�cation algorithm
treats Boolean equality as equivalence (i.e., it replaces ≈〈o〉 with ⇔).

An advantage of leaving nested Booleans unmodi�ed is that the prover will be able to prove
some problems containing them without using the proli�c rules described above. For example,
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given two clauses f (px ⇒ p y) ≈ a and f (p a ⇒ p b) 6≈ a, the empty clause can easily be
derived without the above rules. A disadvantage of this approach is that the proving process
will periodically be interrupted by expensive calls to the clausi�cation algorithm.

If implemented naively, rules Cases and CasesSimp can result in many redundant clauses.
Consider the following example: let p : o → o, a : o and consider a clause set containing
p (p (p (p a))) ≈ >. Then, the clause C = a ≈ > ∨ p⊥ ≈ > can be derived in eight ways using
the rules, depending on which nested Boolean subterm was chosen for the inference. In general,
if a clause has a subterm occurrence of the form pn a, where both p and a have result type o, the
clause a ≈ > ∨ p⊥ ≈ > can be derived in 2n−1 ways. To combat these issues we implemented
pragmatic restrictions of the rule: only f which is the leftmost outermost (or innermost) eligible
subterm will be considered. With this modi�cation C can be derived in only one way. Further-
more, some intermediate conclusions of the rules will not be derived, pruning the search space.

The clausi�cation algorithm by Nonnengart and Weidenbach [23] aggressively simpli�es the
input problem using well-known Boolean equivalences before clausifying it. For example, the
formula p ∧ > will be replaced by p. To simplify nested Booleans we implemented the rule

C[fσ]
BoolSimp

C[gσ]

where f −→ g ∈ E runs over �xed set of rewrite rules E, and σ is any substitution. In the
current implementation of Zipperposition, E consists of the rules described by Nonnengart and
Weidenbach [23, Section 3]. This set contains the rules describing how each logical symbol
behaves when either of its argument is > or ⊥: for example, it includes > ⇒ p −→ p and
p⇒ > −→ >. Leo-III implements a similar rule, called simp [29, Section 4.2.1.].

Our decision to represent negative atoms as negative equations was motivated by the need
to alter Zipperposition's earlier behavior as little as possible. Namely, negative atoms were not
used as literals that can be used to paramodulate from, and as such added to the laziness of the
superposition calculus. However, it might be useful to consider unit clauses of the form f 6≈ >
as f ≈ ⊥ to strengthen demodulation. To that end, we have introduced the following rule:

f 6≈ > C[fσ]
BoolDemod

f 6≈ > C[⊥]

3.3 Higher-Order Considerations

To achieve refutational completeness of higher-order resolution and similar calculi it is necessary
to instantiate variables with result type o, predicate variables, with arbitrary formulas [1, 29].
Fortunately, we can approximate the formulas using a complete set of logical symbols (e.g., ¬,
∀, and ∧). Since such an approximation is not only necessary for completeness of some calculi,
but very useful in practice, we implemented the primitive instantiation (PI) rule:

C ∨ λxm. p sn ≈̇ t
PI

(C ∨ λxm. p sn ≈̇ t){p 7→ f}

where p is a free variable of the type τ1 → · · · → τn → o. Choosing a di�erent f that instantiates
p, we can balance between explosiveness of approximating a complete set of logical symbols
and incompleteness of pragmatic approaches. We borrow the notion of imitation from higher-
order uni�cation jargon [34]: we say that the term λxm. f (y1 xm) · · · (yn xm) is an imitation of
constant f : τ1 → · · · → τn → τ for some variable z of type ν1 → · · · → νm → τ . Variables yn are
fresh free variables, where each yi has the type ν1 → · · · → νm → τi; variable xi is of type νi.
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Rule PI was already implemented by Simon Cruanes in Zipperposition, before we started
our modi�cations. The rule has di�erent modes that generate sets of possible terms f for
p : τ1 → · · · → τn → o: Full, Pragmatic, and Imit? where ? is an element of a set of logical
constants P = {∧,∨,≈〈α〉,¬,∀,∃}. Mode Full contains imitations (for p) of all elements of P .
Mode Pragmatic contains imitations of ¬, > and ⊥; if there exist indices i, j such that i 6= j and
τi = τj , it contains λxn. xi ≈ xj ; if there exist indices i, j such that i 6= j, and τi = τj = o, then
it contains λxn. xi∧xj and λxn. xi∨xj ; if for some i, τi = o, then it contains λxn. xi. Mode Imit?
contains imitations of >, ⊥ and ? (except for Imit∀∃ which contains imitations of both ∀ and ∃).

While experimenting with our implementation we have noticed some proof patterns that led
us to come up with the following modi�cations. First, it often su�ces to perform PI only on
initial clauses � which is why we allow the rule to be applied only to the clauses created using
at most k generating inferences. Second, if the rule was used in the proof, its premise is usually
only used as part of that inference � which is why we implemented a version of PI that removes
the clause after all possible PI inferences have been performed. We observed that the mode
Imit? is useful in practice since often only a single approximation of a logical symbol is necessary.

E�ciently treating axiom of choice is notoriously di�cult for higher-order provers. Andrews
formulates this axiom as ∀(p : α → o). (∃(x : α). p x) ⇒ p (ε p), where ε : Πα. (α → o) → α
denotes the choice operator [1]. After clausi�cation, this axiom becomes p x 6≈ > ∨ p (ε p) ≈ >.
Since term p x matches any Boolean term in the proof state, this axiom is very explosive.
Therefore, Leo-III [30] deals with the choice operator on the calculus level. Namely, whenever
a clause C = p x 6≈ > ∨ p (f p) ≈ > is chosen for processing, C is removed from the proof state
and f is added to set of choice functions CF (which initially contains just ε). Later, elements
of CF will be used to heuristically instantiate the axiom of choice. We reused the method of
recognizing choice functions, but generalized the rule for creating the instance of the axiom
(assuming ξ ∈ CF ):

C[ξ t]
Choice

x (t y) 6≈ > ∨ x (t (ξ (λz. x (t z)))) ≈ >

Let D be the conclusion of Choice. The fresh variable x in D acts as arbitrary context
around t, the chosen instantiation for p from axiom of choice; the variable x can later be replaced
by imitation of logical symbols to create more complex instantiations of the choice axiom. To
generate useful instances early, we create D{x 7→ λz. z} and D{x 7→ λz.¬z}. Then, based on
Zipperposition parameters, D will either be deleted or kept. Note that D will not subsume its
instances, since the matching algorithm of Zipperposition is too weak for this.

Most provers natively support extensionality reasoning: Bhayat et al. [6] modify �rst-order
uni�cation to return uni�cation constraints consisting of pairs of terms of functional type,
whereas Steen relies on the uni�cation rules of Leo-III's calculus [29, Section 4.3.3.] to deal
with extensionality. Bentkamp et al [5] altered core generating inference rules of the superposi-
tion calculus to support extensionality. Instead of requiring that terms involved in the inference
are uni�able, it is required that they can be decomposed into disagreement pairs such that at
least one of the disagreement pairs is of functional type. Disagreement pairs of terms s and t
of the same type are de�ned inductively using function dp: dp(s, t) = ∅ if s and t are equal;
dp(a sn, b tm) = {(a sn, b tm)} if a and b are di�erent heads; dp(λx. s, λy. t) = {(λx. s, λy. t)};
dp(a sn, a tn) =

⋃n
i=1 dp(si, ti). Then the extensionality rules are stated as follows:

s ≈ t ∨ C u[s′] ≈̇ v ∨ D
ExtSup

(s1 6≈ s′1 ∨ · · · ∨ sn 6≈ s′n ∨ u[t] ≈̇ v ∨ C ∨ D)σ

6
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s 6≈ s′ ∨ C
ExtER

(s1 6≈ s′1 ∨ · · · ∨ sn 6≈ s′n · · · ∨ C)σ

s ≈ t ∨ s′ ≈ u ∨ C
ExtEF

(s1 6≈ s′1 ∨ · · · ∨ sn 6≈ s′n ∨ t 6≈ u ∨ s′ ≈ u ∨ C)σ

Rules ExtSup, ExtER, and ExtEF are extensional versions of superposition, equality res-
olution and equality factoring [27]. By Ext we denote the union of these three rules. In
each of the rules, σ is a most general uni�er of the types of s and s′, and dp(sσ, s′σ) =
{(s1, s′1), . . . , (sn, s

′
n)}. All side conditions for extensional rules are the same as for the stan-

dard rules, except that condition that s and s′ are uni�able is replaced by the condition that
at least one si is of functional type and that n > 0. This rule is easily extended to support
Boolean extensionality by requiring that at least one si is of functional or type o, and adding
the condition �dp(f, g) = {(f, g)} if f and g are di�erent formulas� to the de�nition of dp.

Consider the clause f (¬p∨¬q) 6≈ f (¬(p ∧ q)). This problem is obviously unsatis�able, since
arguments of f on di�erent sides of the disequation are extensionally equal; however, without
Ext rules Zipperposition will rely on Cases(Simp) and EC rules to derive the empty clause.
Rule ExtER will generate C = ¬p ∨ ¬q 6≈ ¬(p ∧ q). Then, C will get clausi�ed using EC,
e�ectively reducing the problem to ¬(¬p ∨ ¬q⇔ ¬(p ∧ q)), which is �rst-order.

Zipperposition restricts ExtSup by requiring that s and s′ are not of function or Boolean
types. If the terms are of function type, our experience is that better treatment of function ex-
tensionality is to apply fresh free variables (or Skolem terms, depending on the sign [5]) to both
sides of a (dis)equation to reduce it to a �rst-order literal; Boolean extensionality is usually bet-
ter supported by applying EC on the top-level Boolean term. Thus, for the following discussion
we can assume s and s′ are not λ-abstractions or formulas. Then, ExtSup is applicable if s
and s′ have the same head, and a functional or Boolean subterm. To speed up retrieval of such
terms, we added an index that maps symbols to positions in clauses where they appear as a head
of a term that has a functional or Boolean subterm. This index will be empty for �rst-order
problems, incurring no overhead if extensionality reasoning is not needed. One more restric-
tion we implemented is that we do not apply Ext rules if all disagreement pairs have at least
one side whose head is a variable; those will be dealt with more e�ciently using standard, non-
extensional, versions of the rules. We also eagerly resolve literals si 6≈ s′i using at most one uni�er
returned by terminating, pragmatic variant of uni�cation algorithm by Vukmirovi¢ et al. [34].

Expressiveness of higher-order logic allows users to de�ne equality using a single axiom,
called Leibniz equality [1]: ∀(x : α)(y : α). (∀(p : α → o). p x ⇒ p y) ⇒ x ≈ y. Leibniz equality
often appears in TPTP problems. Since modern provers have the native support for equality,
it is usually bene�cial to recognize and replace occurrences of Leibniz equality.

Before we began our modi�cations, Zipperposition had a powerful rule that recognizes
clauses that contain variations of Leibniz equality and instantiates them with native equal-
ity. This rule was designed by Simon Cruanes, and to the best of our knowledge, it has not
been documented so far. With his permission we describe this rule as follows:

p s1n ≈ > ∨ · · · ∨ p sin ≈ > ∨ p t
1
n 6≈ > ∨ · · · ∨ p t

j
n 6≈ > ∨ C

ElimPredVar
(p s1n ≈ > ∨ · · · ∨ p sin ≈ > ∨ C)σ

where p is a free variable, p does not occur in any slk or tlk, or in C; σ is de�ned as {p 7→
λxn.

∨j
k=1(

∧n
l=1 xl ≈ tkl )}.

To better understand how this rule removes variable-headed negative literals, consider the
clause C = p a1 a2 ≈ > ∨ p b1 b2 6≈ > ∨ p c1 c2 6≈ >. Since all side conditions are ful�lled,
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the rule ElimPredVar will generate σ = {p 7→ λxy. (x ≈ b1 ∧ y ≈ b2) ∨ (x ≈ c1 ∧ y ≈ c2)}.
After applying σ to C and subsequent β-reduction, negative literal p b1 b2 6≈ > will reduce to
(b1 ≈ b1∧b2 ≈ b2)∨(b1 ≈ c1∧b2 ≈ c2) 6≈ >, which is equivalent to ⊥. Thus, we can remove this
literal and all negative literals of the form p tn 6≈ > from C and apply σ to the remaining ones.

The previous rule removes all variables occurring in disequations in one attempt. We imple-
mented two rules that behave more lazily, inspired by the ones present in Leo-III and Satallax:

p sn ≈ > ∨ p tn 6≈ > ∨ C
ElimLeibniz+

(si ≈ ti ∨ C)σ

p sn 6≈ > ∨ p tn ≈ > ∨ C
ElimLeibniz−

(si ≈ ti ∨ C)σ′

where p is a free variable, p does not occur in ti, σ = {p 7→ λxn. xi ≈ ti} and σ′ = {p 7→
λxn.¬(xi ≈ ti)}. This rule di�ers from ElimPredVar in three ways. First, it acts on occur-
rences of variables in both positive and negative literals. Second, due to its simplicity, it usually
does not require EC as the following step. Third, it imposes much weaker conditions on p. How-
ever, removing all negative variables in one step might improve performance. Coming back to
example of the clause C = p a1 a2 ≈ > ∨ p b1 b2 6≈ > ∨ p c1 c2 6≈ >, we can apply ElimLeibniz+
using the substitution σ = {λxy. x ≈ b1} to obtain the clause C ′ = a1 ≈ b1 ∨ a1 6≈ c1.

3.4 Additional Rules

Zipperposition's uni�cation algorithm [34] uses �attened representation of terms with logical
operators ∧ and ∨ for heads to unify terms that are not uni�able modulo αβη-equivalence, but
are uni�able modulo associativity and commutativity of ∧ and ∨. Let � denote either ∧ or ∨.
When the uni�cation algorithm is given two terms � sn and � tn, where neither of sn nor tn
contain duplicates, it performs the following steps: First, it removes all terms that appear in
both sn and tn from the two argument tuples. Next, the remaining terms are sorted �rst by their
head term and then their weight. Finally, an attempt is made to unify sorted lists pairwise. As
an example, consider the problem of unifying the pair

(
∧ (p a) (q (f a)), ∧ (q (f a)) (r (f (f a)))

)
where r is a free variable. If the arguments of ∧ are simply sorted as described above, we would
try to unify p a with q (f a), and fail to �nd a uni�er. However, by removing term q (f a) from
the argument lists, we will be left with the problem (p a, r (f (f a))) which has a uni�er.

The winner of THF division of CASC-27 [33], Satallax [10], has one crucial advantage over
Zipperposition: it is based on higher-order tableaux, and as such it does not require formulas to
be converted to clauses. The advantage of tableaux is that once it instantiates a variable with
a term, this instantiation naturally propagates through the whole formula. In Zipperposition,
which is based on higher-order superposition, the original formula is clausi�ed and instantiating
a variable in a clause C does not automatically instantiate it in all clauses that are results of
clausi�cation of the same formula as C. To mitigate this issue, we have created extensions of
equality resolution and equality factoring that take Boolean extensionality into account:

s ≈ s′ ∨ C
BoolER

Cσ

x sn ≈ > ∨ s′ 6≈ > ∨ C
BoolEF+−

(x sn ≈ ¬s′ ∨ C)σ

x sn 6≈ > ∨ s′ ≈ > ∨ C
BoolEF−+

(x sn ≈ ¬s′ ∨ C)σ

x sn 6≈ > ∨ s′ 6≈ > ∨ C
BoolEF−−

(x sn ≈ s′ ∨ C)σ

All side conditions except for the ones concerning the uni�ability of terms are as in the original
equality resolution and equality factoring rules. In rule BoolER, σ is a uni�er of s and ¬s′.
In the +− and −+ versions of BoolEF, σ uni�es x sn and ¬s′, and in the remaining version
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it uni�es x sn and s′. Intuitively, these rules bring Boolean (dis)equations in the appropriate
form for application of the corresponding base rules. It su�ces to consider literals of the form
s ≈ s′ for BoolER since Zipperposition rewrites s ⇔ t ≈ > and ¬(s ⇔ t) 6≈ > to s ≈ t (and
does analogous rewriting into s 6≈ t).

Another approach to mitigate harmful e�ects of eager clausi�cation is to delay it as long
as possible. Following the approach by Ganzinger and Stuber [15], we represent every input
formula f as a unit clause f ≈ > and use the following lazy clausi�cation (LC) rules:

(f ∧ g) ≈ > ∨ C
LC∧

f ≈ > ∨ C g ≈ > ∨ C

(f ∨ g) ≈ > ∨ C
LC∨

f ≈ > ∨ g ≈ > ∨ C

(f ⇒ g) ≈ > ∨ C
LC⇒

f 6≈ > ∨ g ≈ > ∨ C

(¬f) ≈ > ∨ C
LC¬

f 6≈ > ∨ C

(∀x. f) ≈ > ∨ C
LC∀

f{x 7→ y} ∨ C

(∃x. f) ≈ > ∨ C
LC∃

f{x 7→ sk〈α〉yn} ∨ C
f ≈ g ∨ C

LC≈
f 6≈ > ∨ g ≈ > ∨ C f ≈ > ∨ g 6≈ > ∨ C

The rules described above are as given by Ganzinger and Stuber (adapted to our setting), with
the omission of rules for negative literals (f 6≈ >), which are easy to derive and which can be
found in their work [15]. In LC≈ we require both f and g to be formulas and at least one of
them not to be >. In LC∀, y is a fresh variable, and in LC∃, sk is a fresh symbol and α and
yn are all the type and term variables occurring freely in ∃x. f .

Naive application of the LC rules can result in exponential blowup in problem size. To
avoid this, we rename formulas that have repeated occurrences. We keep the count of all non-
atomic formulas occurring as either side of a literal. Before applying the LC rule on a clause
f ≈̇ > ∨ C, we check whether the number of f 's occurrences exceeds the threshold k. If it does,
based on the polarity of the literal f ≈̇ >, we add the clause p yn 6≈ > ∨ f ≈ > (if the literal
is positive) or p yn ≈ > ∨ f 6≈ > (if the literal is negative), where yn are all free variables of f
and p is a fresh symbol. Then, we replace the clause f ≈̇ > ∨ C by p yn ≈̇ > ∨ C.

Before the number of occurrences of f is checked, we �rst check (using a fast, incomplete
matching algorithm) if there is a formula g, for which de�nition was already introduced, such
that gσ = f , for some substitution σ. This check can have three outcomes. First, if the
de�nition qxn is already introduced for g with the polarity matching that of f ≈̇>, then f is
replaced by (qxn)σ. Second, if the de�nition was introduced, but with di�erent polarity, we
create the clause de�ning g with the missing polarity, and replace f with (qxn)σ. Last, if the
there is no renamed formula g generalizing f , then we perform the previously described check.

In addition to reusing names for formula de�nitions, we reuse the Skolem symbols intro-
duced by the LC∃ rule. When LC∃ is applied to f = ∃x. f ′ we check if there is a Skolem
sk〈αm〉yn introduced for a formula g = ∃x. g′, such that gσ = f . If so, the symbol sk is reused
and ∃x. f ′ is replaced by f ′{x 7→ (sk〈αm〉yn)σ}. Renaming and name reusing techniques are
inspired by the VCNF algorithm described by Reger et al. [25].

Rules Cases and CasesSimp deal with Boolean terms, but we need to rely on extensionality
reasoning to deal with λ-abstractions whose body has type o. Using the observation that the
formula ∀xn. f implies that λxn. f is extensionally equal to λxn.> (and similarly, if ∀xn.¬f ,
then λxn. f ≈ λxn.⊥), we designed the following rule (where all free variables of f are xn and
variables occurring freely in C):

C[λxn. f ]
Interpretλ

(∀xn. f) 6≈ > ∨ C[λxn.>] (∀xn.¬f) 6≈ > ∨ C[λxn.⊥]

9
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4 Alternative Approaches

An alternative to heavy modi�cations of the prover needed to support the rules described above
is to treat Booleans as yet another theory. Since the theory of Booleans is �nitely axiomatizable,
simply stating those axioms instead of creating special rules might seem appealing. Another
approach is to preprocess nested Booleans by hoisting them to the top level.

4.1 Axiomatization

A simple axiomatization of the theory of Booleans is given by Bentkamp et al. [5]. Following
their approach, we introduce the proxy type bool , which corresponds to o, to the signature. We
de�ne proxy symbols t, f, not, and, or, impl, equiv, forall, exists, choice, and eq which correspond to
the homologous logical constants from Section 2. In their type declarations o is replaced by bool .

To make this paper self-contained we include the axioms from Bentkamp et al. [5]. De�ni-
tions of symbols are computational in nature: symbols are characterized by their behavior on
t and f. This also reduces interferences between di�erent axioms. Axioms are listed as follows:

t 6≈ f
x ≈ t ∨ x ≈ f

not t ≈ f
not f ≈ t

and tx ≈ x
and f x ≈ f

or tx ≈ t
or f x ≈ x

impl tx ≈ x
impl f x ≈ t

x 6≈ y ∨ eq〈α〉 x y ≈ t
x ≈ y ∨ eq〈α〉 x y ≈ f

equiv x y ≈ and (implx y) (impl y x)
forall〈α〉(λx. t) ≈ t

y ≈ (λx. t) ∨ forall〈α〉 y ≈ f
exists〈α〉 y ≈ not (forall〈α〉 (λx. not (y x)))

y x ≈ f ∨ y (choice〈α〉y) ≈ t

4.2 Preprocessing Booleans

Kotelnikov et al. extended VCNF, Vampire's algorithm for clausi�cation, to support nested
Booleans [18]. Vukmirovi¢ et al. extended the clausi�cation algorithm of Ehoh, the lambda-free
higher-order version of E, to support nested Booleans inspired by VCNF extension [35, Section
8]. Zipperposition and Ehoh share the same clausi�cation algorithm, enabling us to reuse the
extension with one notable di�erence: unlike in Ehoh, not all nested Booleans di�erent from
variables, > and ⊥ will be removed. Namely, Booleans that are below λ-abstraction and con-
tain λ-bound variables will not be preprocessed. They cannot be easily hoisted to the level of
an atom in which they appear, since this process might leak any variables bound in the con-
text in which the nested Boolean appears. Similar preprocessing techniques are used in other
higher-order provers [36].

5 Examples

The TPTP library contains thousands of higher-order benchmarks, many of them hand-crafted
to point out subtle interferences of functional and Boolean properties of higher order logic. In
this section we discuss some problems from the TPTP library that illustrate the advantages
and disadvantages of our approach.

In the last �ve instances of the CASC theorem proving competition, the core calculus of the
best performing higher-order prover was tableaux � a striking contrast from �rst-order part of
the competition dominated by superposition-based provers. TPTP problem SET557^1 might
shed some light on why tableaux-based provers excel on higher-order problems.

10
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This problem conjectures that there is no surjection from a set to its power set:

¬(∃(x : ι→ ι→ o).∀(y : ι→ o).∃(z : ι). x z ≈ y)

After negating the conjecture and clausi�cation this problem becomes sk1 (sk2 y) ≈ y where sk1
and sk2 are Skolem symbols. Then, we can use ArgCong rule [5] which applies fresh variable w
to both sides of the equation, yielding clause C = sk1 (sk2 y)w ≈ y w. Most superposition-based
higher-order theorem provers (such as Leo-III, Vampire and Zipperposition) will split this clause
into two clauses C1 = sk1 (sk2 y)w 6≈ > ∨ y w ≈ > and C2 = sk1 (sk2 y)w ≈ > ∨ y w 6≈ >. This
clausi�cation step makes the problem considerably harder. Namely, the clause C instantiated
with the substitution {y 7→ λx.¬(sk1 xx), w 7→ sk2 (λx.¬(sk1 xx))} yields the empty clause.
However, if the original clause is split into two as described above, Zipperposition will rely on
PI rule to instantiate y with imitation of ¬ and on equality factoring to further instantiate this
approximation. These desired inferences need to be applied on both new clauses and represent
only a fraction of inferences that can be done with C1 and C2, reducing the chance of successful
proof attempt. Rule BoolER imitates the behavior of tableaux prover: it essentially rewrites
the clause C into ¬(sk1 (sk2 y)w) 6≈ y w which makes �nding the necessary substitution easy
and does not require a clausi�cation step.

Combining rule (Bool)ER with lazy clausi�cation is very fruitful as the problem SYO033^1

illustrates. This problem also contains the single conjecture

∃(x : (ι→ o)→ o).∀(y : ι→ o).(x y ⇔ (∀(z : ι). y z))

The problem is easily solved if we instantiate variable x with the constant ∀. Moreover, the
prover does not have to blindly guess this instantiation for x, but can obtain it by unifying x y
with ∀ y (which is the η-short form of ∀(z : ι). y z). However, when the problem is clausi�ed, all
quanti�ers are removed. Then, Zipperposition only �nds the proof if appropriate instantiation
mode of PI is used, and if both clauses resulting from clausifying the negated conjecture are ap-
propriately instantiated. In contrast, lazy clausi�cation will derive the clause x (skx) 6≈ ∀ (skx)
from the negated conjecture in three steps. Then, equality resolution results in an empty
clause, swiftly �nishing the proof without any explosive inferences. This e�ect is even more
pronounced on problems SYO287^5 and SYO288^5, in which critical proof step is instantiation
of a variable with imitation of ∨ and ∧. In con�gurations that do not use lazy clausi�cation
and BoolER, Zipperposition times out in any reasonable time limit; with those two options it
solves mentioned problems in less than 100ms.

In some cases, it is better to preprocess the problem. For example, TPTP problem
SYO500^1.005 contains many nested Boolean terms:

f0 (f1 (f1 (f1 (f2 (f3 (f3 (f3 (f4 a))))))) ≈ f0 (f0 (f0 (f1 (f2 (f2 (f2 (f3 (f4 (f4 (f4 a)))))))))))

In this problem, all functions fi are of type o → o, and constant a is of type o. FOOL unfold-
ing of nested Boolean terms will result in exponential blowup in the problem size. However,
superposition-based theorem provers are well-equipped for this issue: their CNF algorithms use
smart simpli�cations and formula renaming to mitigate these e�ects. Moreover, when the prob-
lem is preprocessed, the prover is aware of the problem size before the proving process starts
and can adjust its heuristics properly. E, Zipperposition and Vampire, instructed to perform
FOOL unfolding, solve the problem swiftly, using their default modes. However, if problem is
not preprocessed, Zipperposition struggles to prove it using Cases(Simp) and due to the large
number of (redundant) clauses it creates, succeeds only if speci�c heuristic choices are made.
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a lo li

b 1646 1648 1640

bc 1644 1645 1644

Figure 1: E�ect of the Cases(Simp) rule on success rate

6 Evaluation

We performed extensive evaluation to determine usefulness of our approach. As our benchmark
set, we used all 2606 monomorphic theorems from the TPTP library, given in THF format.
All of the experiments described in this section were performed on StarExec [31] servers with
Intel Xeon E5-2609 0 CPUs clocked at 2.40 GHz. The evaluation is separated in two parts that
answer di�erent questions: How useful are the new rules? How does our approach compare
with state-of-the-art higher-order provers?

6.1 Evaluation of the Rules

For this part of the evaluation, we �xed a single well-performing Zipperposition con�guration
called base (b). Since we are testing a single con�guration, we used the CPU time limit of 15
s � roughly the time a single con�guration is given in a portfolio mode. Con�guration b uses
the pragmatic variant pv21121 of the uni�cation algorithm given by Vukmirovi¢ et al. [34]. It
enables BoolSimp rule, EC rule, PI rule in Pragmatic mode with k = 2, ElimLeibniz and
ElimPredVar rules, BoolER rule, and BoolEF rules. To evaluate the usefulness of all rules
we described above, we enable, disable or change the parameters of a single rule, while keeping
all other parameters of b intact. In �gures that contain su�ciently di�erent con�gurations, cells
are of the form n(m) where n is the total number of proved problems by a particular con�g-
uration and m is the number of unique problems that a given con�guration solved, compared
to the other con�gurations in the same �gure. Intersections of rows and columns denote cor-
responding combination of parameters. Result for the base con�guration is written in cursive;
the best result is written in bold.

First, we tested di�erent parameters of Cases and CasesSimp rules. In Figure 1 we report
the results. The columns correspond to three possible options to choose subterm on which the
inference is performed: a stands for any eligible subterm, lo and li stands for leftmost outermost
and leftmost innermost subterms, respectively. The rows correspond to two di�erent rules: b is
the base con�guration, which uses CasesSimp, and bc swaps this rule for Cases. Although the
margin is slim, the results show it is usually preferable to select leftmost-outermost subterm.

Second, we evaluated all the modes of PI rule with 3 values for parameter k: 1, 2, and 8
(Figure 2). The columns denote, from left to right: disabling the PI rule, Pragmatic mode, Full
mode, and Imit? modes with appropriate logical symbols. The rows denote di�erent values of k.
The results show that di�erent values for k have a modest e�ect on success rate. The raw data re-
veal that when we focus our attention to con�gurations with k = 2, mode Full can solve 10 prob-
lems no other mode (including disabling PI rule) can. Modes Imit∧ and Pragmatic solve 2 prob-
lems, whereas Imit∨ solves one problem uniquely. This result suggests that, even though this is
not evident from Figure 2, sets of problems solved solved by di�erent modes somewhat di�er.

Figure 3 gives results of evaluating rules that treat Leibniz equality on the calculus level: EL
stands for ElimLeibniz, whereas EPV denotes ElimPredVar; signs − and + denote that rule
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−PI bp bf b∧ b∨ b≈ b¬ b∀∃

k = 1

1636

1648 1628 1637 1634 1630 1641 1637

k = 2 1646 1629 1636 1631 1627 1638 1634

k = 8 1643 1625 1633 1631 1623 1637 1635

Figure 2: E�ect of PI rule on success rate

−EL +EL

−EPV 1584 (0) 1644 (0)

+EPV 1612 (0) 1646 (0)

Figure 3: E�ect of Leibniz equality
elimination rules

−BEF +BEF

−BER 1644 (2) 1643 (0)

+BER 1645 (0) 1646 (0)

Figure 4: E�ect of BoolER and
BoolEF rules

is removed from or added to con�guration b, respectively. Disabling both rules severely lowers
the success rate. The results suggest that including ElimLeibniz is bene�cial to performance.

Similarly, Figure 4 discusses merits of including (+) or excluding (−) BoolER (BER) and
BoolEF (BEF) rules. Our expectations were that inclusion of those two rules would make
bigger impact on success rate. It turned out that, in practice, most of the e�ects of these rules
could be achieved using a combination of the PI rule and basic superposition calculus rules.

Combining these two rules with lazy clausi�cation is more useful: when the rule EC is
replaced by the rule LC, the success rate increases (compared to 1646 problems solved by b) to
1660 problems. We also discovered that reasoning with choice is useful: when rule Choice is
enabled, the success rate increases to 1653. We determined that including or excluding the con-
clusion D of Choice, after it is simpli�ed, makes no di�erence. Counterintuitively, disabling
BoolSimp rule results in 1640 problems, which is only 6 problems short of con�guration b.
Disabling Ext and Interpret-λ rules results in solving 25 and 31 problems less, respectively.
Raw data show that in total, using con�gurations from Figure 1 to Figure 4, 1682 problems
can be solved.

Last, we compare our approach to alternatives. Axiomatizing Booleans brings Zipperposi-
tion down to a grinding halt: only 1106 problems can be solved using this mode. On the other
hand, preprocessing is fairly competitive: it solves only 8 problems less than the b con�guration.

6.2 Comparison with Other Higher-Order Provers

We compared Zipperposition with all higher-order theorem provers that took part in THF
division of CASC-27 [33]: CVC4 1.8 prerelease [4], Leo-III 1.4 [30], Satallax 3.4 [10], and
Vampire-THF 4.4 [20]. In this part of the evaluation, Zipperposition is ran in portfolio mode
that runs con�gurations in di�erent time slices. We set the CPU time limit to 180 s, the time
allotted to each prover at CASC-27.

Leo-III and Satallax are cooperative theorem provers � they periodically invoke �rst-order
provers to �nish the proof attempt. Leo-III uses CVC4, E and iProver [17] as backends, while
Satallax uses Ehoh [35] as backend. Zipperposition can use Ehoh as backend as well. To test
how successful each calculus is, we run the cooperative provers in two versions: pure, which
disables backends, and coop which uses all supported backends.

In both pure and cooperative mode, Satallax comes out as the winner. Zipperposition comes
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CVC4 Leo-III Satallax Vampire Zipperposition

pure 1806 (5) 1627 (0) 2067 (0) 1924 (7) 1980 ( 0)

coop � 2085 (3) 2214 (9) � 2190 (17)

Figure 5: Comparison with other higher-order provers

in close second, showing that our approach is a promising basis for further extensions. Leo-
III uses SMT solver CVC4, which features native support for Booleans, as a backend. It is
possible that the use of CVC4 is one of the reasons for massive improvement in success rate of
cooperative con�guration of Leo-III, compared with the pure version. Therefore, we conjecture
that including support for SMT backends in Zipperposition might be bene�cial.

7 Discussion and Related Work

Our work is primarily motivated by the goal of closing the gap between higher-order �hammer�
or software veri�er frontends and �rst-order backends. Considerable amount of research e�ort
has gone into making the translations of higher-order logic as e�cient as possible. Descriptions
of hammers like HOLyHammer [16] and Sledgehammer [24] for Isabelle contain details of these
translations. Software veri�ers Boogie [21] and Why3 [9] use similar translations.

Established higher-order provers like Leo-III and Satallax perform very well on TPTP bench-
marks; however, recent evaluations show that on Sledgehammer problems they are outperformed
by translations to �rst-order logic [3, 5, 35]. Those two provers are built from the ground up
as higher-order provers � treatment of exclusively higher-order issues such as extensionality or
choice is built into them usually using explosive rules. Those explosive rules might contribute
to their suboptimal performance on mostly �rst-order Sledgehammer problems.

In contrast, our approach is to start with a �rst-order prover and gradually extend it with
higher-order features. The work performed in the context of Matryoshka project [8], in which
both authors of this paper participate, resulted in adding support for λ-free higher-order logic
with Booleans to E [35] and veriT [3], and adding support for Boolean-free higher-order logic
to Zipperposition. Authors of many all state-of-the-art �rst-order provers have implemented
some form of support for higher-order reasoning. This is true both for SMT solvers, witnessed
by the recent extension of CVC4 and veriT [3], and for superposition provers, witnessed by the
extension of Vampire [7]. All of those approaches were arguably more focused on functional
aspects of higher-order logic, such as λ-binders and function extensionality, than on Boolean
aspects such as Boolean subterms and Boolean extensionality. A notable exception is work by
Kotelnikov et al. that introduced support for Boolean subterms to �rst-order Vampire [18,19].

The main merit of our approach is that it combines two successful complementary approaches
to support features of higher-order logic that have not been combined before in a modular way.
It is based on a higher-order superposition calculus that incurs around 1% of overhead on �rst-
order problems compared with classic superposition [5]. We conjecture that it is this e�cient
reasoning base on which the approach is based that contributes to its competitive performance.
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8 Conclusion

We presented a pragmatic approach to support Booleans in a modern automatic prover for
clausal higher-order logic. Our approach combines previous research e�orts that extended �rst-
order provers with complementary features of higher-order logic. It also proposes some solutions
for the issues that emerge with this combination. The implementation shows clear improvement
over previous techniques and competitive performance.

What our work misses is an overview of heuristics that can be used to curb the explosion
incurred by some of the rules described in this paper. In future work, we plan to address this
issue. Similarly, unlike Bentkamp et al. [5], we do not give any completeness guarantees for
our extension. We plan to develop a refutationally complete calculus that supports Booleans
around core rules such as Cases and LC in future work.
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