The TESC Proof Format for First-Order ATPs
(Extended Abstract)

Seulkee Baek

Department of Philosophy, Carnegie Mellon University

27th June, 2020

Abstract

This paper presents TESC, a low-level proof format for first-order ATPs,
and its associated toolchain. Every part of a TESC proof is machine-
checkable, including Skolemization. TESC can also be flexibly extended
to accommodate a variety of first-order theories. The TESC toolchain
compiles ATP-generated TSTP solutions to TESC proofs and verifies them
against TPTP problems. The current version of TESC toolchain can com-
pile solutions in first-order logic with equality generated by Vampire and
E. In a test using randomly selected TPTP problems, it successfully com-
piled 95% and 93% of solutions generated by Vampire and E, respectively.

1 Background

The lack of a standard machine-checkable proof format is a long-standing is-
sue for first-order automated theorem provers (ATPs). Although many ATP
systems support output in the TSTP format [[11]], TSTP solutions cannot (in
general) be mechanically checked as the format lacks a semantic specification.
The absence of a standard format hampers ATP technologies in a variety of
ways, including compromised confidence in answers given by ATPs, costly rep-
etition of proof searches to verify previous results, and difficulty of interface
with external tools. Considering the candidate formats that have been pro-
posed [[9, 4] and the feedback from the community [[7]], two desiderata for a
practical format seem to stand out in particular:



e The format should be readily usable with existing ATPs. If significant
modification is required to emit a proof in the format, the change is
not only costly for developers to implement, but also likely to incur pro-
hibitive overheads in performance. A good format will work with mini-
mally modified solvers, preferably with off-the shelf versions.

e The format should allow every step of a proof to be explicitly recorded
and mechanically checked. ATPs often introduce new formulas which,
although not logically entailed by existing premises, preserve the satis-
fiability of their respective contexts (for convenience, we call such steps
"satisfiability-preserving" for the remainder of the paper). Some impor-
tant examples of such steps include Skolemization and predicate defini-
tion. Failing to support these steps substantially undermines the motiva-
tion for using a low-level proof format.

The two requirements may seem mutually exclusive, but the success of the
DRAT [[12]] and LRAT [5]] formats for SAT solvers proves otherwise. The key
lesson from the SAT solving community is that we can pair a minimal proof
format easily emitted by existing solvers (DRAT) with a detailed and archiv-
able format (LRAT) by using a postprocessor (DRAT-trim) which compiles the
former to the latter. This paper takes a similar approach for first-order ATPs.

The following sections are organized as follows: Section [2| discusses how
this project relates to existing work. Section 3|introduces the new TESC format
and describes its syntax and semantics. Section 4| gives an overview of the
TESC toolchain. Section |5| presents the results of tests using problems from
the TPTP library. Section [f] summarizes the implications and limitations of
what was accomplished.

2 Related Works

The TESC format and toolchain builds on top of the existing TPTP [[10] infras-
tructure, especially the TSTP [[11]] format supported by various ATPs.

As mentioned above, the DRAT [[12]] and LRAT [5] formats have largely
solved for SAT solvers the problem which the TESC format and toolchain seeks
to address for first-order ATPs, and were an important inspiration for this work.

In terms of practical objectives, the TESC toolchain is most closely related
to GDV [9]], as it also aims to provide a general verification method for TSTP



solutions. The main difference is that GDV checks TSTP solutions directly,
while the TESC toolchain produces a separate, low-level proof object.

Foundational Proof Certificates (FPC) [4] is a flexible format for machine-
checkable proofs that can accommodate various logical systems. The scope of
the project is much more broad than just first-order ATPs, but it has been used
to verify TSTP proofs produced by the E theorem prover [3]].

SMT solvers have made more headway into checkable proofs than ATPs,
most notably with the Logical Framework with Side Conditions (LFSC) [2]
and the veriT proof format [[1/]. The latter in particular could also potentially
serve as a proof format for ATPs, given its support for Skolemization.

A relatively recent report by Reger and Suda [[7]] gives a concise summary
of the current situation regarding machine-checkable FOL proof formats, and
also salient arguments on why such a format would be desirable.

3 The TESC Proof Format

Theory Extensible Sequent Calculus (TESCE]) is a low-level, machine-checkable
proof format for first-order ATPs. As the name suggests, the format is based
on sequent calculus [6]] and allows extensions for accommodating a variety of
first-order theories.

Sequent calculus may seem an odd choice of a compilation target for ATP-
produced solutions, since most major ATPs today are based on some variant of
the superposition calculus. There are three main reasons behind this choice.
First, the underlying calculus must be capable of expressing steps that involve
general FOL formulas, since input problems for first-order ATPs are not always
given in clausal form. Second, sequent calculus allows convenient manage-
ment of contexts because every subgoal is associated with a specific context,
which is especially helpful for handling satisfiability-preserving steps whose
correctness can only be established against the entire context. Third, it is easy
to implement and modify proof search in sequent calculus, which considerably
simplifies proof compiler design.

Table 1| shows the axiom and inference rules of the TESC proof format.
Some of its notable features are:

e Positive formulas correspond to left formulas of two-sided sequent cal-
culus, and negative formulas to right.

"https://github.com/skbaek/tesc


https://github.com/skbaek/tesc

Rule Conditions
F}X Ad) der, Ad,d,X)
r,x . LY , der, B($,X,¥)
X _
X e I, fu(t)=0, fp(t) < fp(I), C(t,$,X)
% D &I, D(fp(T),s,X)
S T () =0, fo() <o)
F}X S derl, S(8,X)
r o
s T(I',®
2 (I, 9)
pqus W None
mX None

Table 1: TESC axiom and inference rules.

e Instead of left and right rules for each connective, there are A,B,C,D, S
rules for decomposition of signed formulas, similar to the a, 8,7, 6 rules
of Smullyan’s analytic tableaux [[8]. These rules require decomposition
relations to hold between signed formulas, which are given in Figure

e Variables have the form v(k), where k is its De Brujin index. Quantifiers
are written without variables.

e ¢[k — t] is the result of replacing all variables in ¢ bound to the kth
quantifier with term t. E.g., p(v(0), v(1))[1 — c] = p(v(0),c).

e D rules use parameters of the form 7(k) that are syntactically distinct
from variables.

e fy(x) is the smallest De Brujin index not occurring in x, taking quantifiers

into account. E.g., fv(p(v(0),v(1))) = 2 and fr(Vp(v(0),v(1))) = 1.
Similarly, fp(x) is the smallest parameter index not occurring in x.

4



B(+¢ Vi, +¢,+p)

All,—¢p Vi, —¢) B(—¢ ANy, —¢,—)
Alr,—¢p Vy,—) B(+¢ = ¢, —¢,+¢)
All,+¢ Ay, +¢) B(—¢ & Y,—¢p = ,— = ¢)
A(r,+¢ AN Y, +4) C(t,+Vo¢,+¢p[0—t])
All,—¢ =Y, +¢) C(t,—3¢,—¢[0—t])
Alr,—¢ =, —y) D(k,+3¢,+¢[0— n(k)])
All,+¢ =Y, +¢ > ) D(k,—V¢,—¢[0— n(k)])
Ar,+¢ =Y, +) — ¢) S(+=¢,—¢)

S(—¢,+¢)

Figure 1: Decomposition relation between signed formulas.

e The T rule introduces new hypotheses that preserve satisfiability under
the given background theory.

There are two main uses of the T rule. First, it is used to introduce formu-
las that were originally added by satisfiability-preserving steps (e.g. Skolem-
ization) in the input TSTP solution. Second, it is used to introduce axioms of
the background theory. For instance, it may be used to add +(0 < 1) when
working in the theory of integer arithmetic. This is why the condition T(I", )
is left unspecified in Figure [1; its details depend on the target theory, and you
can obtain specific ‘implementations’ of TESC by determining what counts as
valid applications of the T rule. The current implementation of TESC targets
first-order logic with equality, and allows addition of (1) equality axioms, (2)
choice axioms, and (3) fresh predicate definitions.

3.1 Skolemization

In TESC proofs, Skolemization is handled by introducing and applying choice
axioms of the form

V...V(d¢p — ¢[00~ f(v(0),...,v(k)),1— v(0),...,k+1— v(k)])

where k is the number of outermost universal quantifiers and f is a fresh
Skolem function symbol. The condition T(I',+¢) for T rule holds if ¢ has

5



TPTP Problem TSTP Solution
1. ¢, 1.
2. (]52 2‘ X2
3. ¢ 3. x5
4. ... 4. ...
TESC Proof
11, :
HZ F’ +X15 +X2>_X3 F; +X1: +X25 +X3 F
1L I +x1,— X2 Iy +x1,+ X2 P
F9_X1 Fa +X1
I''=+¢,,+¢,, +¢s,...

Figure 2: Proof compilation overview.

the above form and f does not occur in I'. There is no other Skolemization-
related axiom or inference rule, so all Skolemization steps have to be ‘spelled
out’ in terms of choice axioms.

4 The TESC Toolchain

The TPTP-TSTP Compiler (TTC) accepts a TPTP problem and its TSTP solution
as input and constructs a corresponding TESC proof. The current version of
TTC can compile TSTP solutions in first-order logic with equality generated by
Vampire and E.

Figure 2| shows a high-level overview of the proof compilation process. I’
is the initial sequent, obtained by adding a positive sign to each formula that
occurs in the input TPTP problem. The formulas y4, x5, xs, ... are processed in
the order they appear in the input TSTP solution: for each y;, The proof tree
is split into a side branch (left) with —y; in the context, and a main branch
(right) with +y,. Intuitively, the sub branch is a subgoal in which we must
prove y, using all previously existing hypotheses, and the main branch is a new
main goal in which y, has become available by discharging the subgoal. TTC
uses the information associated with the formula y, (obtained from the clause



containing y; in the TSTP solution) to construct its corresponding subproof IT,,
and proceeds to the next formula y,,,. This procedure is repeated until +_L is
added to the main branch by processing the last clause of the TSTP solution.

Clearly, the most interesting part of proof compilation is the construction
of subproofs I1,, ..., II;, but the current construction methods are too varied
and ad hoc to permit concise presentation. The follow-up full-length paper will
discuss a number of most frequently used proof construction strategies, along
with some simple examples.

In addition to TTC, the TESC toolchain also includes the TPTP-TESC Verifier
(TTV) which accepts a TPTP problem and a TESC proof as input and verifies
that the latter is a correct proof of the former.

5 Test Results

The problems used to test TTC and TTV were selected as follows: first, all
TPTP problems with theorem/unsatisfiable status whose names are marked
with ‘+’ (FOF) or ‘—’ (CNF) were exported using the TPTP2X tool. The export
step failed for some problems due to memory constraints, yielding a total of
13137 TPTP files (this step was necessary because TTC and TTV only accept
standalone TPTP files as input). Then the exported problems were randomly
selected and solved with Vampire until 200 TSTP solutions were obtained. The
same process was repeated for E, producing a different set of 200 solutionsE]
The test was performed using Vampire 4.4.0 and E 2.4 Sandakphu on a com-
puter with Intel Core i7-7500U CPU (2.70GHz) and 8GB of RAM. The ATPs
were run with default settings except for enabling TSTP solution production
and setting the time limit to 60s.

Table [2[ shows the test results using the randomly selected problems. Solu-
tion time is the time it takes for ATPs to produce TSTP solutions, compilation
time is the time spent by TTC to compile them to TESC proofs, and verification
time is the time TTV takes to verify TESC proofs. Values that pertain to all
200 problems are labeled as ‘total’, and values for problems whose solutions
were successfully compiled are labeled as ‘compilable’. For instance, the ‘total’
compilation time is longer than ‘compilable’ compilation time because the for-
mer includes the time TTC spent on solutions it ultimately failed to compile.
Verification succeeded for all proofs, so there is no need to distinguish between

2The TSTP solutions used can be found in the tests directory of the GitHub repository.

7



ATP Vampire E

TPTP problems (total) 200 200
TPTP problems (compilable) 190 186
Solution time (total, seconds) 956.77F 406.19
Solution time (compilable, seconds) 915.28 326.68
Compilation time (total, seconds) 805.84 4111.44
Compilation time (compilable, seconds) 611.50  1600.91
Verification time 59.21 29.06
TSTP solutions size (total, bytes) 5012 31140
TSTP Solutions size (compilable, bytes) 4668 29096
TESC Proofs size 63224 16892

Table 2: Test results for TTC & TTV.

total vs. verifiable proofs.

The compilation success rates are over 90% for both Vampire (95%) and E
(93%). As expected, verifying TESC proofs is significantly faster than solving
TPTP problems with ATPs: the results show speedup by factor of approximately
15.46 for Vampire, and 11.24 for E. The main drawbacks of TESC seem to be
potentially long compilation times (E) and file size blowups (Vampire).

6 Conclusion

In this paper, we have shown that the TESC format and toolchain can be used
in conjunction with first-order ATPs to produce machine-checkable proofs at
acceptable costs. In particular, we could use two state-of-the-art ATP systems,
Vampire and E, without code modifications or special settings that hamper their
performance. The results seem to warrant further investigation involving other
systems and theories to see whether TESC is viable as a standard proof format
for first-order ATPs.

Acknowledgements

This work has been partially supported by AFOSR grant FA9550-18-1-0120.

3There were three problems that Vampire successfully solved under 60s initially, but timed
out afterwards for unknown reasons. For these problems, we assume solution time = 60s.

8



References

[1] Haniel Barbosa, Jasmin Christian Blanchette, and Pascal Fontaine. Scal-
able fine-grained proofs for formula processing. In International Confer-
ence on Automated Deduction, pages 398—412. Springer, 2017.

[2] Frédéric Besson, Pascal Fontaine, and Laurent Théry. A flexible proof
format for SMT: A proposal. 2011.

[3] Zakaria Chihani, Tomer Libal, and Giselle Reis. The proof certifier check-
ers. In International Conference on Automated Reasoning with Analytic
Tableaux and Related Methods, pages 201-210. Springer, 2015.

[4] Zakaria Chihani, Dale Miller, and Fabien Renaud. Foundational proof
certificates in first-order logic. In International Conference on Automated
Deduction, pages 162-177. Springer, 2013.

[5] Luis Cruz-Filipe, Marijn JH Heule, Warren A Hunt, Matt Kaufmann, and
Peter Schneider-Kamp. Efficient certified rat verification. In International
Conference on Automated Deduction, pages 220-236. Springer, 2017.

[6] Gerhard Gentzen. Untersuchungen iiber das logische schliel3en. i. Math-
ematische zeitschrift, 39(1):176-210, 1935.

[7] Giles Reger and Martin Suda. Checkable proofs for first-order theorem
proving. In ARCADE@ CADE, pages 55-63, 2017.

[8] Raymond M Smullyan. First-order logic. Courier Corporation, 1995.

[9] Geoff Sutcliffe.  Semantic derivation verification: Techniques and
implementation. International Journal on Artificial Intelligence Tools,
15(06):1053-1070, 2006.

[10] Geoff Sutcliffe. The TPTP problem library and associated infrastructure.
Journal of Automated Reasoning, 43(4):337, 2009.

[11] Geoff Sutcliffe, Jiirgen Zimmer, and Stephan Schulz. TSTP data-exchange
formats for automated theorem proving tools. Distributed Constraint
Problem Solving and Reasoning in Multi-Agent Systems, 112:201, 2004.



[12] Nathan Wetzler, Marijn JH Heule, and Warren A Hunt. Drat-trim: Effi-
cient checking and trimming using expressive clausal proofs. In Interna-
tional Conference on Theory and Applications of Satisfiability Testing, pages
422-429. Springer, 2014.

10



	Background
	Related Works
	The TESC Proof Format
	Skolemization

	The TESC Toolchain
	Test Results
	Conclusion

