
A Type System for Logical Formulas

Hans de Nivelle

School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan City,
Kazakhstan, hans.denivelle@nu.edu.kz

Abstract. We want to develop a programming language that is opti-
mized for the implementation of logical formulas and logical algorithms.
We want this language to be statically typed. This introduces some chal-
lenges to the type system: Logical formulas are tree-like structures that
are recursively defined by different subcases that can have very different
forms.
We present a type system in which such types can be concisely defined.
In order to determine with which subcase we are currently dealing, we
use subtypes (which we call ‘adjectives’). We show that the type and
adjective system (membership and inclusion) are decidable by means of
translation into regular tree automata.

1 Introduction

Our goal is to develop a programming language that is specialized for the imple-
mentation of algorithms working on logical proofs and formulas. Before, we have
implemented theorem provers in C++. (See [4] or [5]). Such theorem provers typ-
ically consist of two parts: The first part transforms the logic of interest into a
normal form. This normal form is much simpler than the logic of interest. Proof
search takes place on the normal form. For this part, C++ is a suitable lan-
guage. Speed is important, and the data format is simple. However, if one needs
more operations on the logic of interest, for example simplifications, translations
between different logics, or proof transformations, then C++ is not suitable.
We have considered using alternative programming languages, like Scala ([9]),
OCaml ([7]) or Haskell ([6]), but none of these languages is suitable for our goals.
We need a language in which one can represent state (which implies that the
languages must have some imperative features), that runs natively with a good
interface to C++, while still allowing for high level programming. We will de-
velop a type system that is high level on one side, but which still has an efficient
mapping into low level implementation on the other side. In our algorithms, we
want to use C style switch instead of matching as main control mechanism, be-
cause it is more efficient. In order to make this possible, one needs dependent
types, which means that the types of later fields can depend on the values of
earlier fields. This corresponds to the fact that in a logical formula, existence of
substructures depends on the logical operator. In order to remove the need for
casts, we use adaptive typing. After every conditional statement, the compiler
knows that the check succeeded, which limits the formulas that are possible at

this point. For example, if one checks that a formula has a binary operator, and
the check succeeds, then one can be sure that the two subformulas exist, and
one can safely access them. Once the need for type casts has been removed, it
is possible to write code that is as concise as code that uses matching, but more
efficient, because all existence checks are performed at compile time and C-style
switch is cheap at run time. In order to be able to make the checks at compile
time, one must be able to check inclusion relations between subtypes of formulas.
Concretely, one must be able to check that the cases in a switch are exhaustive,
(check that ⊤ ⊆ C1 ∨ · · · ∨Cn), check that the cases are non-overlapping (check
that Ci, Cj ⊆ ⊥ for i 6= j), and check that the current case implies the existence
conditions of the subfields (check that Ci ⊆ E.) In this paper, we will develop
the techniques for performing these checks. The outline of this paper is as fol-
lows: We will introduce the type system and explain its use below. In Section 2,
we explain how types are translated into regular tree expressions. In Section 3,
we translate the regular expressions into tree automata and show how to decide
dependencies between them.

Definition 1. We use primitive types void, bool, char, index, integer, double, and
selector. There are no values of type void. The other types allow values. The types
bool, char, index, integer, double are ordered, type selector is unordered.

An index is an integer≥ 0 whose size is big enough to index the biggest array that
fits in memory. It is the equivalent of size_t in C++. Type integer consists of
integers of unbounded precision. Type selector contains only named constants.
Its main purpose is to represent logical operators as named constants. Type
selector is similar to enumeration types, but it has no computation, no order,
cannot be converted to integer types, and there exists only one global selector
type. There is no need to define different enumeration types, because every
application automatically generates a subtype. Internally, selector is mapped into
small integer contants. We write values of type selector as identifiers preceded
by a question mark, e.g. ?and,?or,?implies,?equiv, or ?zero,?succ.

We will now define types and adjectives. Adjectives are similar to subtypes.
We prefer the term ‘adjective’ over ‘subtype’, because adjectives overlap, are
frequently created for one time use, and are not indended to hold independent
objects. Types may contain adjectives in their definition, but we first define the
types. Types can be either simple or compound. Compound types are simple
structs, variant structs, or arrays.

Definition 2. We first define the simple types:

– A primitive type is a simple type.
– An identifier is a simple type.
– If T is a type, A is an adjective, then T ◦A is a simple type.

Compound types are recursively defined as follows:

– struct(v1:V1, . . . , vn:Vn) with n ≥ 0 is a compound type.

– array(v1:V1, . . . , vn:Vn; w1:W1, . . . , wm:Wm) is a compound type, where
v1:V1, . . . , vn:Vn (n ≥ 0) are the fixed fields of the array, and w1:W1, . . . , wm:Wm

with m > 0 are the repeated fields of the array.
– variant(v1:V1, . . . , vn:Vn, s:S; A1 ⇒ C1, . . . , Am ⇒ Cm) is a compound

type. Here v1:V1, . . . , vn:Vn (n ≥ 0) are fixed fields, s:S is the pivot field,
A1, . . . , Am (m ≥ 2) are adjectives, and C1, . . . , Cm are compound types
again. The type of the pivot field S must be primitive.

In all three cases, V1, . . . , Vn, W1, . . . ,Wm must be simple types. In a variant
type, C1, . . . , Cm are compound types again.

We distinguish between simple and compound types, because we want that every
compound type has a name, which solves some technical problems. It has no
consequences for expressivity, because one can always introduce a name for a
compound type, and use the name as simple type.

Compound types are designed to have an efficient representation in C. In a
compound type, all V1, . . . , Vn, W1, . . . ,Wm, S that are primitiv, are stored in
place. The V1, . . . , Vn, W1, . . . ,Wm, S that have a compound type, are repre-
sented by a pointer to the heap. An array is like a C++ std::vector, it grows on
demand, but is more flexible, because it can have a fixed prefix which is stored
right before the repeated part in the same memory segment. As far as we know,
C++ has no data structure that can do this. The elements in the fixed part are
addressed just by their field names vi, the elements in the repeated part are
addressed by their field name wi(t), where t is of type index. We will not further
discuss the intended low level implementation in this paper, and instead use a
simple representation based on Prolog-style lists.

Definition 3. Adjectives are recursively defined as follows:

– If v is an identifier (that should be defined as adjective), then v is an adjec-
tive.

– If c1, . . . , cn (n ≥ 0) are constants with a common primitive type, then
{c1, . . . , cn} and its complement {c1, . . . , cn}

C are adjectives.
– If c is a constant of a primitive type, then (≤ c), (≥ c), (< c) and > c) are

adjectives.
– If A is an adjective, f is an identifier (that should represent a fixed field),

then f [A] is an adjective.
– If A is an adjective, c1, . . . , cn (n > 0) are constants of type index, and f is

an identifier (that should represent a repeated field), then {c1, . . . , cn}f [A] is
an adjective.

– If A is an adjective, c is a constant of type index, and f is an identifier
(that should represent a repeated field), then (∀≥c)f [A] is an adjective. In
case c = 1, we just write ∀f [A].

– If c1, . . . , cn (n > 0) are constants of type index, then size({c1, . . . , cn}) is
an adjective.

– If c is a constant of type index, then size(≥ c) is an adjective.
– If A1, . . . , An are adjectives, then A1∩· · ·∩An and A1∪· · ·∪An are adjectives.

We write ⊤ =
⋂

∅, and ⊥ =
⋃

∅.

Adjectives are more subtle than they seem. They contain identifiers that
need to be type checked and resolved before they can be used. In addition, the
semantics of ∩ and ∪ is nonstandard.

The intuitive meaning of {c1, . . . , cn}, {c1, . . . , cn}C , (≤ c), (≥ c), (< c),
and (> c) is evident. For example, uindex ◦ (> 4) denotes an index greater than
4, and selector ◦ {?true, ?false} denotes a selector that equals ?true or false.

The intuitive meaning of f [A] is: whose f -field satisfies A. For example, if field
f has type selector, then f [{?and, ?or}] means that f must be in {?and, ?or}.
In order to be meaningful, the adjective has to be type checked. It has to be
determined on which type f [{?and, ?or }] is being applied, and that this type
has a field with name f whose type is selector. Fields can have preconditions
corresponding to different options of variant, which have to be checked addition-
ally.

The intuitive meaning of adjective {c1, . . . , cn}f [A] is: We are an array, and
our f(c1), . . . , f(cn) satisfy A. The intuitive meaning of ∀≥cf [A] is: We are an
array, for which f(i) satisfies A, when i ≥ c. As for f [A], adjectives of these
two forms have to be type checked: It must be checked that the f field exists,
is a repeated field, and A can be applied on its type. In addition, adjectives of
form {c1, . . . , cn}f [A] should be used with care. If specific indices have specific
properties, one should consider using struct and giving them names, instead of
using an array. We defined this form mostly because it is possible in our proof
system, not because we think it is useful. On the other hand, adjectives of form
∀f [A] have many natural examples.

The intuitive meaning of size({c1, . . . , cn}) is: We are an array, whose size is
in {c1, . . . , cn}. The c1, . . . , cn must be constants. There is no way of expressing
size in terms of a variable, for example stating .size() ≤ i. The same remark as
for {c1, . . . , cn}f [A] applies also here: If the size of the array is restricted, one
should consider using variant or struct. The intuitive meaning of size(≥ c) is:
We are an array of size at least c.

The meaning of A1∩· · ·∩An is: Fulfills all Ai. The meaning of A1∪· · ·∪An is:
Fulfills at least one Ai. Note that ∪ and ∩ are not complementary. The meaning
of ∩ is closer to &&, while the meaning of ∪ is just logical disjunction.

We give an example that illustrates the intended application. We define
propositional logic, where variables are represented by arrays of characters, the
operations → and ↔ have fixed arity 2, and ∧,∨ have variable arity. There is
no need to define ⊤ or ⊥ separately, because ⊤ =

∧

∅, and ⊥ =
∨

∅.

Example 1. We define propositional logic:

TYPE prop := variant(sel: selector;

{?var} ⇒ array(; c: char)
{?not} ⇒ struct(body:prop)
{?implies, ?equiv} ⇒ struct(left:prop, right:prop)
{?and, ?or} ⇒ array(; sub:prop))

Negation normal form (NNF) can be defined by the following adjective:

ADJ nnf:prop :=
⋃

sel[{?var}]
sel[{?not}] ∩ body[sel[{?var}]]
sel[{?and, ?or}] ∩ ∀sub[nnf]

Our long term goal is to be able to implement logic in a nice and efficient way.
If f has type prop, then we want to be able to write code of the following form:

Example 2. We present a procedure that prints a logical formula:

void print(prop f) :
switch f.sel :

case ?var :
for uindex i := 1 to f.size do :

print(f.c(i))
case ?not : print(”(not ”); print(f.body); print(”)”)
case ?implies : print(”(”); print(f.left);

print(” implies ”); print(f.right); print(”)”)
case ?equiv : print(”(”); print(f.left); print(” equiv ”)

print(f.right); print(”) ”);
case {?and, ?or} :

if f.op = ?and && f.size = 0 then print(”true”); return

if f.op = ?or && f.size = 0 then print(”false”); return

if f.op = ?and then print(”and(”); else print(”or(”)
print(f.sub(1))
for uindex i := 2 to f.size do :

print(”, ”); print(f.sub(i)))

In order to do print a formula this, one needs to switch on f.sel. In each case of
the switch, the compiler knows that it is dealing with an f of type f.sel[S], for
S ∈ {?var, ?not, implies, equiv, ?and, ?or}. Therefore, it knows that the accessed
subfields exist. Field size is a field that is defined for every option that has
repeated fields. Access of repeated fields has form .sub(i), where sub is the field
name and i must have type index. Note that, in this example, indices run from
1 to the size.

If we would be using C++ we would have to cast f into a subtype in every
case of the switch, or use forms of subfield access that cannot be checked at
compile time. In languages with matching, one would use matching instead of
switch. It is less efficient, and less flexible. Note that in principle, adjectives of
any form can be used in switch statements.

In order to derive the adjectives that apply to f at a given point in function
print, we use abstract interpretation. (See [8] or [3]). The technique has been
worked out, and will be elswehere.

Since field names, constructor names, function and adjective names can be
overloaded, we need a framework for doing this. We do this by distinguishing
between inexact and exact identifiers. The program contains inexact identifiers

which are overloaded by exact identifiers. During compilation, the compiler re-
places the inexact identifiers by exact identifiers. One inexact identifier can have
any number of exact instances. We will now introduce the symbol table which
is the data structure that holds all type, adjective and field definitions. Names
that are introduced in the symbol table are always exact.

Definition 4. The symbol table Σ is a finite sequence of definitions of the
following forms. The defined identifier is always exact.

– A type definition has form TYPE v := T, where v is an identifier, and T a
type or the expansion set of a compound type.

– An adjective definition has form ADJ v:T := A, with v an identifier, T a
type, and A an adjective.

– A function definition has form FUNC f:U(U1, . . . , Ua) := G, in which f is
an identifier, U is the return type, U1, . . . , Ua 6= void are the types of the
arguments, and G a flow graph. We call a ≥ 0 the arity of the function.
Arguments types U1, . . . , Ua can be marked as reference arguments

– A fixed field definition has form

FIELD f:U(U1) := c/{ void(A1,1, A1,2), . . . , void(Am,1, Am,2) }.

where f is an identifier (name of the field), U is the type of the field, U1

is the compound type of which f is a field, p is the relative position of the
field, and each void(Ai,1, Ai,2) is a possible type of assignment to f. We have
m ≥ 2 iff f is a pivot field.

– A repeated field definition has form FIELD[] f:U(U1, index) := (c, d), where
f is an identifier (name of the field), U is the type of the field, U1 is the
compound type of which f is a field, c is the number of fixed fields of the
compound type, and d is the relative position of f among the repeated fields.

Field definitions will be generated automatically from compound type defini-
tions. In every array, we will call the first repeated field the base field, and we
assume that it is an overload of the inexact identifier repbase, in addition to its
declared name. In prop, the fields c and sub are base fields. Before we explain
how field and constructor definitions are obtained, we give another example:

Example 3. Natural numbers can be defined as follows:

TYPE nat := variant(sel: selector◦{?zero, ?succ};
?zero ⇒ struct(),
?succ ⇒ struct(pred:nat)).

A natural number is either zero, or a successor. If we are zero, we have no further
fields. If we are a successor, then we have one field (called pred), that is also a
natural number. One can define adjectives iszero or issucc as follows:

ADJ iszero:nat := sel[{?zero}],
ADJ issucc:nat := sel[{?succ}],
ADJ even:nat := iszero ∪ (issucc ∩ pred[odd])
ADJ odd:nat := issucc ∩ pred[even]

Note that we do not think that natural numbers should be implemented like
this in real code. Example 3 is just an illustration of our type system. We will
now explain how field definitions and constructors are obtained from compound
types. This is surprisingly tricky.

Definition 5. Let (x1, . . . , xn) be a sequence. We write x for the complete se-
quence. We write (·) for sequence concatenation, i.e. if x = (x1, . . . , xn), y =
(y1, . . . , ym), then x · y = (x1, . . . , xn, y1, . . . , ym). We write ǫ for the empty se-
quence, and use power notation for repeated concatenation, i.e. x0 = ǫ, xk+1 =
xk · x.

We need to create field definitions and constructor definitions for every com-
pound type. In case, a compound type has an array amongs its options, the set
of constructors is infinite. Therefore, constructors have to be generated on the
fly when they are needed. More precisely, when a constructor of arity a is called,
the possible constructors of arity a have to be created and inserted into Σ so
that they become available as overload. This can be done in time O(a), since
there is only one constructor per option for a given arity a.

In order to create the constructors and field definitions for a compouned type,
we use expansions. An expansion of a compound type is obtained by making a
choice for the variants that occur in it. The result is a 5-tuple (v, V ,A, w,W),
in which v are the field names, V are their types, and A are the adjectives that
were collected on the way. If there is a repeated part, it is registered in w,W.

Definition 6. Let C be a compound type. We define the expansion set E(C) of

C as E(ǫ, ǫ, ǫ, C), where E(v′, V
′
, A

′
, C) is defined as follows:

– If C has form struct(v1:V1, . . . , vn:Vn), then

{ E(v′, w′, A
′
, C) = (v′ · (v1, . . . , vn), V

′
· (V1, . . . , Vn), A

′
· (⊤)n, ǫ, ǫ) }.

– If C has form array(v1:V1, . . . , vn:Vn; w1:W1, . . . , wm:Wm), then E(v′, w′, A
′
, C) =

{ (v′·(v1, . . . , vn), V
′
·(V1, . . . , Vn), A

′
·(⊤)n, (w1, . . . , wm), (W1, . . . ,Wm)) }.

– If C has form

variant(v1:V1, . . . , vn:Vn, s:S; A1 ⇒ C1, . . . , Am ⇒ Cm),

then E(v′, w′, A
′
, C) =

m
⋃

j=1

E(v′ · (v1, . . . , vn, s), V
′
· (V1, . . . , Vn, S), A

′
· (⊤)n · (Aj), Cj).

For every (v, V ,A, w,W) ∈ E(C), we have ‖v‖ = ‖V ‖ = ‖A‖, and ‖w‖ = ‖W‖.

Function E(v′, V
′
, A

′
, C) constructs the expansion set ofC, while putting (v′, V

′
, A

′
)

in front of each expansion. Once we have the expansion set E(C), we can com-
pletely discard C, because all information is now contained in E(C). We will use
E(C) to generate the field definitions.

In principle, field definitions can be generated directly from C, but it is better
to use E(C), because then it is easier to merge fields that have a common initial
sequence, which makes the use of such fields more flexible. For example, if C is

variant(s: index ◦ {1, 2, 3};
{1} ⇒ struct(x:double, y:double, z:double)
{2} ⇒ struct(x:double, y:double, i: integer)
{3} ⇒ struct(x:double, b:bool))

then the three definitions of field x will end up in the same location in memory,
and therefore can be defined as a single field which does not depend on the value
of s. Similarly, the two occurrences of field y can be merged into a single field
that is defined when s ∈ {1, 2}. Because of this, we will define a field creation
procedure that takes the expansion set as starting point. It iteratively assigns
exact identifiers to the field declarations at position i in E, while simultaneously
inserting the field definitions into Σ, and making sure that the same exact iden-
tifier is being assigned to fields that have the same inexact name, the same type,
and all whose predecessors before it were assigned the same exact identifier.

Definition 7. Let TYPE c := C be a compound type definition, let E = E(C).
The field assignment procedure generates field definitions from E, and simultane-
ously replaces inexact field names in E by exact field names. Let n be the maximal
length of a v, for all (v, V ,A,w,W) ∈ E. For i = 1 to n, do the following:

1. As long as there exists a (v, V ,A,w,W) ∈ E, for which the field name vi is
not exact, let

E′ = { (v′, V
′
, A

′
, w′,W

′
) ∈ E | for all j ≤ i, v′j = vj and V ′

j = Vj}.

These are the expansions that agree with (v, V ,A,w,W) up to and including
position i. Note that all vj with j < i are exact, while vi itself is inexact.

2. Create a fresh exact identifier x and replace all v′i in E by x (and also in
E′.)

3. Let Z =
⋃

(v1[A
′
1] ∩ · · · ∩ vi−1[A

′
i−1]), for which (v′, V

′
, A

′
, w′,W

′
) ∈ E′.

Note that
⋃

and
⋂

are adjective operations, not set operations. It may be
possible to simplify Z by removing the vj [A

′
j], for which A′

j = ⊤. The iden-
tifiers v1, . . . , vi−1 are exact.

4. For each e = (v′, V
′
, A

′
, w′,W

′
) ∈ E′, let

Ye = void(c ◦ (v1[A
′
1] ∩ · · · ∩ vi−1[A

′
i−1]), V ′

i ◦A′
i).

Append the field definition

FIELD x:Vi(c ◦ Z) := i/{Ye | e ∈ E′}

to Σ. Again it is possible to simplify the Ye by removing trivial vj [⊤].

For repeated fields, we need to do the same, but it is easier because there is no spe-
cial treatment of common initial sequences for arrays. For every (v, V ,A,w,W) ∈
E(C), for every j ≤ ‖W‖, do the following:

1. Create a fresh exact identifier x, and replace wj by x.
2. Using n = ‖V ‖, append

FIELD[] wi:Wj(c ◦ (v1[A1] ∩ · · · ∩ vn[An]), index) := (‖V ‖, ‖W‖)

to Σ.

Definition 7 can generate quite ugly adjective expressions. It is complicated
by the fact that we want to merge fields with a common initial sequence. In
practical examples that we considered, there are no nested optional fields, which
greatly simplifies the possible adjective expressions. We considered restricting
definition 7 but writing out the restriction is as ugly as writing out the unre-
stricted version.

((s, x, y, z), (index ◦ {1, 2, 3}, double, double, double), ({1},⊤,⊤,⊤), ǫ, ǫ),
((s, x, y, i), (index ◦ {1, 2, 3}, double, double, integer), ({2},⊤,⊤,⊤), ǫ, ǫ),
((s, x, b), (index ◦ {1, 2, 3}, double, bool), ({3},⊤,⊤,⊤), ǫ, ǫ)

Assignments to pivot fields must be restricted in such a way that they do not
bring the type in an undefined state. This greatly complicates the definition of
FIELD. We considered several approaches and none of them was prettier than
the one provided in this paper.

We also need constructors. These must be generated as needed, because their
number is infinite in the presence of repeated fields.

Example 4. We give the expansion set of the compound type nat :

{

((sel), (?selector ◦ {?zero, ?succ}), ({?zero}), ǫ, ǫ),
((sel, pred), (?selector ◦ {?zero, ?succ}, nat), ({?succ},⊤), ǫ, ǫ)

}

Example 5. We give the expansion set of the compound type prop :

((sel), (?selector ◦ S), ({?var}), (c), (char))
((sel, body), (?selector ◦ S, prop), ({?not},⊤), ǫ, ǫ)
((sel, left, right), (selector ◦ S, prop, prop), ({?implies, ?equiv},⊤,⊤), ǫ, ǫ),
((sel), (selector ◦ S), ({?and, ?or}), (sub), (prop))

2 Regular Expressions over Trees

We want to obtain a decision procedure that decides inclusions between adjec-
tives. In order to obtain this, we will first represent data by Prolog-style lists
over the primitive types. After that, we translate adjectives and types into a
kind of tree regular expressions. In the next section, we translate the expression
into tree automata, and show how to decide type inclusions.

Definition 8. We recursively define terms:

– Constants of the primitive types bool, char, index, integer, double, or selector
are terms.

– nil is a term. If t1 and t2 are terms, then cons(t1, t2) is a term.

We use standard list notation, i.e. we write [] for nil, and [t1, . . . , tn] with n > 0
for cons(t1, [t2, . . . , tn]). We also use the notation [t1, . . . , tn | R], defined from
[t1 | R] = cons(t1, R) and [t1, t2, . . . , tn | R] = cons(t1, [t2, . . . , tn | R]).

Data are mapped into lists as follows: Values of primitive types are rep-
resented by themselves. Data of compound types without repeated fields are
represented by simple lists. Data of compound types with repeated fields are
represented by lists of form [v1, . . . , vn, [[w1,1, . . . , w1,m], . . . , [wk,1, . . . , wk,m]]],
where v1, . . . , vn are the fixed fields, k ≥ 0 is the size, and wj,1, . . . , wj,m are
the repeated fields. For example a propositional atom of type prop could be
represented by [?var, [[′v′], [′a′], [′r′]]]. Its negation can be represented by
[?neg, [?var, [[′v′], [′a′], [′r′]]]]. Note that this representation is not the repre-
sentation that we use at run time. At run time, repeated fields will be stored in
C++ style vectors. The list representation is intended for reasoning only.

We will now define tree regular expressions. As in the word case, a regular
expression z defines a subset of trees, which is called the language of z. We
need to define the languages of regular expressions together with the regular
expressions. This is not completely trivial, because our regular expressions may
contain variables that refer to other regular expressions. These variables are
the result of cross references in adjectives, which are allowed. For example in
Example 3, the definitions of even and odd refer to each other. As a consequence,
we cannot define the meaning of regular expressions at once. Instead we have
to define a ’meaning update function’, whose fixed point will be the intended
meaning of the expression. So, we start by defining regular expressions together
with a temporary meaning function σ. The fixed point of the meanings will be
defined in Definition 10.

Definition 9. Assume that σ is a partial function that maps variables to tree
languages. We recursively define more expressions z for which σ(z) is defined.

– If T is the name of a primitive type, then σ(T) = {x:T | ⊤}.
– If v is a variable then σ(v) is defined iff v is in the domain of σ.

– If c is a constant of type T = bool, char, index, integer, double, or selector,
then σ(c) = {c} and σ(c 6=) is defined as {x:T | x 6= c}.

– If c is a constant of type T = bool, char, index, integer, or double, then we
define σ(c>) = {x:T | x > c} and σ(c<) = {x:T | x < c}.

– σ(nil) is defined as {nil}.
– If σ(z1) and σ(z2) are defined, then cons(z1, z2) is defined as {cons(t1, t2) |

t1 ∈ σ(z1) and t2 ∈ σ(z2)}.
– If σ(z1), . . . , σ(zn) (n ≥ 0) are defined, then σ(z1 ∧ · · · ∧ zn) is defined as

σ(z1) ∩ · · · ∩ σ(zn), and σ(z1 ∨ · · · ∨ zn) is defined as σ(z1) ∨ · · · ∨ σ(zn).

– If σ(z1) and σ(z2) are defined, then σ(cons∗(z1, z2)) is defined as the smallest
set S which has σ(z2) ⊆ S and for all t1 ∈ σ(z1) and t2 ∈ S, we have
cons(t1, t2) ∈ S.

We call the expressions z for which σ(z) is defined regular expressions over σ.
If σ(z) is defined for some σ, we call z just a regular expression.

We define the fixed point operator:

Definition 10. Let {v1/z1, . . . , vm/zm} be set of simultaneous expression def-
initions. For every j (1 ≤ j ≤ m), we define σ1(vj) = ∅, σi+1(vj) = σi(zj),
σ(vj) =

⋃

i∈N σi(vj).

Example 6. Consider the simultaneous definitions {v1/cons(1, v2)∨nil, v2/cons(2, v1)}.
We have

σ0(v1) = ∅, σ0(v2) = ∅
σ1(v1) = {nil} σ1(v2) = ∅
σ2(v1) = {nil} σ2(v2) = {cons(2,nil)}
σ3(v1) = {nil, cons(1, cons(2,nil))} σ3(v2) = {cons(2,nil)}

The pattern is clear.

We now give the functions REGEXP that translate type and adjective decla-
rations into regular expressions. For example, Definition 4 can be translated
as:

nat =
∨

{

[selector ∧ (?zero∨?succ)∧?zero]
[selector ∧ (?succ∨?succ)∧?succ, ?nat]

Definition 11. Let Σ be a symbol table, and let T be a non-compound type.
REGEXPΣ(T) returns a regular expression that defines the data terms having
type T.

– If T is a primitive type that is not void, then REGEXPΣ(T) = T.
– If T has form v, with v an exact identifier, then REGEXPΣ(v) = v.
– If T has form v, where v is an inexact identifier for which there exists exactly

one type definition TYPE v′ := T ′ in Σ, with v′ a possible overload for v,
then REGEXPΣ(T) = v′. Otherwise, the result is an error.

– If T has form T ′ ◦ A, then REGEXP(T ′ ◦ A) is obtained as follows: First
let z1 = REGEXPΣ(T

′). Next, let z2 = REGEXPΣ(z1, A). (this refers to
Definition 13) Define REGEXP(T ′ ◦A) = z1 ∧ z2.

Definition 12. Let Σ be a symbol table, let E be the expansion set of a com-
pound type that has been processed by the field creation procedure of Definition 7.
REGEXPΣ(e) returns a regular expression that defines the expansion e.

– Write e in the form (v, V ,A,w,W), let n = ‖V ‖. We know that the field
names in v and w are exact.

– For every i (1 ≤ i ≤ n, construct zi = REGEXPΣ(Vi ◦Ai).
– If ‖w‖ = ‖W‖ = 0, then REGEXPΣ(e) = [z1, z2, . . . , zn].

– If ‖w‖ = ‖W‖ > 0, then let m = ‖W‖. For each j (1 ≤ j ≤ m), let
yj = REGEXPΣ(Wj). (The Wj are the types in the repeated part of e.)
Define REGEXPΣ(e) = [z1, z2, . . . , zn, cons

∗([y1, . . . , ym],nil)].

The translation function for adjectives has three arguments. It needs an ad-
ditional context Γ, because adjectives may contain field names and references
to other adjectives that have to be type checked and resolved. In order to do
this, we need to know the type on which the adjective is being applied. This
type is represented by Γ. During type checking, we call the decision procedure
in Section 3 in order to resolve identifiers.

Definition 13. Let Σ be a symbol table, let Γ be regular expression and let
A be an adjective. REGEXPΣ(Γ,A) defines a regular exprssion that represents
adjective A when applied on type Γ.

– If A is an inexact identifier v, then we need to find an overload for v. Let
v1, . . . , vn be the exact identifiers that have an adjective definition ADJ vi:Ti :=
Ai in Σ, s.t. vi is a possible overload of v, and σ(Γ) ⊆ σ(REGEXPΣ(Ti)). If
there exists a unique i, s.t. for all i′ (1 ≤ i′ ≤ n) we have σ(REGEXPΣ(Ti′)) ⊆
σ(REGEXPΣ(Ti)), then REGEXPΣ(v) = vi. Otherwise, it is undefined.
(We explain the meaning below.)

– If A has form {c1, . . . , cn}or{c1, . . . , cn}C , then verify that every i, we have
ci ∈ σ(Γ). Define REGEXPΣ(Γ,A) = (c1∨· · ·∨cn) and REGEXPΣ(Γ,A) =

(c 6=1 ∧ · · · ∧ c 6=n).
– If A has form (≤ c), (≥ c), (< c), or (> c), then first verify that c ∈ σ(Γ).

After that, return the suitable c ∪ c<, c ∪ c>, c<, or c>.
– If A has form f [A′] and f is not exact, then let f1, . . . , fn be the exact,

non-repeated field names defined in Σ that are possible overloads for f. Each
fi has a definition FIELD f:Ui(Ui,1) := ci/Si in Σ. If there is an i s.t.
σ(Γ) ⊆ σ(REGEXPΣ(Ui,1)), then continue in the next case with fi[A

′].
(there may be none, but not more than one, because field names cannot be
redefined on a single expansion) then

– If A has form f [A′] and f is exact, then let FIELD f:U(U1) := c/S be the
definition of f. Let z = REGEXPΣ(U◦A′). (We recursively obtain an expres-
sion for A′ on type U.) Define REGEXPΣ(Γ,A) = cons

c−1(⊤, cons(z,⊤)).
It is a list of length at least c, whose c-th element equals z.

– If A has form {c1, . . . , cn}[A′], ∀≥c[A′], size({c1, . . . , cn}), or size≥(c), then
we first resolve the repbase field in context Γ. Let f1, . . . , fn be the exact field
names defined in Σ, that are candidate overloads for repbase, and whose def-
inition FIELD[] f:Ui(Ui,1, index) := ci/1 has σ(Γ) ⊆ σ(REGEXPΣ(Ui,1)).
If n = 1, then f1 is the overload for repbase.

1. If A = {c1, . . . , cn}[A′], then let z = REGEXP
[]
Σ(Γ,A

′), where REGEXP[]

is defined in Definition 14. Let m = max({c1, . . . , cn}). Define REGEXPΣ(Γ,A) =
cons

∗(⊤, [z1, . . . , zm]), where zj = z if j ∈ {c1, . . . , cn}, and ⊤ otherwise.

2. If A = ∀≥c[A′], then let z = REGEXP
[]
Σ(Γ,A

′). Define REGEXPΣ(A) =
cons

∗(z, z′), where z′ = [⊤, . . . ,⊤] with length c.

3. If A = size({c1, . . . , cn}), then for each i, let zi = [⊤, . . . ,⊤] with length
ci. Define REGEXPΣ(A) = z1 ∨ · · · ∨ zn.

4. If A = size≥(c), then let z = [⊤, . . . ,⊤] with a length of c. Define
REGEXPΣ(A) = cons∗(⊤, z).

– If A has form A1 ∪ · · · ∪An, then REGEXPΣ(A) = REGEXPΣ(A1) ∨ · · · ∨
REGEXPΣ(An).

– If A has form A1 ∩ · · · ∩ An, then iteratively let zi = REGEXPΣ(Γ ∧ z1 ∧
· · · ∧ zi−1, Ai). Return z1 ∧ · · · ∧ zn.

Definition 14. Let Σ be a symbol table, let Γ be a regular expression and let

A be an adjective. REGEXP
[]
Σ(Γ,A) defines a regular expression that represents

the (repeated) adjective A when applied on type Γ.

– If A has form f [A′], with f a non-exact field name, and A′ a (non-repeated)
adjective, then we need to find an overload for f. Let f1, . . . , fn be the exact
(repeated) field names in Σ that are potential overloads of f. Each fi has

a definition FIELD[] fi:Ui(Ui,1, index) := (ci, di) in Σ. If there is an i, s.t.
σ(Γ) ⊆ σ(REGEXPΣ)(Ui,1)), then continue in the next case with fi[A

′]. As
in the non-repeated case, n ≥ 1.

– If A has form f [A′], with f an exact name of a repeated field, then let

FIELD[] f:U(U1, index) := (c, d) be the definition of f. Let z = REGEXPΣ(U◦

A′). Define REGEXP[](A) = cons
d−1(⊤, cons(z,⊤)). It is a list of length

at least d, whose d-th element equals z.

We show how natural numbers are translated into Horn clauses. The expansion
set of nat was given in Example 4.

Example 7. We define the regular expressions for propositional logic:

prop =
∨

[selector∧?var, cons
∗([char],nil)]

[selector∧?not, prop]
[selector ∧ (?implies)∨?equiv), prop, prop]
[selector ∧ (?and∨?or), cons

∗([prop],nil)]

Negation normal form (NNF) can be defined by the following adjective:

nnf =
∨

[selector∧?var | ⊤]
[selector∧?not, [selector∧?var | ⊤] | ⊤]
[selector ∧ (?and∨?or), cons

∗([nnf],nil) | ⊤]

3 Decision Procedure for Type Inclusion

Our goal is to decide adjective inclusion relations of form (nat ⊆ even ∨ odd),
(case completenss) or (nat∧ even)∧ odd ⊆ ⊥ (case disjointness.) More precisely

Definition 15. Let {v1/z1, . . . , vn/zn} be a set of regular expression definitions.
Let z′1 and z′2 be regular expressions over the variables v1, . . . , vn. Does σ(z′1) ⊆
σ(z′2) hold? If not, find a term t ∈ σ(z′1)\σ(z

′
2).

The type inclusion problem can be solved by adapting standard tree automata
techniques. We will translate the definitions of the regular expressions z′1, z

′
2

into non-deterministic tree automata. After that, we transform the resulting
automata into deterministic automata, and solve the inclusion problem by con-
structing the product automaton.

Problem 15 is also used in Definitions 13 and 14 for the resolution of inexact
identifiers in adjective definitions. We define non-deterministic tree automata,
mostly following [2].

Definition 16. A non-deterministic, merging, finite tree automaton (NFTA)
is defined as a tuple A = (Q,F , Qf , ∆), where Q is a finite set of states,
F is the signature, Qf ⊆ Q is the set of accepting states, and ∆ is a set
of transitions of two possible forms: The first form is f(q1, . . . , qn) → q, with
f ∈ F , q1, . . . , qn, q ∈ Q, and the second form is q1, . . . , qn → q with n ≥ 1.

Transitions of the first form are completely standard (see [2]). Transitions of the
second form are ǫ-transitions when n = 1. If n > 1, they are truly merging, be-
cause they require the automaton to be in all states q1, . . . , qn for the same term,
in order to reach state q. Merging transitions naturally occur as the translations
of regular expressions of form z1∧· · ·∧zn. In our case, F consists of the symbols
cons,nil as well as symbols of form c, c 6=, c<, c>. Symbols of the last three forms
need special attention, because they have hidden dependencies originating from
their meaning. Without special treatment, e.g. 3> ⊆ 2> would be not provable.
We will deal with this problem in Definition 19.

Definition 17. Let A = (Q,F , Qf , ∆) be a tree automaton. A configuration of
A has form q(t) with t a term over signature F and q ∈ Q. The set of reachable
configurations R is defined as the smallest for which

– If q1(t1), . . . , qn(tn) ∈ R, and (f(q1, . . . , qn) → q) ∈ ∆, then q(f(t1, . . . , tn)) ∈
R,

– If q1(t), . . . , qn(t) ∈ R, and (q1, . . . , qn → q) ∈ ∆, then q(t) ∈ R.

An automaton A accepts t if there exists a state q ∈ Qf , s.t. q(t) ∈ R.

Regular expressions can be translated into tree automata:

Theorem 1. Let {v1/z1, . . . , vn/zn} be a set of regular expression definitions,
possibly referring to each other.

It is possible to construct non-deterministic, finite tree automata A1, . . . ,An,
s.t. for every tree t, t ∈ σ(zi) ⇔ Ai accepts t.

Theorem 1 is a minor variation of a standard result. The set of definitions
{v1/z1, . . . , vn/zn} can be viewed as a set of regular equations (Section 2.3 in
[2]). In order to translate ∧, merging transitions can be used.

Definition 18. Let A be an NFTA. We call A a deterministic finite tree au-
tomaton (DFTA) if (f(q1, . . . , qn) → q), (f(q1, . . . , qn) → q′) ∈ ∆ implies
q = q′, and ∆ contains no transitions of the second type.

Theorem 2. Every NDFA A can be transformed into a DFTA.

The proof is completely standard. It is analogous to the subset construction for
word languages [10, 1]. The procedure is not affected by the presence of merging
transitions.

The domain of discourse defines the set of predicates that could play a role
in proving F. Note that it is not possible that there are conflicts in F which
would result in the proof of F using predicates that are not in Π.

Definition 19. Let A1,A2 be two DFTAs obtained by translation of regular
expressions. We want to determine whether A1 accepts t implies A2 accepts t.
We proceed as follows:

– For every type T ∈ { bool, char, index, integer, double }, do the following:
Let {c1, . . . , cn} be the set of values of type T for which ∆1,2 contains a

transition of form ci(q) → q′, c 6=i (q) → q′, c>i (q) → q′, or c<i (q) →
q′. Assume that c1, . . . , cn are sorted in increasing order. We extend the
signatures F1,2 by the following symbols: c<1 with meaning ’less than c1’,
〈ci, ci+1〉 with meaning ’strictly between ci and ci+1’, and c>n with meaning
’greater than cn’.)
Next, replace all transitions of form c 6=(q) → q′ by c<(q) → q′ and c>(q) →
q′. After that, for all i > 1, replace the transitions of form c<i (q) → q′ by

{ci′(q) → q′ | i′ < i} ∪ {〈ci′ , ci′+1〉(q) → q′ | 1 < i′ < i} ∪ {c<1 (q) → q′}.

Similarly, for all i < n, replace the transitions of form c>i (q) → q′ by

{ci′(q) → q′ | i′ > i} ∪ {〈ci′ , ci′+1〉(q) → q′ | i ≤ i′ < n} ∪ {c>n (q) → q′}.

Note that some of the intervals can be empty, for example 〈3, 4〉 or f<. In that
case, the transition should not be added. Emptyness can be checked easily.

– For the type selector, let S be the set of selector values that occur in ∆1,2.
Replace every transition of form s 6=(q) → q′ by

{s′(q) → q′ | s′ ∈ S ∧ s′ 6= s}.

After that, we can use a standard approach: Construct the product automaton
A1×A2, and check that for every state (q1, q2) ∈ Q1×Q2 q1 ∈ Qf,1 ⇒ q2 ∈ Qf,2.

4 Conclusions and Future Work

We provided a type system that allows concise definitions of recursive structures
frequently occurring in logic. The system allows definition of subtypes which
we call ‘adjectives’. We prefer the name ‘adjective’ over ‘subtype’ because most
adjectives have non-permanent nature. They are used once in a case analysis,
while another case analysis may use a different partition.

We are not sure about the borders of our approach. At this moment, ad-
jectives are strictly unary, i.e. properties of a single term. It is likely that by

using suitable product constructions, some useful binary relations (for example
equality) can also be expressed by means of tree automata. We want to find
the border between what is useful, and what can be decided by means of tree
automata.

We did not discuss how to decide type membership for individual terms.
This is needed for type checking concrete terms. This can be done in principle
by straightforwardly applying Definition 17, but there may be better approaches
that take context into account. We are not sure what is the best approach for
type checking terms, and this future research.

References

1. Alfred Aho and Jeffrey Ullman. Principles of Compiler Design. Addison-Wesley
Publishing Company, 1977.

2. H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez, S. Tison,
and M. Tommasi. Tree Automata Techniques and Applications. 2007. release
October, 12th 2007.

3. P. Cousot and R. Cousot. Abstract interpretation: A unified lattic model for
static analysis of programs by construction or approximation of fixpoints. In Geoff
Sutcliffe and Andrei Voronkov, editors, POPL, pages 238–252. ACM Press, 1977.

4. Hans de Nivelle. theorem prover Geo III. Can be obtained
from http://www.ii.uni.wroc.pl/~nivelle/software/ or from
http://www.tptp.org/CASC/, 2015-2019.

5. Hans de Nivelle and Jia Meng. Geometric resolution: A proof procedure based on
finite model search. In John Harrison, Ulrich Furbach, and Natarajan Shankar, ed-
itors, International Joint Conference on Automated Reasoning 2006, volume 4130
of Lecture Notes in Artificial Intelligence, pages 303–317, Seattle, USA, August
2006. Springer.

6. Graham Hutton. Programming in Haskell (second edition). Cambridge University
Press, 2016.

7. Yaron Minsky, Anil Madhavapeddy, and Jason Hickey. Real World OCaml (func-
tional programming for the masses). O’Reilly, 2013.

8. Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of Program
Analysis. Springer Verlag, 2005.

9. Martin Odersky, Lex Spoon, and Bill Venners. Programming in Scala Third Edi-
tion. Artima Press, 2007-2016.

10. Michael Sipser. Introduction to the Theory of Computation (Third Edition). CEN-
GAGE Learning, 2013.

