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Abstract

A simplification ordering, typically specified by a symbol precedence, is one of the key
parameters of the superposition calculus, contributing to shaping the search space navi-
gated by a saturation-based automated theorem prover. Thus the choice of a precedence
can have a great impact on the prover’s performance. In this work, we design a system for
proposing symbol precedences that should lead to solving a problem quickly. The system
relies on machine learning to extract this information from past successful and unsuccessful
runs of a theorem prover over a set of problems and randomly sampled precedences. It uses
a small set of simple human-engineered symbol features as the sole basis for discriminat-
ing the symbols. This allows for a direct comparison with precedence generation schemes
designed by prover developers.

1 Introduction

Modern saturation-based automated theorem provers (ATPs) such as E [18], SPASS [22] or
Vampire [8] use the superposition calculus [10] as their underlying inference system. Superpo-
sition is built around the paramodulation inference [16] crucially constrained by simplification
ordering on terms and literals, which is supplied as a parameter of the calculus. Both of the
two main classes of simplification orderings used in practice, i.e., the Knuth-Bendix Ordering
[7] and the Lexicographic Path Ordering [6], are mainly determined by a symbol precedence, a
(partial) ordering on the signature symbols.*

While the superposition calculus is known [1] to be refutationally complete for any simpli-
fication ordering, the choice of the precedence may have a significant impact on how long it
takes to solve a given problem. In a well-known example, prioritizing in the precedence the
predicates introduced during the Tseitin transformation of an input formula [21] exposes the
corresponding literals to resolution inference during early stages of the proof search, with the
effect of essentially undoing the transformation and thus threatening with an exponential blow-
up that the transformation is designed to prevent [14]. ATPs typically offer a few heuristic
schemes for generating the symbol precedences. For example, the successful invfreq scheme
in E [17] orders the symbols by the number of occurrences in the input problem, prioritizing
symbols that occur the least often for early inferences. Experiments with random precedences
have shown that the existing schemes often fail to come close to the optimum precedence [13],
revealing there is a large potential for further improvements.

In this work, we design a system that, when presented with a First-Order Logic (FOL)
problem, proposes a symbol precedence that will likely lead to solving the problem quickly.
The system relies on the techniques of supervised machine learning and extracts such theorem-
proving knowledge from successful (and unsuccessful) runs of the Vampire theorem prover [§]

*Supported by the ERC Consolidator grant AI4REASON no. 649043 under the EU-H2020 programme, the
Czech Science Foundation project 20-06390Y and the Grant Agency of the Czech Technical University in Prague,
grant no. SGS20/215/0HK3/3T/37.

IKBO is further parameterized by symbol weights, but our reference implementation in Vampire [8] uses for
efficiency reasons only weights equal to one [9] and so we do not consider this parameter here.
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when run over a variety of FOL problems equipped with randomly sampled symbol precedences.
We assume that by learning to solve already solvable problems quickly, the acquired knowledge
will generalize and help solving problems previously out of reach. As a first step in a more
ambitious project, we focus here on representing the symbols in a problem by a fixed set of
simple human-engineered features (such as the number of occurrences used by invfreq scheme
mentioned above)? and, to simplify the experimental setup, we restrict our attention to learning
precedences for predicate symbols only.?

Learning to predict good precedences poses several interesting challenges that we address
in this work. First, it is not immediately clear how to characterize a precedence, a permutation
of a finite set of symbols, by a real-valued feature vector to serve as an input for a learning
algorithm. Additionally, to be able to generalize across problems we need to do it in a way
which does not presuppose a fixed signature size. There is also a complication, when sampling
different problems, that some problems may be easy to solve for almost every precedence and
others hard. In theorem proving, running times typically vary considerably. Finally, even with
a regression model ready to predict the prover’s performance under a particular precedence ,
we still need to solve the task of finding an optimum precedence 7* according to this model,
which cannot be simply solved by enumerating all the permutations and running the prediction
for each due to their huge number.

Our way of addressing the above sketched challenges lies in using pairwise symbol preferences
to characterize a precedence, normalizing the target prover run times on a per problem basis,
and in the use of “second-order” learning of the preferences for symbols abstracted by their
features. These concepts are introduced in Section 3 and later formalized in Section 4. Section 5
presents the results of our experimental evaluation of the proposed technique over the TPTP
[19] benchmark. We start our exposition by fixing the notation and basic concepts in Section 2.

2 Preliminaries

We assume that the reader is familiar with basic concepts used in first order logic (FOL) theorem
proving. We use this section to recall and formalize the key notions relevant for our work.

Problem A (first-order) problem is a pair P = (X, Cl), where ¥ = (s1, $2,...,8y) is a list of
(predicate and function) symbols called the signature, and CI is a set of first-order clauses built
over the symbols of 3.

The problem is either given directly by the user or could be the result of clausifying a
general FOL formula ¢, in which case we know which of the symbols were introduced during
the clausification (namely during Tseitin transformation and skolemization; see e.g. Nonnengart
and Weidenbach [11]) and which occurred in the conjecture (if it was present).

Precedence Given a problem P = (X, Cl) with ¥ = (s1,82,...,8,), a precedence wp is
a permutation, i.e. a bijective mapping, of the set of indices {1,...,n}. A precedence 7p
determines a (total) ordering on ¥ as follows: s, ,1) < Sxp(2) < ... < Spp(n)-

Simplification Orderings are orderings on terms used to parameterize the superposition
calculus [10] employed by modern saturation-based theorem provers. The two classes of sim-
plification orderings most commonly used in practice, the Knuth-Bendix Orderings [7] and the

2 Automatic feature extraction using neural networks is planned for future work.
30ur theoretical considerations, however, apply equally to learning function symbol precedences.
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Lexicographic Path Orderings [6], are both defined in terms of a user-supplied (possibly par-
tial) ordering < on the given problem’s signature ¥. In this work, we assume that the theorem
prover uses a simplification ordering from one of these two classes relying on the ordering on ¥
determined by a precedence 7p to construct such a simplification ordering.

Performance measure A saturation-based ATP solves a problem P = (3, Cl) (under a
particular fixed strategy and a determined symbol precedence 7p) by either

e deriving from Cl a contradiction in the form of the empty clause, in which case P is shown
unsatisfiable, or

o finitely saturating the set of clauses Cl without deriving the contradiction, in which case
P is shown satisfiable.*

In both cases, we take the number of iterations of the employed saturation algorithm (see,
e.g., Riazanov and Voronkov [15] for an overview) as a measure of the effort that the ATP
took to solve the problem. We refer to this measure as the abstract solving time and denote it
ast(P,7p).5

In practice, an ATP can also run out of resources, typically out of the allocated time. In
that case, the abstract solving time is undefined: ast(P,7p) = L. While it may happen that
running an ATP with the same problem and symbol precedence two times yields a different
result each time (namely succeeding one time and failing another time), such cases are rare and
we ensure they do not interfere with the learning process by caching the results.

Order matrix Given a permutation 7 of the set of indices {1,...,n}, the order matrix O(r)
is a binary matrix of size n X n defined in the following manner:

O(m)ij = [n7'(0) <7 ()],

where we use [P] to denote the Iverson bracket [4] applied to a proposition P, evaluating to 1
if P is true, and 0 otherwise. In other words, for a symbol precedence 7p, O(mp); ; = 1 if the
precedence mp orders the symbol s; before the symbol s;, and O(wp), ; = 0 otherwise.

%
Flattened matrix Given a matrix M of size n x n, M is the vector of length n? obtained
by flattening M:
%
M (i—1yn+j = Mi
for every 4,5 € {1,...,n}. For our use the exact way of mapping the matrix elements to

the vector indices is not important. We mostly just need a vector representation of the data
contained in the given matrix to have access to the dot product operation.

Linear regression is an approach to modeling the relationship between scalar target values
y; € R and one or more input variables x; = (z} k), i = 1,...,n. The relationship is

1) »
modeled using a linear pI'CdiCtOI‘ function:

Yi =x;-w+b,

4We assume a refutationally complete calculus and saturation strategy.
5The advantage of using abstract solving time is that it does not depend on the hardware used for the
computation.
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whose unknown model parameters w € R” and b € R are estimated from the data. We call the
vector w the coefficients of the model and b the intercept. Most commonly, the parameters are
picked to minimize the so-called mean squared error:

1 n
MSE = — )i — yi)°,
= (i~ i)

=1

but other norms are also possible [3].

Basic assumptions For the discussion that follows, we assume a fixed ATP that uses the
superposition calculus with a simplification ordering parameterized by a symbol precedence.
While the practical experiments described in Section 5 use the ATP Vampire [8], the model
architecture does not assume a particular ATP and is compatible with any superposition-based
ATP such as E [18], SPASS [22] or Vampire. Within the prover a particular saturation strategy
is fixed including a time limit. If the prover runs out of time before solving a problem, we
record ast(P,mp) = L.

3 General considerations and overview

The aim of this work is to design a system that learns to suggest good symbol precedences to an
ATP from observations of the ATP’s performance on a class Pyqin of problems with randomly
sampled precedences. Given a problem P = (X, CI) with | 3| = n, we consider a precedence
wp good, if it leads to a low ast(P, wp) among the n! possible precedences for P. Note that for
problems with a signature with more than a few symbols, repeatedly running the prover with
random precedences represents an effectively infinite source of training data.

Ideally, we would like to learn general theorem proving knowledge, not too dependent on
Pirain, which could be later explained and compared to precedence generation schemes manually
designed by the prover developers. Let us quickly recall one such scheme, already mentioned
in the introduction, called invfreq in E [18]. The prover’s manual [17] explains:

Sort symbols by frequency (frequently occurring symbols are smaller).

What is common to basically all manually designed schemes, is that they pick a certain scalar
property of symbols (here it is the symbol frequency, i.e. the number of occurrences of the symbol
in the given problem) and obtain a precedence by sorting the symbols using that property.

Decomposing We might want our system to also learn a certain property of symbols and
use sorting to generate and suggest a precedence. However, it is not clear how to “extract” such
property from the observed data, since we only have access to the target values for full prece-
dences. Our idea for “decomposing” these values into pieces that somehow relate to individual
symbols (and can thus be “transferred” across problems) is to take a detour using symbol pairs:
we assume that the performance of the ATP on P given 7p, i.e. our measure ast(P,7p), can
be predicted from a sum of individual contributions corresponding to facts of the form

mp orders the symbol s; before the symbol s;.

This is in line with how a prover developer could reason about a precedence generating scheme:
Even when it is not clear how good or bad a symbol is in absolute terms, one might have
an intuition that a symbol from a certain class should preferably come before a symbol from

4
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another class in the precedence (e.g., symbols introduced during clausification should typically
be smaller than others) and assign some weight to this piece of intuition.

In Section 4.2 we formalize this idea using the notion of preference matriz and show how,
for each problem in isolation, such preference matrix can be obtained in the form of coefficients
learned by linear regression.

Learning across problems Symbol preferences learned on a particular problem are inher-
ently tied to that problem and do not immediately carry over to other problems. The main
reason for this is that symbols themselves only appear in the context of a particular problem.°
That is why we resort to representing symbols by their features (cf. Section 4.3.2) when ag-
gregating the learned preferences across different problems. This is in more detail explained
further below and, formally, in Section 4.3.

We also strive to ensure that the preference values across problems have possibly the same
magnitude. Note that ast(P,7p) may vary a lot for a fixed problem P but all the more so
across problems. To obtain commensurable values, we normalize (see Section 4.1) the prover
performance data on a per problem basis before learning the preferences. Normalization also
deals with supplying a concrete value to those runs which did not finish, i.e. have ast(P,7p) = L.

“Second-order” regression Once the symbols are abstracted by their feature vectors, we
can collect symbol preferences from all the tested problems and turn this collection into another
regression task. Note that at this moment, the preferences, which were obtained as the coeffi-
cients learned by linear regression, themselves become the regression target. Thus, in a certain
sense, we now do second-order learning. It should be stressed though, that while the learning of
the preferences requires a linear regression model by design, this second-order regression does
not need to be linear and more sophisticated models can be experimented with.
The details of this step are given in Section 4.3.

Preference prediction and optimization Once the second-order model has been learned,
we can predict preferences for any pair of symbols based on their feature vectors and thus also
predict, given a problem P, how many steps will a prover require to solve it using a particular
precedence mp. (For this second step, we reverse the idea of decomposition: we sum up those
predicted preferences that correspond to pairs of symbols s;, s; such that 7p orders the symbol
s; before the symbol s; — see Section 4.4 for details).

Having access to an estimate of performance for each precedence 7p, the final step is to look
for a precedence 7} that ideally minimizes the predicted performance measure over all the n!
possible precedences on P’s signature. Since finding the true optimum could be computationally
hard, we resort to using an approximation algorithm by Cohen et al. [2].

The algorithm is recalled in Section 4.4.2.

4 Architecture

4.1 Values of precedences

We define the base cost value costpese (P, mp) of precedence wp on problem P according to the
outcome of the proof search configured to use this precedence:

60n certain benchmarks, such as those coming from translations of mathematical libraries [5], symbols
maintain identity and meaning across individual problems. However, since our goal in this work is to learn
general theorem proving knowledge, we do not use the assumption of aligned signatures.
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o If the proof terminates successfully, costp,se(mp) is the number of iterations of the satu-
ration loop started during the proof search: costypase(mp) = ast(P,mp).

o If the proof search fails (meaning that ast(P,mp) = L), then costpsse(mp) is the maximum
number of saturation loop iterations encountered in successful training proof searches on
this problem: costpgse(mp) = max ., o+ ast(P,7'p), where H; is the set of all training
precedences on problem P that yield a successful proof search.

We further normalize the cost values by the following operations:

1. Logarithmic scaling: For each solvable problem, running proof search with uniformly
random predicate precedences reveals a distribution of abstract solving times on successful
executions. Examining these distributions for various problems suggests that they are
usually approximately log-normal. To make further scaling by standardization reasonable,
we first transform the base costs by taking their logarithm.

2. Standardization: Independently for each problem, we apply an affine transformation so
that the resulting cost values have the mean 0 and standard deviation 1. This ensures
that the values are comparable across problems.

Let costsiq(mp) denote the resulting cost value of precedence 7p after the scaling and standard-
ization.

4.2 Problem preference matrix learning

Given a problem P with n symbols, a preference matriz Wp is any matrix over R of size n X n.
We define the prozxy cost of precedence wp under preference Wp to be the sum of the preference
values Wp; ; of all symbol pairs s;, s; ordered by wp such that s; comes before s;:

_1,. 1. =
c08tprozy (TP, Wp) = Z [[WPIO) < WPl(J)]] Wpi;= O(rp) - Wp
4,7

—>
where O(mp) - Wp is the dot product of the flattened matrices O(mp) and Wp.
For any given problem we can uniformly sample precedences 7wp to form the training set T' =
{(7}, costspa(mh)), (7%, costsa(n3)), . . ., (T8, costga () }. Having such training set allows us

to find a vector Wp that minimizes the mean square error

1
- Z (costprony (TP, Wp) — costsa(mp))?

(mp,costsa(mp))ET

by linear regression.

Minimizing the mean square error directly may lead to overfitting to the training set, espe-
cially in problems whose signature is relatively large in comparison to the size of the training set.
To improve generalization, we use the Lasso regression algorithm [20] instead of standard linear
regression. We use cross-validation to set the value of the regularization hyperparameter.”

Another reason to use the Lasso algorithm is that it performs regularization by imposing
a penalty on coefficients with large absolute value, effectively shrinking the coefficients that
correspond to symbol pairs whose mutual order does not affect the costsq(mp). We can use

7See the model LassoCV in the machine learning library scikit-learn [12].
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this property to interpret the absolute value of preference value as a measure of the importance
of a given symbol pair.

In the following sections we assume that the preference matrix Wp we find by Lasso regres-
sion yields cost,,oqy that approximates costs;qy well.

4.3 General preference matrix learning

We proceed to cast the task of finding a good preference matrix Wp for an arbitrary problem
as a regression on feature vector representations of symbol pairs. To accomplish this we need
to be able to represent each pair of symbols by a feature vector and to know target preference
values for pairs of symbols in a training problem set.

4.3.1 Target preference values

For each problem P in the training problem set, we find a problem preference matrix by the
method outlined in Section 4.2. The target value of an arbitrary pair of symbols s;,s; in P is

4.3.2 Symbol pair embedding

We represent each symbol by a numeric feature vector that consists of the following components:
symbol arity, the number of symbol occurrences in the problem, the number of clauses in the
problem that contain at least one occurrence of the symbol, an indicator of occurrence in
a conjecture clause, an indicator of occurrence in a unit clause, and an indicator of being
introduced during clausification. This choice of symbol features is motivated by the fact that
they are readily available in Vampire and that they suffice as a basis for common precedence
generation schemes, such as the invfreq scheme. We denote the feature vector corresponding
to symbol s as fv(s).

We represent a pair of symbols s, ¢ by the concatenation of their feature vectors [fv(s), fu(t)].

4.3.3 Training data

The general preference regressor is trained on samples of the following structure:
o the input: [fv(s;), fv(s;)] — the embedding of a symbol pair s;, s; in problem P,

e the target: Wp, ; — an element of the preference matrix we learned for problem P corre-
sponding to the symbol pair (s;,s;).

We sample problem P from the training problem set with uniform probability.

Thanks to how Wp is constructed (see Section 4.2), preference values close to 0 are associated
with symbol pairs whose mutual order has little effect on the outcome of the proof search. To
focus the training on the symbol pairs whose order does matter, we weight the samples by the
absolute value of the target. More precisely, given a problem P, the probability of sampling the
symbol pair 4, j is proportional to the absolute target value |Wp; ;|. Experiments have shown
that using sample weighting improves the performance of the resulting model (see Section 5.2).

We denote the trained model as M and its prediction of the preference value of the symbol
pair s;, s; as M([fv(s:), fo(s;)]).
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4.4 Precedence construction

When presented a new problem P = (X, Cl), we propose a symbol precedence by taking the
following steps:

1. Estimate a preference matrix ﬁ/\p.

2. Construct a precedence 7p that approximately minimizes costyrozy (7p, I7V\p)

4.4.1 Preference matrix construction

To construct a preference matrix I7V\p for a new problem P, we evaluate the general preference
regressor on the feature vectors of all symbol pairs in P. More specifically,

Wpi; = M([fo(s:), fo(s;)])

for all s;,5; € X.
At this moment, one can use Wp to estimate the cost of an arbitrary symbol precedence.

4.4.2 Precedence construction from preference matrix

The remaining task is, given a preference matrix ﬁ/\p, to find a precedence 7p that minimizes
COStprozy (TP, Wp). Since this task is NP-hard in general [2], we rely in this work on a greedy
2-approximation algorithm proposed by Cohen et al. [2]. The rest of this section provides a
brief description of the algorithm.

The algorithm maintains a partially constructed symbol precedence p € N* (a finite sequence
over N; initially empty), a set of available symbols ¥ 4,0 € X (initially the whole ) and a
potential value for each of the symbols ¢ : ¥, — R. The potential value of a symbol
corresponds to the relative increase in proxy cost associated with selecting the symbol as the
next to append to the partial precedence:

C(Si): Z ﬁ/\Pi,j— Z W\Pj,i

85 €EXavail 85 € avail

In each iteration, a symbol s; with the smallest potential is selected from X ,,4;. This symbol
is removed from ¥ ... and its index ¢ is appended to the partial precedence p. The potentials
of the remaining symbols in X4 are updated. This process is repeated until all symbols have
been selected, yielding the final p as 7p.

5 Evaluation

5.1 Setup

Since the simplification orderings under consideration (LPO and KBO) never use the symbol
precedence to compare a predicate symbol with a function symbol, we can break down the
symbol precedence into a predicate precedence and a function precedence. In this paper, we
restrict our attention to predicate precedences, leaving function symbols to be ordered by the
invfreq scheme. A more thorough evaluation of both predicate and function precedences and
their interaction is left for future work.

We use problems from the TPTP library v7.2.0 [19] for the evaluation. Let Py be the set
of all FOL and CNF problems in TPTP with at most 200 predicate symbols such that at least 1
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out of 24 random predicate precedences leads to a successful proof search (|Pyqin| = 8217). Let
Piest be the set of all FOL and CNF problems in TPTP with at most 1024 predicate symbols
(|Ptest| = 15751). In each of 5 evaluation iterations (splits), we sample 1000 training problems
from Pirqin and 1000 test problems from Pies; uniformly in a way that ensures that the sets do
not overlap. We repeat the evaluation 5 times to evaluate the stability of the training.

On each training problem we run Vampire with 100 uniformly random predicate precedences
and a strategy fixed up to the predicate precedence.® We limit the time to 10 seconds per
execution which is in our experience with Vampire sufficient to exhibit interesting behavior.
Note that we use a customized version of Vampire to extract a symbol table from each of the
problems.”

After we fit a preference matrix on each of the training problems (see Section 4.2), we create
a batch of 10% symbol pair feature vectors with target values to train the general preference
regressor (see Section 4.3). We evaluate the trained model by running Vampire on the test
problem set with predicate precedences proposed by the trained model, counting the number
of successfully solved problems.

A collection of scripts created for the experimental evaluation can be found in the Git repos-
itory at https://github.com/filipbartek/vampire-ml/tree/75c693£3. The script map-
reduce/paar2020/run.sh can be used to perform the measurements presented below.

5.2 Experimental results

We trained two types of general preference regressors (see Section 4.3):

e FElastic-Net — a linear regression model with L1 and L2 norm regularization;
see ElasticNetCV in Pedregosa et al. [12]

e Gradient Boosting regressor — see GradientBoostingRegressor in Pedregosa et al. [12]

We compared the performance of the regressors with three baseline precedence generation
schemes — random precedence, best of 10 random precedences and the invfreq scheme. Table 1
shows the results of evaluation on 1000 problems for 5 random choices of training and test
problem set (splits).

Case Successes out of 1000 per split

0 1 2 3 4 | Mean Std
Best of 10 random 514 499 509 511 476 | 501.8 13.85
invfreq 494 472 480 481 452 | 475.8 13.83
Elastic-Net 484 471 479 470 454 | 4716 10.21
Gradient Boosting 473 462 475 475 439 | 464.8 13.78
Elastic-Net without sample weighting | 475 454 465 459 453 | 461.2 8.11
Random 454 455 457 456 430 | 450.4 10.25

Table 1: Experiment results

The case “Elastic-Net without sample weighting” shows the effect of sampling the symbol
pairs uniformly. Inspection of the trained feature coefficients reveals that the fitting ends up

8Time limit: 10 seconds, memory limit: 8192 MB, literal comparison mode: predicate, function symbol
precedence: invfreq, saturation algorithm: discount, age-weight ratio: 1:10, AVATAR: disabled.
9https://github.com/filipbartek/vampire/tree/926154f2


https://github.com/filipbartek/vampire-ml/tree/75c693f3
https://github.com/filipbartek/vampire-ml/blob/75c693f3/map-reduce/paar2020/run.sh
https://github.com/filipbartek/vampire-ml/blob/75c693f3/map-reduce/paar2020/run.sh
https://github.com/filipbartek/vampire/tree/926154f2

Learning Precedences from Elementary Symbol Features Bartek, Suda

with an all-zero feature weight vector on splits 1 and 2, signifying a complete failure to learn
on these training sets.

Using Elastic-Net for general preference prediction on average nearly matches the perfor-
mance of Vampire with the invfreq precedence scheme. While Elastic-Net performs signifi-
cantly better than a random precedence generator, it still performs significantly worse than a
generator that, given a problem, tries 10 random precedences and chooses the best of these. This
suggests that there is space for improvement, possibly with a more sophisticated, non-linear
model. Plugging in a Gradient Boosting regressor does not show immediate improvement so
more elaborate feature extraction may be necessary.

5.3 Feature coefficients

Since Elastic-Net is a linear regression model, we can easily inspect the coefficients it assigns
to the input features (see Section 4.3.2). In each of the five splits, the final coefficients of the
three indicator features (namely the indicators of presence in a conjecture clause, presence in a
unit clause and being introduced during clausification) are 0. Table 2 shows the fitted non-zero
coeflicients of the remaining features. The coefficients were scaled so that their absolute values
sum up to 1. Note that scaling the coeflicients by a constant does not affect the precedence
constructed using the greedy algorithm presented in Section 4.4.2.

Training set Left symbol Right symbol
Arity  Frequency Unit frequency | Arity Frequency Unit frequency
0 —0.01 —0.98 0.01
1 —0.48 0.08 0.44
2 —0.64 0.36
3 0.88 —0.03 0.01 —0.03 0.05
4 —0.62 0.30 0.07
Prrain —0.57 0.43

Table 2: Elastic-Net feature coefficients after fitting on each of the 5 training sets of 1000
problems and on the whole Pypyin. “Frequency” is the number of occurrences of the symbol in
the problem. “Unit frequency” is the number of clauses in the problem that contain at least
one occurrence of the symbol.

It is worth pointing out that the regressor fitted on the whole Py, and on the training
sets 1, 2 and 4 assigns a high preference value to symbol pairs (s, t) such that ¢ has a higher fre-
quency and unit frequency than s. Since unit frequency is positively correlated with frequency,
minimizing cost,.qy using this fitted regressor is consistent with the invfreq precedence gen-
erating scheme (ordering the symbols by frequency in descending order). Similarly, the model
fitted on training sets 0 and 3 corresponds to ordering the symbols by arity in ascending order.

6 Conclusion

This paper is, to the best of our knowledge, a first attempt to use machine learning for proposing
symbol precedences for an ATP. This appears to be a potentially highly rewarding task with
an access to effectively unlimited amount of training data generated on demand. Nevertheless,
the journey from evaluating the prover on random precedences to proposing a good precedence
when presented with a new problem is not straightforward and several conceptual gaps need to
be bridged to connect these two tasks algorithmically.

10
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In this paper, we proposed a connection using the concept of pairwise symbol preferences
that, as we have shown, can be learned as the coefficients of a linear regression model for
which an order matrix provides the features of a precedence understood as a permutation. In
a second stage, in which symbols are abstracted by their features, the preferences themselves
become regression targets.

In our initial experiments reported in this paper, the performance of our system does not
yet reach that of the human-designed heuristic invfreq. We believe, however, that further
improvements are possible by using a more advanced regression model for the second stage
and/or by further hyper-parameter tuning (e.g. of the Gradient Boosting model). Ultimately,
we expect to gain the most by using a richer set of symbol features, ideally automatically
extracted from the problems using graph neural networks [23].
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