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Preface

This volume contains the papers presented at the Third Workshop on Practical Aspects of
Automated Reasoning (PAAR-2012). The workshop was held on June 30 and July 1, 2012, in
Manchester, UK, in association with the Sixth International Joint Conference on Automated
Reasoning (IJCAR-2012), as part of the Alan Turing Year 2012, held just after The Alan Turing
Centenary Conference.

PAAR provides a forum for developers of automated reasoning tools to discuss and compare
different implementation techniques, and for users to discuss and communicate their appli-
cations and requirements. The workshop brought together different groups to concentrate on
practical aspects of the implementation and application of automated reasoning tools. It allowed
researchers to present their work in progress, and to discuss new implementation techniques
and applications. Papers were solicited on topics that include all practical aspects of automated
reasoning. More specifically, some suggested topics were:

• automated reasoning in propositional, first-order, higher-order and non-classical logics;

• implementation of provers (SAT, SMT, resolution, tableau, instantiation-based, rewriting,
logical frameworks, etc);

• automated reasoning tools for all kinds of practical problems and applications;

• pragmatics of automated reasoning within proof assistants;

• practical experiences, usability aspects, feasibility studies;

• evaluation of implementation techniques and automated reasoning tools;

• performance aspects, benchmarking approaches;

• non-standard approaches to automated reasoning, non-standard forms of automated rea-
soning, new applications;

• implementation techniques, optimization techniques, strategies and heuristics, fairness;

• support tools for prover development;

• system descriptions and demos.

We were particularly interested in contributions that help the community to understand how
to build useful and powerful reasoning systems in practice, and how to apply existing systems
to real problems.

The workshop this year was particularly successful. We received seventeen submissions, for a
workshop whose duration was initially one day. Each submission was reviewed by three program
committee members. Due to the quality of the submissions, and to prevent the workshop to
be intolerably selective, we decided to extend the duration of the event to two days. Also, the
AREIS Workshop on Automated Reasoning for Enterprise Information Systems joined PAAR
as a special session. In the end and altogether, nineteen papers were submitted, fifteen of which
were accepted for presentation. The program included two invited talks:

• Practical Aspects of SAT Solving by Armin Biere,

• Building an Efficient OWL 2 DL Reasoner by Boris Motik.
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Besides a session on the topic of AREIS, PAAR shared a session with the PxTP Workshop on
Proof eXchange for Theorem Proving, and included a joint invited talk with the SMT Workshop
on Satisfiability Modulo Theories.

The workshop organizers would like to thank the following people for helping to make PAAR
a success.

• the authors and participants of the workshop;

• the invited speakers;

• the program committee and the reviewers for their effort;

• Peter Baumgartner and Silvio Ranise, the organizers of the AREIS Workshop, for propos-
ing to group PAAR and AREIS;

• the organizers of the PxTP Workshop, for including the PAAR session on proofs in the
PxTP program and making it a joint PAAR-PxTP session;

• the organizers of the SMT workshop, for the organization of the joint SMT-PAAR invited
talk.

We are very grateful to the IJCAR organizers for their support and for hosting the workshop,
and are indebted to the EasyChair team for the availability of the EasyChair Conference System.

June 2012 Pascal Fontaine, Renate Schmidt, Stephan Schulz
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Practical Aspects of SAT Solving
Armin Biere

Johannes-Kepler-Universität Linz, Austria

Abstract

SAT solving techniques are used in many automated reasoning engines. This talk
gives an overview on recent developments in practical aspects of SAT solver development.
Beside improvements of the basic conflict driven clause learning (CDCL) algorithm, we
also discuss improving and integrating advanced preprocessing techniques as inprocessing
during search. The talk concludes with a brief overview on current trends in parallelizing
SAT.
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Building an Efficient OWL 2 DL Reasoner
Boris Motik

University of Oxford

Abstract

The Ontology Web Language (OWL) has received considerable traction recently and
is used in a number of industrial and practical applications. While decidable, all basic
reasoning tasks for OWL are intractable (most of them are N2ExpTime-complete). Thus,
in order to obtain a system capable of solving practically-relevant nontrivial problems, a
number of theoretical and practical issues need to be resolved. In my talk I will present an
overview of the techniques employed in HermiT, a state-of-the-art OWL reasoner developed
at Oxford University. I will present the main ideas behind the hypertableau calculus and
contrast them with the tableau calculi used in similar systems. Furthermore, I will discuss
optimization techniques used in HermiT such as the blocking cache, individual reuse, and
core blocking. Finally, I will discuss certain higher-level optimizations implemented on top
of the basic calculus, such as the recently-developed optimized classification algorithm.

2 Pascal Fontaine, Renate Schmidt, Stephan Schulz (eds.); PAAR 2012, pp. 2–2



Escape to Mizar from ATPs
Jesse Alama∗

Center for Arti�cial Intelligence
New University of Lisbon

Portugal
j.alama@fct.unl.pt, http://centria.di.fct.unl.pt/~alama/

Abstract

We announce a tool for mapping E derivations to Mizar proofs. Our mapping com-
plements earlier work that generates problems for automated theorem provers from Mizar
inference checking problems. We describe the tool, explain the mapping, and show how
we solved some of the di�culties that arise in mapping proofs between di�erent logical
formalisms, even when they are based on the same notion of logical consequence, as Mizar
and E are (namely, �rst-order classical logic with identity).

1 Introduction

The problem of translating formal proofs expressed in di�erent formats is an important research
problem for automated reasoning. Proofs today come from many sources, and there are about as
many implemented proof formats as there are di�erent systems for interactive and automated
theorem proving, not to mention the �pure� proof formats coming from mathematical logic.
There is a choice about which axioms and rules of inference to pick. Even natural deduction
comes in a number of shapes: Jáskowski, Gentzen, Fitch, Suppes. . . [17]. It seems likely that as
the use of proof systems grows we will need to have better tools for mapping between di�erent
formalisms. This need has been recognized for a long time [26, 1], and it still seems we have
some way to go. This paper discusses the problem of transforming derivations output by the
E [20] automated theorem prover into Mizar texts.1

Mizar2 is a language for writing mathematical texts in a �natural� style combined with a
library of reasoning formalized in the Mizar language and veri�ed by the Mizar proof checker.
For the purpose of the present paper, the main feature of Mizar is its natural deduction-style
proof language, grounded on a notion of �obvious inference� (to be explained below). We will
ignore the large Mizar Mathematical Library (MML), an impressive collection going from the
axioms of set theory to graduate-level pure mathematics. We will thus treat Mizar as a language
and a suite of tools for carrying out arbitrary reasoning in �rst-order classical logic.

Related work is discussed in Section 2. Section 3 concerns the translation from E derivations
to Mizar proofs. Because of the �ne-grained level of detail o�ered by E and the simple multi-
premise �obvious inference� rule of Mizar, the mapping is more or less straightforward, save for
skolemization and resolution, neither of which have direct analogues in �human friendly� Mizar
texts. Skolemization is discussed in Section 3.2 and our treatment of resolution is discussed
in 3.3. The problem of making the generated Mizar texts more humanly comprehensible is dis-
cussed in Section 3.4. Section 4 concludes and proposes applications and further opportunities
for development. Appendix A is a complete example of a text (a solution to the Dreadbury
Mansion puzzle found by E, translated to Mizar) produced by our translation.

∗Supported by the ESF research project Dialogical Foundations of Semantics within the ESF Eurocores
program LogICCC (funded by the Portuguese Science Foundation, FCT LogICCC/0001/2007). Research for
this paper was partially done while a visiting fellow at the Isaac Newton Institute for the Mathematical Sciences in
the programme `Semantics & Syntax'. Josef Urban inspired this project and provided many helpful suggestions.
Artur Korniªowicz clari�ed some important details of Mizar proofs.

1Our work is available at https://github.com/jessealama/tptp4mizar.
2http://mizar.org
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2 Related work

In recent years there is an interest in adding automation to interactive theorem proving systems.
An important challenge is to make sense, at the level of the interactive theorem prover, of
solutions produced by external automated reasoning tools. Such proof reconstruction has been
done for Isabelle/HOL [15]. There, the problem of �nding an Isabelle/HOL text suitable for
solving an inference problem P is done as follows:

1. Translate P to a �rst-order theorem proving problem P�.

2. Solve P� using an automated theorem prover, yielding solution S�.

3. Translate S� into a Isabelle/HOL text, yielding a solution S of the original problem.

The work described in this paper could be used to provide a similar service for Mizar. It is
interesting to note that in the case of Mizar the semantics of the source logic and the logic of the
external theorem prover are (essentially) the same: �rst-order classical logic with identity. In
the Isabelle/HOL case, at step (1) there is a potential loss of information because of a mismatch
of Isabelle/HOL's logic and the logic of the ATPs used to solve problems (which may not in any
case matter at step (3)). In the Mizar context, two-thirds (steps (1) and (2)) of the problem
has been solved [19]; our work was motivated by that paper. Steps toward (3) have been taken
in the form of Urban's ott2miz3. In fact, more than 2/3 of the problem is solved. Our work
here builds on ott2miz by accounting for the clause normal form transformation, rather than
starting with the clause normal form of a problem. Our translated proofs thus start with (the
Mizar form of) the relevant initial formulas, which arguably improves the readability of the
proofs. Moreover, our tool works with arbitrary TPTP FOF problems and TSTP derivations
produced by E, rather than with Otter proof objects. The restriction to E is not essential; there
is no inherent obstacle to extending our work to handle TSTP derivations produced by other
automated theorem provers, provided that these derivations (proof objects) are su�ciently
detailed, like E's. One must acknowledge, of course, that providing high-quality, �ne-grained
proof objects is a challenging practical problem for automated theorem provers.

To account for the clausal normal form transformation, one needs to deal with skolem-
ization. This is a well-known issue in discussions surrounding proof objects for automated
theorem provers [4]. Interestingly, our method for handling skolemization (to be described be-
low) is analogous to the handling of quanti�ers in the problem opposite ours, namely, converting
Mizar proofs to TSTP derivations [24] in the setting of MPTP (Mizar Problems for Theorem
Provers) [23]. There, Henkin-style implications are a natural solution to the problem of justify-
ing a substitution instance ϕpaq of a formula given that its generalization @xϕ is justi�ed. Our
translation of skolemization steps is virtually the same as this; see Section 3.2 for details.

Exporting and verifying of Mizar proofs by ATPs has been carried out [24]. Such work is
an inverse of ours since it goes from Mizar proofs to ATP problems.

One can reasonably ask to what extent the derivation produced by E and the generated
Mizar text are the same proof. We do not intend to enter into a discussion about the proof
identity problem. For a discussion, see Do²en [6]. Certainly the intension behind the mapping
is to preserve the proof expressed by the E derivation. That the E derivation and the Mizar
text generated from it are isomorphic will be clari�ed (but not proved) below. Mappings such
as the one discussed in this paper can help contribute to a concrete investigation of the proof
identity problem.

3See its homepage https://github.com/JUrban/ott2miz and its announcement http://mizar.uwb.edu.pl/
forum/archive/0306/msg00000.html on the Mizar users mailing list.
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It is well-known that derivations carried out in clause-based calculi (such as resolution
and kindred methods) tend to be di�cult to understand, if not downright inscrutable. An
important problem for the automated reasoning community for many years is to �nd methods
of understanding machine-discovered proofs. One approach to this problem is to map resolution
derivations into natural deduction proofs. Much work has been done in this direction [12, 13,
8, 7, 10, 11]. The transformations we employ are rather simple. To �clean up� the generated
text, we take advantage of the various proof �enhancers� bundled with the standard Mizar
distribution [9, �4.6]. These enhancers suggest compressions of a Mizar text that make it
more parsimonious while preserving its semantics. In the end, though, it would seem that the
judgment of whether an �enhanced� Mizar text is the best representative of a resolution proof
is something that has to be left to the reader.

3 Translating E derivations into Mizar texts

To construct a Mizar text from a �rst-order TSTP derivation, one �rst identi�es the function
and predicate symbols of the derivation and creates an environment for the text. Constructing
an environment for a Mizar text amounts to creating a handful of XML �les specifying the
syntax and semantics of the symbols appearing in the derivation. Normally, one does not create
Mizar environments by hand from scratch but rather builds on some preexisting formalizations.
Since we do not use the Mizar library, we cannot use the usual Mizar toolchain to construct an
environment.

To generate the Mizar text, we exploit recent developments concerning the Mizar parser [2].
We generate XML representations (parse trees) of Mizar texts which can then be rendered as
a plain-text Mizar �le. The XML representation leaves open the possibility of further manipu-
lation of the text through, e.g., XSL transformations.

The input to our procedure is an E derivation in TSTP format [22].
Section 3.1 discusses the overall organization of the generated proof. In Section 3.2 we

discuss the skolemization problem. In Section 3.3 we discuss the problem of resolution.

3.1 Global and local organization of the proof

After the �rst batch of transformations, the refutation is �groomed� in the following ways:

1. Linearly order the formulas.

In TPTP problems, the order of formulas is immaterial. However, in a natural deduction
argument, the order of formulas in Mizar cannot be arbitrary. We topologically sort the
input ordered in the obvious way (if conclusion A uses formula B as a premise, then B
should appear earlier than A) and work with a linear order.

2. Separate reasoning done among the input assumptions from reasoning done with the
negation of the conjecture.

To capture the spirit of proof by contradiction we refactor E refutations into so-called di�use
reasoning blocks. We write:

theorem ϕ
proof

now
assume  ϕ;
S1: xconclusion 1y by ...;
S2: xconclusion 2y by ...;

5
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...
Sn: xconclusion ny by ...;
thus contradiction by Sa1

, Sa2
, ..., Sam

end;
hence thesis;

end;

This concludes the discussion of the organization of the generated Mizar proof.

3.2 Skolemization

E's �nely detailed proof output contains not simply the derivation of K starting from the clause
form of the input formulas. E can also record the transformation of the input formulas into
clause normal formal. It is important to preserve these inferences because they give informa-
tion about what was actually given to E.Accounting for skolemization a well-known issue in
generating proof objects [4, 5]. The di�culty is that skolem functions are curious creatures in
an interactive setting like Mizar's. Introducing a function into a Mizar text requires that the
use can prove existence and uniqueness of its de�niens. But what is the de�niens of a skolem
function, and how can it be justi�ed?

Our solution to the skolemization problem is to introduce axioms. To take a simple example,
suppose we have @xDyϕ, and from this @xϕry :� fpxqs is �derived�. We introduce at this point
a new de�nition (treated as an axiom) whose de�niens is:

p@xDyϕq Ñ @xϕry :� fpxqs

Our axiom-based solution to the skolemization problem is admittedly not ideal. Other
approaches for dealing with skolemization are available. In principle, one could reconstruct all
E's skolemization steps in Mizar using Mizar's choice operator.4 To do this, given a formula
ψ :� @xDyϕ, one can proceed as follows:

1. Introduce a new (non-dependent) type τψ inhabited (by de�nition) by those objects that
satisfy the sentence @xDyϕ.

2. Prove that τψ is inhabited by exploiting the fact that the domain of interpretation of any
�rst-order structure is non-empty.

3. De�ne f outright using Mizar's built-in Hilbert choice operator:

definition
let x;
func f equals the T;

end;

where T is the Mizar type corresponding to τψ.

Despite the advantage of being explicit, initial experiments with this �explicit skolemization�
approach make clear that the precise details of skolemization steps matter: we have found that
skolemization steps in which multiple skolem functions are introduced at once complicates the
explicit approach; the algorithm we have just sketched does not apply to such cases. Since E's
skolemization procedure can in fact produce such steps, explicit skolemization limits the scope
of our tool compared to axiom-based skolemization. Of course, we could implement our own
clausi�er that provides us the required level of granularity of clausi�cation. However, if we wish
to account for every step of an arbitrary E derivation, then the axiom-based solution seems
preferable.

4Unlike in Hilbert's ε-calculus, where the choice operator applies to formulas, the choice operator in Mizar
applies to types.

6



Escape to Mizar from ATPs J. Alama

3.3 Resolution

Targeting Mizar is sensible because it has a single rule of inference, by, which takes a variable
number of premises. The intended meaning of an application

ϕ1, . . . , ϕn byϕ

of by is that ϕ is an �obvious� inference from premises ϕ1, . . . , ϕn. See Davis [3] and
Rudnicki [18] for more information about the the tradition of �obvious inference� in which Mizar
works. The implementation in Mizar diverges from these proposals [25], but roughly speaking
a conclusion in Mizar is obtained by an �obvious inference� in from some premises if there is
a derivation of the conclusion from a set of assumptions in which at most one substitution
instance of at most one universal premise is chosen.

The main di�culty for mapping arbitrary E derivations to Mizar texts is that Mizar's notion
of �obvious inference� overlaps with resolution, but is neither weaker nor stronger than it. The
consequence of this is that it is generally not the case that an application of resolution can be
mapped to a single acceptable application of Mizar's by rule. Consider the following example:

@xr Apxq _Bpxqs @x, yr Bpxq _  Bpxq _  Bpyqs
Resolution

@x, yr Apxq _  Bpyqs

This application of resolution5 simply eliminates Bpxq from the premises. The di�culty here
is that we cannot choose a single substitution instance of the premises such that we can �nd a
Herbrand derivation, and hence the inference is non-obvious even though it is essentially (i.e.,
at the clause level) a single application of propositional resolution.

The reason for the di�culty is that we are working at the level of formulas rather than
clauses. A solution is available: map the application of resolution not to a single application of
Mizar's by rule, but to a proof:

premise1:
for X1 holds ((not A X1) or B X1);

premise2:
for X1, X2 holds ((not A X1) or (not B X1) or (not B X2));

theorem
for X1, X2 holds ((not A X1) or B X2)
proof

let c1, c2;
(not A c1) or B c1 by premise1;
hence thesis by premise2;

end;

This Mizar proof has three steps and two applications of by. In each application of by, there is a
single instance of a single universal formula (in the �rst case the universal formula is premise1,
and in the second application the universal premise is premise2). Note that the substitution
instances are not built from constants and function symbols, but from (�xed) variables.

3.4 Compressing Mizar proofs

The �epicycles� of resolution notwithstanding, Mizar is able to compress many of E's proof
steps: many steps can be combined into a single acceptable application of Mizar's by rule of

5To be precise, an application of factoring is suppressed in this example.
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inference. For example, if ϕ is inferred from ϕ1 from variable renaming, and ϕ1 is inferred by
an application of conjunction elimination to ϕ2, typically in the Mizar setting ϕ can be inferred
from ϕ2 alone by a single application of by. This is typical for most of the �ne-grained rules
of E's calculus: their applications are acceptable according to Mizar's by, and often they can
be composed (sometimes multiple times) while still being acceptable to by. Other rules in
E's proof calculus that can often be eliminated are variable rewritings, putting formulas into
negation normal form, reordering of literals in clauses. More interesting compressions exploit
the gap between �obvious inference� and E's more articulated calculus.

It seems to be a hard AI problem to transform arbitrary resolution proofs into human-
comprehensible natural deductions. Machine-found proofs seem to have an arti�cial ��avor�
that no rewriting spice can overcome. Still, some simple organizational principles can help to
make the proof more manageable.

Compressing proofs helps us to get a sense of what the proof is about. The Mizar notion
of obvious inference has been tested through daily work with substantial mathematical proofs
for decades, and thus enjoys a time-tested robustness (though it is not always uncontroversial).
It seems to be an open problem to specify what we mean by the �true� or �best� view of a
proof. When Mizar texts come from E proofs, Mizar �nds that the steps are usually excessively
detailed (i.e., most steps are obvious) and can be compressed. On the other hand, often the
whole proof cannot be compressed into a single application of by. We employ the algorithm
discussed in [19]: a simple �xed-point algorithm is used to maximally compress a Mizar text.
Thus, by repeatedly attempting to compress the proof until we reach the limits of by. Yet
proof compression is not without its pitfalls. If one compresses Mizar proofs too much, the text
can become as �inhuman� as the resolution proof from which it comes. This is a well-known
phenomenon in the Mizar community [14]. Experience with texts generated by our translation
shows that often considerable compression is possible, but at the cost of introducing a new
arti�cial �scent� into the Mizar text.

4 Conclusion and future work

One naturally wants to extend the work here to work with output of other theorem provers,
such as Vampire. There is no inherent di�culty in that, though it appears that the TSTP
derivations output by Vampire contain di�erent information compared to E proofs; the generic
transformations described in Section 3.1 would carry over, but the mapping of skolemization
and resolution steps of Sections 3.2 and 3.3 will likely need to be customized for Vampire.

The TPTP language recognizes de�nitions, but whether an automated theorem prover treats
them di�erently from an axiom is unspeci�ed. In Mizar, de�nitions play a vital role. After all,
Mizar is designed to be a language for developing mathematical theories; only secondarily is it
a language for representing solutions to arbitrary reasoning problems, as we are using it in this
paper. One could try to detect de�nitions either by scanning the problem looking for formulas
that have the form of de�nitions, or, if the original TPTP problem is available, one can extract
the formulas whose TPTP role is definition. Such de�nition detection and synthesis has no
semantic e�ect, but could make the generated Mizar texts more manageable and perhaps even
facilitate new compressions.

At the moment the tool simply translates E derivations to Mizar proofs. A web-based
frontend to the translator could help to spur increased usage (and testing) of our system. One
can even imagine our tool as part of the SystemOnTPTP suite [21].

An important incompleteness of the current solution is the treatment of equality. Some
atomic equational reasoning steps (speci�cally, inferences involving non-ground equality literals)
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in E derivations can be non-Mizar-obvious. One possible solution is to use Prover9's Ivy proof
objects. Ivy derivations provide some information (namely, which instances of which variables
in non-ground literals) that (at present) is missing from E's proof object output.

For the sake of clarity in the mapping of skolemization steps in E derivation to Mizar steps,
we restricted attention to those E derivations in which each skolemization step introduces
exactly one new skolem function. The restriction does not re�ect a weakness of Mizar; it is a
merely technical limitation and we intend to remove it.

We have thus completed the cycle started in [19] and returned from ATPs to Mizar. We
leave it to the reader to decide whether he wishes to escape again.
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A Pelletier's Dreadbury Mansion Puzzle: From E to Mizar

Ax1: ex X1 st (lives X1 & killed X1,agatha) by AXIOMS :1;

Ax2: lives X1 implies (X1 = agatha or X1 = butler or X1 = charles) by AXIOMS :2;

Ax3: killed X1,X2 implies hates X1 ,X2 by AXIOMS :3;

Ax4: killed X1,X2 implies (not richer X1,X2) by AXIOMS :4;

Ax5: hates agatha ,X1 implies (not hates charles ,X1) by AXIOMS :5;

Ax6: (not X1 = butler) implies hates agatha ,X1 by AXIOMS :6;

Ax7: (not richer X1 ,agatha) implies hates butler ,X1 by AXIOMS :7;

Ax8: hates agatha ,X1 implies hates butler ,X1 by AXIOMS :8;

Ax9: ex X2 st (not hates X1 ,X2) by AXIOMS :9;

Ax10: not agatha = butler by AXIOMS :10;

S1: killed skolem1 ,agatha by Ax1 ,SKOLEM:def 1;

S2: agatha = skolem1 or butler = skolem1 or charles = skolem1 by Ax2 ,Ax1 ,SKOLEM:def 1;

S3: not hates agatha ,( skolem2 butler) by Ax9 ,SKOLEM:def 2,Ax8;

S4: hates charles ,agatha or skolem1 = butler or skolem1 = agatha by Ax3 ,Ax1 ,SKOLEM:def 1,S2;

S5: butler = (skolem2 butler) by S3 ,Ax6;

S6: not hates butler ,butler by Ax9 ,SKOLEM:def 2,S5;

S7: hates butler ,butler or skolem1 = agatha by Ax4 ,Ax7 ,Ax1 ,SKOLEM:def 1,Ax5 ,S4,Ax6 ,Ax10;

S8: skolem1 = agatha by S7,S6;

theorem
killed agatha ,agatha
proof

now
assume S9: not killed agatha ,agatha;
thus contradiction by S1,S8,S9;

end;
hence thesis;

end;

Pelletier's Dreadbury Mansion [16] goes as follows:

Someone who lives in Dreadbury Mansion killed Aunt Agatha. Agatha, the butler,

and Charles live in Dreadbury Mansion, and are the only people who live therein. A killer

always hates his victim, and is never richer than his victim. Charles hates no one that

Aunt Agatha hates. Agatha hates everyone except the butler. The butler hates everyone

not richer than Aunt Agatha. The butler hates everyone Aunt Agatha hates. No one hates

everyone. Agatha is not the butler.

The problem is: Who killed Aunt Agatha? (Answer: she killed herself.) The problem belongs
to the TPTP Problem Library (it is known there as PUZ001+1) and can easily by solved by
many automated theorem provers. Above is the result of mapping E's solution to a standalone
Mizar text and then compressing it as described in Section 3.4. Two skolem functions skolem1
(arity 0) and skolem2 (arity 2) are introduced. There are 10 axioms and 8 steps that do not
depend on the negation of the conjecture (killed agatha,agatha) This problem is solved
essentially by forward reasoning from the axioms; proof by contradiction is unnecessary, but
that is the nature of E's solution.
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1 Introduction

Modal logics extend classical logic with the modalities ”it is necessarily true that” and ”it is possibly
true that” represented by the unary operators 2 and 3, respectively. First-order modal logics (FMLs)
extend propositional modal logics by domains specifying sets of objects that are associated with each
world, and the standard universal and existential quantifiers [7].

FMLs have many applications, e.g., in planning, natural language processing, program verification,
querying knowledge bases, and modeling communication. These applications motivate the use of au-
tomated theorem proving (ATP) systems for FMLs. Whereas there are some ATP systems available for
propositional modal logics, e.g., MSPASS [9] and modleanTAP [1], there were — until recently — no
(correct) ATP systems that can deal with the full first-order fragment of modal logics.

This abstract presents several new ATP systems for FML and sketches their calculi and working
principles. The abstract also summarizes the results of a recent comparative evaluation of these new
provers (see [4] for further details).

The syntax of first-order modal logic adopted here is: F,G ::= P (t1, . . . , tn) | ¬F | F ∧ G |
F ∨G | F ⇒ G | 2F | 3F | ∀xF | ∃xF . The symbols P are n-ary (n ≥ 0) relation constants which
are applied to terms t1, . . . , tn. The ti (0 ≤ i ≤ n) are ordinary first-order terms and they may contain
function symbols. The usual precedence rules for logical constants are assumed.

Regarding semantics a well accepted and straightforward notion of Kripke style semantics for FML
is adopted [7]. In particular, it is assumed that constants and terms are denoting and rigid, i.e. they
always pick an object and this pick is the same object in all worlds. Regarding the universe of discourse
constant domain, cumulative domain and varying domain semantics are considered.

The following new ATP systems for FML were developed by the authors (partly as extensions of
other systems); they support different combinations of modal logics and domain semantics (GQML-
Prover [19] has not been included since it returned incorrect results in our experiments for several
formulae):

∗This author is funded by the German Research Foundation DFG under reference number BE2501/9-1.
†This author is funded by the German Research Foundation DFG under reference number KR858/9-1.

12 Pascal Fontaine, Renate Schmidt, Stephan Schulz (eds.); PAAR 2012, pp. 12–18
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ATP system base technique modal logics domain semantics

MleanSeP 1.2 sequent calculus K,K4,D,D4,T,S4 const.,cumul.
MleanTAP 1.3 tableau calculus D,T,S4,S5 const.,cumul.,varying
MleanCoP 1.2 connection calculus D,T,S4,S5 const.,cumul.,varying
f2p-MSPASS 3.0 instance-based method K,K4,K5,KB,D,T,S4,S5 const.,cumul.
LEO-II 1.3.2-M1.0 embedding in HOL K,K4,K5,KB,D,D4,T,S4,S5 const.,cumul.,varying
Satallax 2.2-M1.0 embedding in HOL K,K4,K5,KB,D,D4,T,S4,S5 const.,cumul.,varying

2 Calculi and ATP Systems for FML

Sequent Calculus. The classical sequent calculus LK [8] is probably the most elegant calculus for
classical logic and used in many interactive proof systems. This calculus can be extended to modal logics
with cumulative domains by adding the modal rules 2-left, 2-right, 3-left, and 3-right. These rules
introduce the modal operators 2 and 3 into the left side or the right side of the sequent, respectively.
All rules of the classical sequent calculus, e.g., the rules for the quantifiers remain unchanged [20].

The sequent calculus for the modal logics K, K4, D, D4, T, and S4 with cumulative domains consists
of the axiom and rules of the classical sequent calculus and the four additional rules shown in Figure 1,
with Γ2 := {2G |2G∈Γ}, ∆3 := {3G |3G ∈∆}, Γ(2) := {G |2G∈Γ}, ∆(3) := {G |3G∈∆},
Γ[2] := Γ2 ∪ Γ(2), and ∆[3] := ∆3 ∪∆(3). A sequent proof for a modal formula F is a derivation
of ` F in the modal sequent calculus, in which all leaves are closed by axioms.

Γ+, F ` ∆+

Γ,2F ` ∆
2-left

Γ∗ ` F,∆∗

Γ ` 2F,∆
2-right

Γ∗, F ` ∆∗

Γ,3F ` ∆
3-left

Γ+ ` F,∆+

Γ ` 3F,∆
3-right

logic Γ+ ∆+ Γ∗ ∆∗

K (no rules) Γ(2) ∆(3)

K4 (no rules) Γ[2] ∆[3]

D Γ(2) ∆(3) Γ(2) ∆(3)

logic Γ+ ∆+ Γ∗ ∆∗

D4 Γ[2] ∆[3] Γ[2] ∆[3]

T Γ ∆ Γ(2) ∆(3)

S4 Γ ∆ Γ2 ∆3

Figure 1: The additional modal rules of the modal sequent calculus

The modal sequent calculus captures the cumulative domain condition. There are no similar cut-free
sequent calculi for modal logics with constant or varying domains or for the modal logic S5 [20].

MleanSeP is an ATP system written in PROLOG that implements the sequent calculus for several
modal logics. It can be downloaded at http://www.leancop.de/mleansep/. MleanSeP performs
proof search in an analytic way, i.e. the sequent rules are applied from bottom to top. Furthermore,
free-variables are used in combination with a dynamic Skolemization that is calculated during the proof
search. Together with the occurs-check of the term unification algorithm this ensures that all derivations
respect the Eigenvariable condition. To deal with constant domains, the Barcan formula is automati-
cally added to the given formula in a preprocessing step. The Barcan formula (scheme) has the form
∀~x(2P (~x))⇒ 2∀~xP (~x) with ~x = x1, . . . , xn for all predicates P with n ≥ 1.
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(2F )1: p

F 1: p ◦ V ∗ 21
(3F )0: p

F 0: p ◦ V ∗ 30
(2F )0: p

F 0: p ◦ a∗ 20
(3F )1: p

F 1: p ◦ a∗ 31

Figure 2: The four additional rules of the modal tableau calculus

Tableau Calculus. In general, the (classical) tableau calculus can be seen as compact representations
of the (classical) sequent calculus. The classical tableau calculus [16] can be extended to several modal
logics by adding a prefix to each formula occurring in a tableau rule [6]. The following tableau calculus
for modal logic uses free variables not only within terms but also within prefixes. It is based on the
matrix characterization for modal logic [20] but uses a tableau-based search to ensure that all paths
contain a complementary connection. A prefix is a string consisting of (prefix) variables and (prefix)
constants. Essentially, it represents a world path that captures the particular Kripke semantics of the
modal logic in question. A prefixed formula has the form F pol : p, where F is a (first-order) modal
formula, pol∈{0, 1} is its polarity and p is its prefix.

The (prefixed) tableau calculus for the modal logics D, T, S4, and S5 consists of the rules of the
classical tableau calculus [6], which do not change the prefix p of formulae, and the four additional rules
shown in Figure 2. V ∗ is a new prefix variable, a∗ is a new prefix constant and ◦ is the composition of
two strings. A branch is closed if, and only if, it contains a pair of literals of the form {A1

1 : p1, A
0
2 : p2}

that are complementary under a term substitution σQ and an additional modal substitution σM , i.e.
σQ(A1) =σQ(A2) and σM (p1) =σM (p2). A tableau proof for a prefixed formula F pol : p is a tableau
derivation such that all branches are (simultaneously) closed for a pair of term and modal substitutions
(σQ, σM ). A tableau proof for a modal formula F is a tableau proof for F 0 : ε.

In the prefixed tableau calculus the particular modal logic is specified by distinct properties of the
modal substitution σM . An additional admissible criterion on σM is used to capture the different domain
variants, i.e., constant, cumulative, or varying domains.

MleanTAP is a compact ATP system written in PROLOG that implements the modal tableau calculus.
In can be downloaded at http://www.leancop.de/mleantap/. The proof search of MleanTAP is
split up into two phases. The first phase performs a purely classical proof search. In the second phase,
after a classical tableau proof is found, the prefixes p1 and p2 of all literals that close branches in the
classical tableau are unified. The unification of these prefixes is done by a specialized string unification
algorithm. If the prefix unification fails, alternative classical proofs (and prefixes) are computed. In
order to fulfill the distinct properties of the modal substitution σM , a specific unification algorithm is
used for each modal logic that also respects the admissible criterion.

Connection Calculus. Connection calculi use a connection-driven search strategy and are already
successfully used for automated theorem proving in classical and intuitionistic logic [11, 12]. A connec-
tion is a pair of literals, {A,¬A} or {A1, A0}, with the same predicate symbols but different polarities.
The connection calculus for classical logic is adapted to modal logic by adding prefixes to all literals.
Formally, a prefix is a string over an alphabet ν ∪Π, where ν is a set of prefix variables, denoted by V ,
and Π is a set of prefix constants, denoted by a. It is defined in the same way as in the tableau calculus.
Subformulae of the form (2F )1 or (3F )0 extend the prefix by a variable V , subformulae of the form
(2F )0 or (3F )1 extend the prefix by a constant a (see also Figure 2). For the modal logic S5 only the
last character of all prefixes is considered (or ε if the prefix is the empty string ε).

Proof-theoretically, a prefix of a formula F captures the modal context of F and specifies the se-
quence of modal rules of the sequent calculus that have to be applied (analytically) in order to obtain
F in the sequent. Semantically, a prefix denotes a specific world in a model [6, 20]. The prefixes of
the two literals in a connection, which corresponds to an axiom in the sequent calculus, need to denote
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Axiom (A)
{},M, Path

Start (S)
C2,M, {}
ε, M, ε

and C2 is copy of C1∈M

Reduction (R)
C,M,Path∪{L2: p2}

C∪{L1: p1},M, Path∪{L2: p2}
and {L1: p1, L2: p2} is σ-complementary

Extension (E)
C2\{L2: p2},M, Path∪{L1: p1} C,M,Path

C∪{L1: p1},M, Path

and C2 is a copy of C1 ∈M ,
L2:p2 ∈C2, and {L1: p1, L2: p2}
is σ-complementary

Figure 3: The modal connection calculus

the same world, hence, they need to unify under a modal substitution. A connection {A1
1 : p1, A

0
2 : p2}

is σ-complementary, for σ := (σQ, σM ), if σQ(A1) = σQ(A2) and σM (p1) =σM (p2), where σQ is
the standard term substitution and σM : ν → (ν ∪ Π)∗ is the modal substitution that assigns a string
over the alphabet ν ∪Π to every element in ν . The substitutions σQ and σM induce a reduction order-
ing, which has to be irreflexive [20]. Alternatively, a Skolemization technique can be used for the term
Eigenvariables and for the prefix constants, as demonstrated by Otten [10].

For the modal logics D and T the accessibility condition |σM (V )|= 1 or |σM (V )| ≤ 1 has to hold for
all V ∈ν , respectively. The accessibility condition encodes the characteristics of each modal logic. Like
for the modal tableau calculus, σM has to be admissible with respect to σQ. The admissible criterion
depends on the domain condition, i.e. it is different for constant, cumulative and varying domains.

The matrix of a formula F is a set of clauses that represents the disjunctive normal form of F [5].
In the prefixed matrix M of F each literal L is additionally marked with its prefix p. The axiom and
the rules of the modal connection calculus are defined in Figure 3. M is the prefixed matrix of F ,
the subgoal clause C and the active path Path are sets of (prefixed) literals or ε. σ= (σQ, σM ) is an
admissible substitution and σQ and σM are rigid, i.e. they are applied to the whole derivation.

A connection proof for C,M,Path is a derivation such that all leaves are axioms for an admissible
substitution σ = (σQ, σM ). A modal connection proof for the matrix M is a modal connection proof
for ε,M, ε. Correctness and completeness proofs are based on the the matrix characterization for modal
logic [20] and the correctness and completeness of the connection calculus [5].

MleanCoP [13] is an implementation of the modal connection calculus. It can be downloaded at
http://www.leancop.de/mleancop/. It is based on leanCoP, an automated theorem prover for
first-order classical logic [11]. To adapt the implementation to the modal connection calculus the
leanCoP prover is extended by (a) prefixes that are added to literals and collected during the proof search
and (b) an additional list that contains term variables together with their prefixes in order to check the
domain condition. First, MleanCoP performs a classical proof search. After a classical proof is found,
the prefixes of the literals in each connection are unified and the domain condition is checked. A dif-
ferent unification algorithm is used for each of the modal logics D, T, S4, and S5. For the modal logic
K, the matrix characterization [20] requires to check an additional criterion, which cannot be integrated
into the modal connection calculus [13] in a straightforward way. This also applies to the modal tableau
calculus presented above. MleanCoP uses additional techniques to prune the search space: regularity,
lemmata, restricted backtracking, a definition clausal form translation, and a fixed strategy scheduling;
see [12] for details.
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Instance-Based Method. Instance-based methods consist of two components. The first component
adds instances of subformulae to the given formula and grounds the resulting formula, i.e. removes
quantifiers and replaces all variables by a unique constant. The second component consists of an ATP
system for propositional logic to find a proof or counter model for the ground formula. This method can
be adapted to modal logic by using an ATP system for modal propositional logic. The basic approach
works for the cumulative domain condition and formulae that contain either only existential or only
universal quantifiers. This restriction is due to the dependency of applications of the modal rules and
the quantifier rules, which cannot be captured by the standard Skolemization technique.

f2p-MSPASS is an implementation of the instance-based method for first-order modal logic. The
first component, called first2p, adds instances of subformulae to the FML formula and grounds the
resulting formula. It does not translate the given formula into any clausal form but preserves its structure.
For the second component the propositional modal ATP system MSPASS [9] is used. MSPASS is an
extension of and incorporated into the resolution-based ATP system SPASS. By default the standard
relational translation from modal logic into classical logic is applied. To deal with constant domains,
first2p adds the Barcan formula (scheme) to the given FML formula in a preprocessing step.

Embedding into Classical Higher-Order Logic. Various non-classical logics, including FMLs, can
be embedded in classical higher-order logic (HOL) [2, 3]. The approach exploits the fact that Kripke
structures can be elegantly modeled in HOL [3]: FML propositions F are associated with HOL terms
Fρ of predicate type ρ := ι � o. Type o denotes the set of truth values and type ι is associated with
the domain of possible worlds. Thus, the application (Fρwι) corresponds to the evaluation of FML
proposition F in world w. Consequently, validity is formalized as vldρ�o = λFρ∀wιFw. Clas-
sical connectives like ¬ and ∨ are simply lifted to type ρ as follows: ¬ρ�ρ = λFρλwι¬Fw and
∨ρ�ρ�ρ = λFρλGρλwι(Fw ∨ Gw). 2 is modeled as 2ρ�ρ = λFρλwι∀vι(¬Rwv ∨ Fv), where
constant symbol Rι�ι�o denotes the accessibility relation of the 2 operator, which remains uncon-
strained in logic K. Further logical connectives are defined as usual: ∧ = λFρλGρ¬(¬F ∨ ¬G),
⇒ = λFρλGρ(¬F ∨G), 3 = λFρ¬2¬F . To obtain e.g. modal logic S4, R is axiomatized as reflexive
and transitive. Generally, this can be done ’semantically’ (e.g. with axiom ∀x(Rxx) for reflexivity)
or ’syntactically’ (e.g. with axiom vld ∀Fρ 2F ⇒ F , where quantification over propositions is em-
ployed [3]). Arbitrary normal modal logics extending K can be axiomatized this way. However, in
some cases only the semantic approach (e.g. for the irreflexivity ofR) or the syntactic approach (e.g. for
McKinsey’s axiom) is applicable.

For individuals a further base type µ is reserved in HOL. Universal quantification ∀xF is introduced
as syntactic sugar for ΠλxF , where Π is defined as follows: Π(µ�ρ)�ρ = λHµ�ρλwι∀xµHxw. For
existential quantification, Σ = λHµ�ρ¬Πλxι¬Hx is introduced. ∃xF is then syntactic sugar for
ΣλxF . n-ary relation symbols P, n-ary function symbols f and individual constants c in FML obtain
types µ1 � . . . � µn � ρ, µ1 � . . . � µn � µn+1 (with µi = µ for 0 ≤ i ≤ n+ 1) and µ, respectively.

For any FML formula F holds: F is a valid in modal logic K for constant domain semantics if and
only if vld Fρ is valid in HOL for Henkin semantics. This correspondence provides the foundation for
proof automation of FMLs with HOL-ATP systems. The correspondence follows from Benzmüller and
Paulson [3], who prove a more general result for FMLs with additional quantification over propositional
variables. (However, function and constant symbols are avoided in their work to achieve a leaner theory.)

The above approach is adopted for varying domain semantics as follows: 1. Π is now defined as
Π = λHµ�ρλwι∀xµexInWxw ⇒ Hxw, where relation exInWµ�ι�o (for ’exists in world’) relates
individuals with worlds. 2. The non-emptiness axiom ∀wι∃xµexInWxw for these individual domains
is added. 3. For each individual constant symbol c an axiom ∀wιexInWcw is postulated; these axioms
enforce the designation of c in the individual domain of each world w. Analogous designation axioms
are required for function symbols.
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Table 1: Number of proved monomodal problems of the QMLTP library

Logic Domain f2p-MSPASS MleanSeP MleanTAP LEO-II Satallax MleanCoP
K varying - - - 73 104 -

cumulative 70 121 - 89 122 -
constant 67 124 - 120 146 -

D varying - - 100 81 113 179
cumulative 79 130 120 100 133 200

constant 76 134 135 135 160 217
T varying - - 138 120 170 224

cumulative 105 163 160 139 192 249
constant 95 166 175 173 213 269

S4 varying - - 169 140 207 274
cumulative 121 197 205 166 238 338

constant 111 197 220 200 261 352
S5 varying - - 219 169 248 359

cumulative 140 - 272 215 297 438
constant 131 - 272 237 305 438

For cumulative domain semantics the axiom ∀xµ∀vι∀wιexInWxv ∧ Rvw ⇒ exInWxw is addi-
tionally postulated. It states that the individual domains are increasing along relation R.

The above approach can be employed in combination with any HOL ATP system (various candi-
date systems are presented by Sutcliffe and Benzmüller [17]). Here we use LEO-II (http://www.
leoprover.org) and Satallax (http://www.ps.uni-saarland.de/˜cebrown/satallax). The
conversion to thf0-syntax [17] and the provision of the above axioms is realized with the new prepro-
cessor tool FMLtoHOL (1.0) (hence the suffices ’-M1.0’ on p. 1).

3 Evaluation Summary
The introduced ATP systems were evaluated on all 580 monomodal problems of version 1.1 of the
QMLTP library [14]. The QMLTP library is a benchmark library for testing and evaluating ATP systems
for FML, similar to the TPTP library for classical logic [18] and the ILTP library for intuitionistic
logic [15]. In the experiments the following modal logics were considered: K, D, T, S4, and S5 with
constant, cumulative, and varying domain semantics. These modal logics are supported by most of the
described ATP systems. All tests were conducted on a 3.4 GHz Xeon system with 4 GB RAM running
Linux 2.6.24-24.x86 64. The CPU time limit was set to 600 seconds. All ATP systems and components
written in PROLOG use ECLiPSe PROLOG 5.10. LEO-II 1.3.2 was compiled with OCaml 3.12, and
uses prover E 1.4. For Satallax a binary of version 2.2 is used. For MSPASS the sources of SPASS 3.0
were compiled using the GNU gcc 4.2.4 compiler.

Table 1 gives an overview of the test results for each prover. It contains the number of proved
problems for each considered logic and each domain condition. MleanCoP is the strongest prover for
logics D, T, S4 and S5, followed by Satallax. For logic K Satallax performs best. f2p-MSPASS cannot
be applied to 299 problems as these problems contain both existential and universal quantifiers. f2p-
MSPASS, Satallax and MleanCoP also find counter models for many (invalid) FML formulae. E.g., for
T with cumulative domains, these ATP systems found counter models for 89, 90, and 125 problems,
respectively. In addition to the 580 monomodal logic problems there are also 20 multimodal logic
problems in the QMLTP library. Currently, only Satallax and LEO-II are applicable to them. LEO-II
proves 15 of these and Satallax 14. The theorem prover leanTAP 2.3 for first-order classical logic was
run on the 580 monomodal problems in the QMLTP library, in which all modal operators have been
removed. It (classically) proves 296 problems and refutes one problem.
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[1] B. Beckert, R. Goré. Free Variable Tableaux for Propositional Modal Logics. In D. Galmiche, Ed.,

TABLEAUX-1997, LNAI 1227, pp. 91–106, Springer, 1997.
[2] C. Benzmüller, Combining and Automating Classical and Non-Classical Logics in Classical Higher-Order

Logic, Annals of Mathematics and Artificial Intelligence, 62:103-128, 2011.
[3] C. Benzmüller, L. Paulson. Quantified Multimodal Logics in Simple Type Theory. Logica Universalis, 2012.

DOI 10.1007/s11787-012-0052-y
[4] C. Benzmüller, T. Raths, J. Otten. Implementing and Evaluating Provers for First-order Modal Logics, Pro-

ceedings of ECAI’2012. To appear.
[5] W. Bibel. Automated Theorem Proving. Vieweg, Wiesbaden, 1987.
[6] M. Fitting. Proof Methods for Modal and Intuitionistic Logic. D. Reidel, Dordrecht, 1983.
[7] M. Fitting, R. L. Mendelsohn. First-Order Modal Logic. Kluwer, 1998.
[8] G. Gentzen. Untersuchungen über das logische Schließen. Mathem. Zeitschrift, 39:176–210, 405–431, 1935.
[9] U. Hustadt, R. A. Schmidt. MSPASS: Modal Reasoning by Translation and First-Order Resolution. R. Dyck-

hoff., Ed., TABLEAUX-2000, LNAI 1847, pp. 67–81. Springer, 2000.
[10] J. Otten. Clausal Connection-Based Theorem Proving in Intuitionistic First-Order Logic. In B. Beckert, Ed.,

TABLEAUX 2005, LNAI 3702, pp. 245–261. Springer, 2005.
[11] J. Otten. leanCoP 2.0 and ileanCoP 1.2: High Performance Lean Theorem Proving in Classical and Intuition-

istic Logic. IJCAR 2008, LNCS 5195, pp. 283–291. Springer, 2008.
[12] J. Otten. Restricting Backtracking in Connection Calculi. AI Communications 23:159–182, 2010.
[13] J. Otten. Implementing Connection Calculi for First-order Modal Logics. 9th International Workshop on the

Implementation of Logics, Merida/Venezuela, 2012.
[14] T. Raths, J. Otten. The QMLTP Problem Library for First-order Modal Logics. IJCAR-2012, to appear.
[15] T. Raths, J. Otten, C. Kreitz. The ILTP Problem Library for Intuitionistic Logic. Journal of Automated

Reasoning, 38(1–3): 261–271, 2007.
[16] R. M. Smullyan. First-Order Logic. Springer, 1968.
[17] G. Sutcliffe and C. Benzmüller. Automated Reasoning in Higher-Order Logic using the TPTP THF Infras-

tructure. Journal of Formalized Reasoning, 3(1):1-27, 2010.
[18] G. Sutcliffe. The TPTP Problem Library and Associated Infrastructure: The FOF and CNF Parts, v3.5.0.

Journal of Automated Reasoning, 43(4):337–362, 2009.
[19] V. Thion, S. Cerrito, M. Cialdea Mayer. A General Theorem Prover for Quantified Modal Logics. In U. Egly,

C. G. Fermüller, Eds., TABLEAUX-2002, LNCS 2381, pp. 266–280. Springer, 2002.
[20] L. Wallen. Automated deduction in nonclassical logic. MIT Press, Cambridge, 1990.

18



Experiments on the feasibility of using a

floating-point simplex in an SMT solver
Diego C B de Oliveira

CNRS / Verimag
Grenoble, France

diego.caminha@imag.fr

David Monniaux
CNRS / Verimag
Grenoble, France

david.monniaux@imag.fr

Abstract

SMT solvers use simplex-based decision procedures to solve decision problems whose
formulas are quantifier-free and atoms are linear constraints over the rationals. State-
of-art SMT solvers use rational (exact) simplex implementations, which have shown good
performance for typical software, hardware or protocol verification problems over the years.
Yet, most other scientific and technical fields use (inexact) floating-point computations,
which are deemed far more efficient than exact ones. It is therefore tempting to use a
floating-point simplex implementation inside an SMT solver, though special precautions
must be taken to avoid unsoundness.

In this work, we describe experimental results, over common benchmarks (SMT-LIB) of
the integration of a mature floating-point implementation of the simplex algorithm (GLPK)
into an existing SMT solver (OpenSMT). We investigate whether commonly cited reasons
for and against the use of floating-point truly apply to real cases from verification problems.

1 Introduction

Arithmetic is widely present in verification problems. The most common method for solving
satisfiability problems modulo the theory of linear real (or, equivalently, rational) arithmetic
is a combination of a DPLL SAT-solver and a decision procedure for conjunctions of linear
(in)equalities, obtained by running phase I of the simplex algorithm [5].1 Furthermore, problems
over the theory of linear integer arithmetic are most often reduced to problems over the reals
by judicious use of Gomory cuts, branch-and-bound, and other techniques from integer linear
programming; thus the performance of the decision procedure for linear real arithmetic also
conditions that of linear integer arithmetic.

The simplex implementation inside an SMT solver based on the DPLL(T ) approach [8, 5]
has the following tasks:

• Given a conjunction C of linear (in)equalities, say whether it is satisfiable or not and, if
it is so, provide a solution.

• Optionally, given C, say whether it trivially implies certain other predicates (theory prop-
agation).

Furthermore, the algorithm should be organized so that it is easy to add and remove constraints
in C.

Most efficient implementations of the simplex algorithm operate over floating-point num-
bers. However, because of floating-point roundoff errors, such implementations may produce
incorrect results in some cases; this will not do inside a verification tool such as an SMT solver.
SMT solvers thus use implementations of the simplex algorithm over the rational numbers; al-
though such an implementation may be slower than one over floating-point numbers, it provides
assurance that the results it obtains are sound and not subject to rounding errors.

1In operation research settings, this satisfiability phase is followed by another for optimization. This second
phase is not commonly used inside SMT solvers.
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Despite this weakness of floating-point implementations of the simplex algorithm, there
have been several proposals to use them in SMT solvers to improve performance, of course
with appropriate workarounds to ensure the soundness of results [7, 11, 2]. There exist indeed
several ways to use a floating-point simplex implementation (whether one uses a primal or dual
simplex, how to “correct” possibly unsound results...), and it was not so clear from experimental
results whether one is better than another or even whether it is actually interesting to use a
floating-point simplex.

As an example of a difficulty for evaluating simplex implementations, the main weakness of
implementations using rational numbers is that the size of numerators and denominators may
grow considerably for certain problems. While this depends of the problems being solved as
well as the implementation of the simplex algorithm that may use techniques to reduce such
tendency, such cases seldom seem to occur on some solvers handling real examples arising from
software or hardware verification problems, as opposed to, say, random instances [11]. Further-
more, it is difficult to evaluate such systems outside of a full SMT solver, for the performance
of a SMT solver not only depends on that of the theory solver (here, the simplex algorithm)
but also on the size of the clauses output by the theory solver (smaller clauses are more effi-
cient from the point of view of the SAT solver) and on other factors whose impact on overall
performance is unclear.

In this article, we report on experiments of integration of a floating-point simplex solver
(GLPK [10]) inside OpenSMT2 [3].

2 Comparing the exact and floating-point simplex imple-
mentations

We shall distinguish two implementations of the simplex algorithm: the “floating-point simplex”
and the “exact simplex”, the former being implemented with floating-point numbers and the
second with an exact rational representation, with arbitrary-precision numbers.

We investigate a combination of both implementations in order to provide exact results faster
than a pure exact implementation. Our first step is to know how much faster the floating-point
simplex can be compared to the exact simplex, and how often it is wrong.

2.1 Inside an SMT solver

The original implementation of OpenSMT calls an exact simplex as the theory solver for linear
real arithmetic (LRA); it follows the same basic setup as Yices [5] or Z3. We modified OpenSMT
so as to run both simplex implementations at the same time: its preexisting exact simplex and
the floating-point simplex GLPK. As the floating-point simplex cannot handle strict inequalities
directly, a strict inequality

∑
i aixi < b (the ai and b are constants) is interpreted as

∑
i aixi ≤

b− 10−9.
At this point, we are only interested in comparing how long both implementations take to

verify whether a set of linear arithmetic constraints is satisfiable or not. All the extra work that
is usually done by decision procedures (bookkeeping, communication with the SAT solver) is
done by the original exact simplex and is discounted from this comparison.

The incremental nature of the decision procedure is preserved. The GLPK solver object is
carried along the exact simplex state, and is not reinitialized as constraints are tightened or

2The version used was the latest public available with the source code, OpenSMT 1.0.1, dated from October
2010.
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loosened. The GLPK solver tableau is created with all the linear forms
∑

i aixi present in the
SMT formula; when constraints are tightened (i.e.

∑
i aixi ≤ +∞, also known as “contraint

not asserted”, gets changed to
∑

i aixi ≤ C where C is a finite constant, or when
∑

i aixi ≤ C
gets changed to

∑
i aixi ≤ C ′ where C ′ < C) or loosened (the converse of the above), only

the GLPK bounds (but not the tableau) are changed (of course, subsequent checks may induce
pivoting operations and thus tableau updates).

2.2 The first experiment

The benchmarks used in this experiment are those from the division QF LRA (quantifier-free
linear real arithmetic) in the SMT-LIB [1]. These benchmarks are used by the SMT community
to check their solvers and compare their respective speeds. They come from a variety of sources:
there are random, crafted or industrial examples.

The distribution of the times taken to run the 634 benchmarks is shown in Figure 1. The
time limit was set to 2 minutes. With a total of over 38 millions distinct set of arithmetic
constraints tested, the total accumulated time of the exact simplex was 5 h 26 m 55 s, while the
accumulated time of the floating-point simplex was 4 h 44 m 45 s. The times include benchmarks
that timed out.
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Figure 1: Exact simplex vs floating-point simplex in QF LRA.

In the overall time comparison, the floating-point simplex is 14% faster than the exact
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simplex.
These results may even be discouraging: with the extra overhead of ensuring that the

results from the floating-point simplex are sound, the final system is likely not to be faster
than one using only exact computations. Yet, looking at the distribution, we can see that the
floating-point simplex was much faster in a small number of cases, at least 10 times faster in
approximately 3% of the benchmarks.

Apart from the timing distribution, the following points are important for understanding
the feasibility of a floating-point simplex inside an SMT solver when solving practical problems:

Soundness. 11 (1.7%) of the 634 benchmarks tested had at least one incorrect check (meaning
that the floating-point and exact simplex implementations yield different results). If
we consider the total number of sets of arithmetic constraints checked, there were 852
(0.002%) incorrect results out of 38,566,969.

As expected, the floating-point simplex may give incorrect results. Even though they
happen rarely, this should be taken in consideration when incorporating a floating-point
simplex into an SMT solver; such situations must be detected and worked around. How-
ever, they are not statistically significant with respect to overall efficiency.

Overflow. OpenSMT and other SMT solvers like Z3 [4], implement arbitrary precision ratio-
nal arithmetic in two layers: it first attempts computing the numerator and denominator
inside machine words, and only if impossible, because of overflow, allocates extended pre-
cision numbers and branches into an extended precision library (OpenSMT3 and early
versions of Z3 use the GMP library [6]4). GMP features very efficient procedures for
computing on large integers, with both advanced high-level algorithms and highly opti-
mized assembly code for basic operations. Yet, calling GMP for operations over small
numbers incurs significant overhead — because of the cost of function calls to the library,
and because the memory where GMP numbers are stored is allocated using malloc()

and free(), thus incurring the cost of memory allocation and deallocation and breaking
memory locality with respect to the processor cache.

It was recognized that in most cases from verification instances (as opposed to, say, random
instances [11]), the solver never has to handle overflows and never calls the extended
precision library. It is therefore common practice for tools such as decision procedures
or static analyzers to adopt this layered approach, which, in the case of OpenSMT is
implemented by overloaded C++ operators.

We shall now discuss our findings in this respect. 23 (3.6%) of the 643 benchmarks had
at least one overflow. However, this proportion decreases even more when considering all
the numbers manipulated (15,123,297,625), only 1,100,988 (0.007%) of them had overflow.
All the benchmarks that had overflow are from the clock synchro family.

One of the reasons that the floating-point simplex can be much faster than the exact
simplex is when the latter starts operating on extended precision numbers due to overflow.
Figure 1 shows that the problems from the family clock synchro which had overflows are
constantly solved faster by the floating-point simplex. Yet, as we can see that in the
QF LRA benchmarks, overflow is very rare and in this case, efficient rational number
libraries can perform as well as floating-point computation.

3D. Monniaux implemented the C++ FastRationals layered arithmetic in OpenSMT. A similar library,
ZArith, is available for OCaml from X. Leroy and A. Miné.

4L. de Moura, personal communication.
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The problems of QF LRA are sparse in general. Additionally, numbers presented in the
formulas are usually small. Overflows happen much easier in dense problems when the
frequent linear combination of the expression makes the coefficient of the variables to
grow very fast [11].

Size and running times. It is also worth noticing the average running time per query of
the simplex implementations: 0.44 ms for the floating-point simplex and 0.51 ms for the
exact simplex. Both times are very low. That means that a decision procedure for lin-
ear arithmetic should be optimized to run several small/medium problems incrementally
rather than a few large ones; this may explain earlier disappointing results when calling an
industry-strength external linear programming package [7], which is optimized for solving
very large instances from operation research.

The distribution of the running times seems randomly spread. Even though both im-
plementations are variants on the simplex algorithm, they implement different heuristics
(e.g. different pivoting strategies), thus explaining that the respective running times
occasionally differ considerably.

With this first experiment, we conclude that the floating-point simplex is not always faster,
but has the potential to solve a few extra problems. In the next section, we discuss a way of
integrating the floating-point simplex into an SMT solver.

3 Integrating a floating-point simplex into an SMT solver

Our goal is to integrate a floating-point simplex into an SMT solver, keeping the exact simplex
to maintain soundness. Finding a solution is generally more costly than just verifying it. The
method we propose is to use the floating-point simplex to find a solution and use the exact
simplex to check whether the solution is correct.

The set of solutions of the linear programming problem AX ≤ B (X ∈ Rn, B ∈ Rm, A
a m × n matrix) is a convex polyhedron. Let us now recall the workings of phase II of the
simplex algorithm, the optimization phase. It starts from an initial feasible vertex (provided
by phase I), and moves from a vertex to neighboring vertex in successive improvements of the
objective; it stops if further improvement is impossible, on the optimal solution. There exist
different strategies for choosing among possible next vertices, thus different running times. Some
strategies may also lead to infinite cycling, which is prevented by using Bland’s rule; a typical
efficient strategy is steepest descent first, and Bland’s rule after maximal number of pivoting
iterations. Figure 2 illustrates the result of several iterations over a arbitrary simplex problem
in a geometrical perspective, where the current solution is moving through the vertices.

In the case of verification problems, we are not interested in optimization, only in phase I,
but the algorithm works similarly. The details of different implementations can be found e.g.
in [5, 13, 12].

Once we have a point that represents a solution in the floating-point simplex, we go directly
to this point in the exact simplex and verify it [11]. This is much faster than using the exact
simplex to search for this solution point, since the number of pivot operations in this case is at
most the number of variables, while it is at most exponential when searching. The verification
is done by simply executing the exact simplex algorithm which does a linear scan over the
variables only when a variable had a bound violated during the check call.

Verification proceeds as follows:

• if the point is a valid solution, the method will detect it immediately and will stop;
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Figure 2: In the simplex algorithm, the point that represents the solution is moving through
the neighbor vertices at each iteration.

• in the case the solution given by the floating-point simplex is incorrect, an uncommon
case in practice, the exact simplex will find a correct solution starting from that point.

In other words, the verification procedure will use the solution found by the ‘fast’ floating-
point simplex as the initial point of the ‘slow’ exact simplex, skipping a potentially expensive
search every time the solution given is correct, as illustrated in Fig. 3.

Figure 3: To verify a solution, we move directly to the point we are checking found by the
floating-point simplex and ‘continue’ from there.

In order to direct the exact simplex to the same point reached by the floating-point simplex
(“same” being defined as “the intersection of the same set of constraint planes”, not “the
same numerical value”), we reproduce inside it the same partition of variables into “basic” and
“non-basic” and the same use of lower or upper bounds for variables as in the floating-point
simplex [11], a purely combinatorial information. This avoids having to extract floating-point
information and reinsert it into exact computations.

In any case, facts for the underlying SAT-solver are derived solely from the exact simplex: if
the floating-point simplex answers a model, then this model is checked by exact computations,
and if it answers that the system is unsatisfiable, then unsatisfiability is checked by the exact
simplex, which also generates the conflicts (blocking clauses). In case of disagreement, the exact
simplex has the last word.
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4 The second experiment

In this section, we compare the combination implementation from Section 3 with the original
exact implementation from OpenSMT: does our combination method actually improve the time
the SMT solver takes to solve the problems? Figure 4 shows a comparison of their timings,
for the 634 benchmarks with a time limit set to 4 minutes. Again, the benchmarks are the
QF LRA section of SMT-LIB.

The total accumulated time of the OpenSMT was 11h06m42s, while the accumulated time
of the floating/exact OpenSMT was 13h26m35s. The times include benchmarks that timed
out. Unknown results are considered time out. 37 problems were only solved by the original
OpenSMT, while 8 other problems were only solved by the modified version. Of the problems
that only the combination method could solve, 6 are from the miplib family and 2 of them are
from the tta startup family. The problems of the miplib family are a portion of the ones that
in the first experiment were solved at least 10 times faster by the floating-point simplex.

0.01 0.1 1 10 100

OpenSMT

0.01

0.1

1

10

100

O
p
e
n
S
M

T
 u

si
g

n
 G

LP
K

miplib
spider
sc
sal
DPT-Scheduling
tta_startup
clock_syncro
TM
uart

Figure 4: OpenSMT vs floating/exact OpenSMT in QF LRA.

The result of this second experiment was rather unsurprising given the observations we
obtained from the first one. The combined method was able to solve a few extra problems, but
overall it was slower: its overhead is generally not compensated by the slightly higher speed
of the floating-point simplex, though there exist some cases where it is markedly faster. We
recapitulate the main points with a few extra observations here:
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Soundness The number of incorrect checks done by GLPK is still very low in this experiment.
GLPK and the exact simplex disagreed only on 0.0002% of the queries.

It is well-known that a naive floating-point implementation of the simplex algorithm, by
direct implementation of the textbook description of variable selection and pivoting, will
generally fail to solve larger problems because floating-point roundoff will cause it to enter
“absurd” configurations, loop forever etc. GLPK, however, is not a naive implementation
and generally avoids such pitfalls.

Overflow. One of the main reasons one could gain from the use of the floating-point simplex
is the presence of overflow, which makes using floats (although unreliable) much faster
than using an arbitrary precision library. However, we have seen in Section 2.2 that this
does not happen often in QF LRA and it continues very rare when the search is guided
by GLPK. The presence of a few overflows in the family clock synchro was not enough to
make the combined method faster.

Size and running time. The average running time of the individual queries continues very
low, being less than 1 ms. The high total running time comes from the very large number
of linear programming feasibility queries to be solved per SMT problem, and not from
the size of each individual query.

According to the GLPK FAQ [9], GLPK is “intended for solving large-scale linear pro-
gramming [...] problems” and “is able to handle problems with up to 100,000 constraints”.
However, the average size of the problems in QF LRA is 500 variables and 200 constraints.
The advanced engineering implemented to solve large problems may not be the best to
solve small ones. Additionally, the average number of checks is 60,000 per problem in
these benchmarks, with consecutive checks usually changing very little. A good imple-
mentation of a simplex for SMT-solving is one able to solve fast thousands of relatively
small, sparse and very similar set of constraints rather than just one very large.

Finally, there is not a clear reason of why the modified OpenSMT solves the few extra
problems. The structure of these problems likely exhibits some characteristics that made them
better solvable with the help of GLPK, yet the main reasons we could invoke for the viability
of using a floating-point simplex, such as the presence of overflows and the large size of the
problems, are not applicable in this case. Neither do these problems have overflows, nor are they
very large in size (the average number of variables is 267 and the average number of constraints
is 529).

5 Conclusion and possible future work

Despite the investigations of several authors, the merits of the integration of a floating-point
simplex implementation into an SMT solver were unclear. We have therefore done a deep exper-
imental comparison between the floating-point and exact simplex approaches on the QF LRA
benchmarks of SMT-LIB to shed some light on the issue.

On the one hand, the reason generally cited for possible better efficiency of the floating-
point simplex — the use of expensive extended precision arithmetic in the exact simplex —
applies to randomly generated benchmarks (on which pivoting quickly yields dense matrices
with large numerators and denominators [11]), but not to benchmarks from SMT-LIB. On the
other hand, the weakness generally cited about the floating-point simplex implementation —
that floating-point roundoff errors could lead it to wrong answers that would be expensive to
correct in order to obtain sound results — neither applies to SMT-LIB benchmarks.
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Despite the generally slightly higher speed of the floating-point simplex compared to the
exact simplex (our first experiment), the combination method using the floating-point simplex
to guide the exact simplex to a solution (thus avoiding a potentially expensive search in exact
representation) is generally slightly slower than the exact simplex. We have however identified
some families of instances on which it is much faster, but it is unclear which characteristics of
the problem produce this behavior and how they could be detected so as to choose which of
the two implementations is more likely to be faster.

Our implementation currently reconstructs a starting point for the exact simplex by pivoting
of the variables until their partition into basic and nonbasic matches that of the floating-point
simplex. This boils down to moving from one base of a vector space to another by Gaussian
elimination, and it is well-known that Gaussian elimination in exact rational arithmetic may
generate, in its intermediate steps, dense matrices with large numerators and denominators even
though the initial and final matrices are sparse and with small numerators and denominators.5

For this reason, advanced methods for exactly solving systems of linear equations proceed by
other means, such as performing Gaussian elimination modulo some prime numbers (if those
numbers are not too large, all computations fit within machine words) and reconstructing the
solution using the Chinese remainder theorem [14]. It seems possible to use such methods in
lieu of pivoting to reconstruct the starting tableau of the exact simplex. It would perhaps
be interesting to investigate such methods, though our second experiment indicates that the
pivoting in the exact simplex seldom incurs overflows in practice and thus that it is unlikely
that the gains from such advanced linear solving methods would be great (especially since they
incur some overhead).

Theory propagation consists in deriving opportunistically facts that are implied by the
current satisfiable configuration: for instance, if a line in the current simplex tableau implies
immediately that x ≤ 20 and there is a x ≤ 30 atom A, then the solver can immediately assert A.
This tends to be more efficient than waiting until the SAT solver branches on A and, for instance,
asserts ¬A only to discover, through more pivoting, that it makes the system unsatisfiable.
Currently, theory propagation is performed only by the underlying simplex implementation,
and thus only in the rare case where the floating-point simplex answers “unsatisfiable” but the
exact simplex disagrees: the results of the floating-point simplex are not trusted in this respect.
Two improvements are possible so as to perform more theory propagation. The simpler is to
use inequalities “implied” by the floating-point simplex tableau (we use quotes so as to stress
the unsound character of this implication) as mere hints in the SAT solver: instead of being
asserted as truths, they are suggested as appropriate polarities for the associated atoms. A
more ambitious endeavour is to run pivoting steps in the exact simplex (or use linear algebra
techniques) in order to exactly reconstruct the tableau lines used for theory propagation, which
can then yield sound facts.
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Abstract

We investigate automated reasoning techniques as a means of supporting authorization enforce-
ment functions of security-aware workflow management systems. The aim of such support is that one
may statically or dynamically guarantee the realizability of a workflow instance given the security
constraints of the underlying workflow specification.

We develop two such automated reasoning methods and experimentally evaluate their suitabil-
ity for giving such support. One method uses a propositional encoding of realizability implemented
through binary decision diagrams, another method uses a linear-time temporal logic encoding imple-
mented via bounded model checking.

We chose these particular methods and implementations since they render representations that,
at least in principle, capture many potential solutions so that dynamic guarantees of realizability can
be made through efficient queries on these representations. Preliminary experimental results identify
issues of scalability and of balancing flexibility in task allocation with complexity of computing such
allocations.

1 Introduction

It is increasingly common for organizations to computerize their business and management processes.
The co-ordination of the tasks or steps that comprise a computerized business process is managed by
workflow management systems or business process management systems.

A workflow typically specifies the tasks that comprise a business process and the order in which
those tasks should be performed. Moreover, it is often the case that some form of access control should
be applied to the execution of tasks. Hence, most workflow management systems may implement
security controls that enforce authorization rules and business rules, in order to comply with statutory
requirements or best practice. It is such “security-aware” workflows that will be the focus of this paper.
Among the most useful security controls are:

• user/task authorization constraints, which specify which users may, in principle, execute what
tasks;

• binding of duty (BoD) constraints, which require that certain tasks be executed by the same user
in any given workflow instance;

• separation of duty (SoD) constraints, which require that certain tasks be executed by different
users in any given instance of the workflow.

Pascal Fontaine, Renate Schmidt, Stephan Schulz (eds.); PAAR 2012, pp. 29–42 29



Authorization Enforcement in Workflows: Maintaining Realizability J. Crampton, M. Huth, J. H.-P. Kuo

An illustrative example of a constrained workflow for purchase order processing is shown in Fig. 1.
The purchase order is created and approved (and then dispatched to the supplier). The supplier will
present an invoice, which is processed by the create payment task. When the supplier delivers the
ordered goods, a goods received note must be signed and countersigned; only then may the payment be
approved. A workflow specification need not be linear: the processing of the goods received note and
of the invoice can occur in parallel, for example.

t1 t2

t3

t4

t5

t6

(a) Task ordering

t1 t2

t3

t4

t5

t6

=

6=

6=

≺

≺

(b) Constraints

t1 create purchase order
t2 approve purchase order
t3 sign goods received note
t4 create payment
t5 countersign goods received note
t6 approve payment
6= users performing the tasks must be different
= users performing the tasks must be the same
≺ user performing the second task must be senior to the user performing the first

(c) Figure legend

Figure 1: A simple constrained workflow for purchase order processing

In addition to constraining the order in which tasks are to be performed, some business rules are
specified to prevent fraudulent use of this workflow. These rules take the form of constraints on users
that can perform pairs of tasks in the workflow: for example, that the same user must not sign and
countersign the goods received note.

The aggregate effect of such constraints may make it impossible to find an allocation of tasks to
users and satisfy all the constraints. In other words, it may be that a workflow is rendered unrealizable
by the inclusion of security controls. Hence, it is important to be able to determine whether a workflow
specification can be realized.

There are different ways in which a workflow management system might choose to allocate tasks
to users. These “execution models” give rise to different realizability problems but share the need to
guarantee the continued realizability of a workflow instance. Hence, efficient decision procedures for
workflow realizability are needed.

In this paper, we consider methods by which an authorization enforcement engine for workflow man-
agement systems might be designed. By construction, these methods should maintain the realizability
of a workflow instance during its execution. We describe two such methods – a decision procedure and
a search procedure – that can be called by such an engine. In particular, we explain how we can use
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binary decision diagrams (BDDs) to build a decision procedure and bounded model checking to build
a search procedure. We then describe our experimental work that compares the relative merits of these
two methods.

Outline of paper. In Section 2, we present technical background of security-aware workflow systems.
Two methods for supporting authorization enforcement functions for workflow instances, and their en-
codings through automated reasoning methods, feature in Section 3. Preliminary experimental data for
implementations of these encodings are reported in Section 4. A brief discussion and our conclusions
make up Section 5.

2 Preliminaries
We recall the definition of a constrained workflow authorization schema [2], which has formed the basis
for a number of papers on workflow realizability, for example [1, 6].

Definition 1. A constrained workflow authorization schema AS, is a tuple (T,≤, U,A,C) where

• T is a set of tasks and (T,≤) is a partial order,

• U is a set of users and A ⊆ T × U an authorization relation,

• C is a finite set of entailment constraints, tuples of form (D, t → t′, ρ) where D ⊆ U , t, t′ ∈ T
and ρ ⊆ U × U .

The order t ≤ t′ models that either t equals t′ or task t has to be completed before task t′ begins.
Thus ≤ models temporal constraints on task execution. The authorization (t, u) in A models that user
u is, at least in principle, authorized to execute task t. As we will see, the authorization enforcement
engine may not allow an authorized user to execute a task because doing so would render the workflow
instance unrealizable. An entailment constraint (D, t→ t′, ρ) models that if user u executes task t and
u is from target set D, then the user u′ who executes task t′ (and who need not be from set D) must
be related to u in the manner specified by ρ, i.e. (u, u′) must be in ρ. For example, when D equals U
the entailment constraint models BoD when ρ equals =, and it models SoD when ρ equals 6=. Note that
entailment constraints (D, t → t′, ρ), in and of themselves, do not impose any temporal order on the
relative occurrence of t and t′.

2.1 Workflow Realizability
It is apparent that the existence of an authorization policy and entailment constraints may mean that
there is no possible allocation of users to tasks. Hence, an important, practical question is whether a
workflow authorization schema AS is realizable (also known as satisfiable in the literature). For our
kind of schema, realizability means that one can allocate all tasks t in T to users in U such that all
schema constraints (temporal order, authorization, and entailment) are satisfied. We now define this
notion formally.

Definition 2. LetAS denote a constrained authorized workflow schema as above. ThenAS is realizable
if there exists a total function α : T → U such that

• (t, α(t)) is in A for all t in T ,

• for all (D, t→ t′, ρ) in C, if α(t) is in D, then (α(t), α(t′)) is in ρ.
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In other words, a workflow schema is realizable if there exists an allocation of users to tasks such
that each user is authorized and all entailment constraints are satisfied. The reason that α suffices as a
solution for realizability ofAS is that our schema allows for the decoupling of temporal orderings from
other constraints, and partial orders are always realizable (“linearizable”). We write Sol(AS) to denote
the set of all functions α that realize the workflow AS; this is the solution space of AS, which may be
empty.

2.2 Executing Workflows
A workflow management system (WfMS) is responsible for instantiating workflow schemas. The WfMS
is also responsible for managing the execution of the tasks in a workflow instance. In particular, the
WfMS will maintain a pool of ready tasks: the set of ready tasks in a workflow instance is the set of
minimal tasks (with respect to the ordering on T ) that have not yet been completed. Using the example
in Fig. 1, the ready tasks once t2 has been performed, for example, are t3 and t4; if t4 is then performed,
the set of ready tasks will be {t3, t6}.

In a workflow instance, the user/task allocation may be done in different ways [4].

• The WfMS creates a task list to which authorized users are allocated when a workflow is instan-
tiated.

• The WfMS allocates authorized users to only those tasks that are presently ready.

• The WfMS maintains a pool of ready tasks from which users select tasks to execute.

We refer to these execution models as static task allocation, dynamic task allocation and task selection,
respectively.

3 Two automated reasoning methods for authorization enforce-
ment

The WfMS must incorporate a module, which we call the authorization enforcement function (AEF),
that can ensure that

• a workflow instance is completed by users who are authorized for the respective tasks they per-
form,

• all constraints are satisfied, and

• the workflow instance completes.

The first of these responsibilities is a standard one for access-control functions and we will assume that
it can be performed efficiently. The interesting question is how to implement the remaining functionality
of the AEF.

The nature of the AEF will be determined by the execution model. In particular, there is an important
distinction between static task allocation and the other two execution models. With static task allocation,
the AEF computes a single mapping α of users to tasks, meaning that a single check for realizability is
performed. Precomputing such a mapping maintains realizability by construction but does not allow for
the modification of user-task bindings (which may perhaps be required for load-balancing, for example).

In contrast, no “up-front” computation of α is performed for dynamic task allocation and task se-
lection. Instead, the AEF must perform a series of realizability checks on modified versions of the
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workflow schemaAS. Once a task t has been performed by user u, then we transform the authorization
relation of AS so that the only authorized user for t is u. We then determine the realizability of the
modified schema. Henceforth, we only consider the task selection execution model, since the design of
our AEF can be readily modified to accommodate the dynamic task allocation model.

The AEF traps all user requests to execute tasks, makes a decision on requests, and enforces that
decision. We may model the AEF mathematically as a function of type

AEF : accessRequest× state→ decision× state (1)

where accessRequest is the set of request events the AEF has to process (here, access requests of form
(t, u) in T × U ), state is an internal state that AEF maintains, and decision is the set of access-control
decisions that AEF can make (here either grant or deny). In other words, the AEF may inspect its
internal state when making a decision on the current access request, and it may possibly alter its state as
a result of that decision.

In the remainder of this paper we explore how such an AEF can be designed so that it may make
access-control decisions that maintain the realizability of a constrained authorized workflow schema
AS. Concretely, we will discuss how automated reasoning tools may be used to give an AEF the
ability to maintain realizability if at all possible. In particular, the state of an AEF will need to contain
information that supports the maintenance of realizability of the workflow.

A key challenge in using automated reasoning tools is here that they should not incur a computational
cost that would lead to unacceptable delays of access control decisions. It is this design constraint that
will suggest to us methods that may precompute a representation of a large portion of the solution set,
so that dynamic requests can be decided by an efficient inspection (and perhaps adjustment) of that
representation. A formula of propositional logic, for example, may not be a suitable representation:
although it can capture the entire solution space, querying it may involve a full SAT check that may
simply take too long to complete in this application context.

3.1 Constructing an AEF with a Decision Procedure
We now describe how to construct an AEF from any decision procedure for workflow realizability so
that this AEF maintains realizability whenever it grants access requests. Let AS denote a constrained
authorized workflow schema as above. We assume the state σ maintained by the AEF to be a list of
pairs of form ((u, t), d), where (u, t) is a request and d the decision the AEF made on request (u, t). In
particular, there is at most one pair in σ with first component (u, t) – we assume that repeated tasks are
distinct in AS – and we can extract from σ all requests to execute tasks that have been granted.

Let σcomplete be the set of tasks in T such that there exists an entry in σ of the form ((u, t), grant).
For t ∈ σcomplete, we write σ(t) to denote the user that was granted permission to execute t. 1 We write
σincomplete for T \ σcomplete. We define

AS[σ]
def
= (T,≤, U,A[σ], C), where

A[σ]
def
= (A ∩ (σincomplete × U)) ∪ {(t, σ(t)) : t ∈ σcomplete} .

In other words, for all t in σcomplete, we replace all instances of (t, u) occurring in A with the sole entry
(t, σ(t)), and leave all instances of t in σincomplete untouched in A.

Having established these concepts and notation, we can now sketch one possible approach to main-
taining the realizability of AS through an AEF that is consistent with the type declared in (1). The

1Although σ(t) might be a set of users, we assume that tasks are unique and so repeated tasks are differentiated through their
instances.
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(decision,state) AEF-DP(schema AS,state σ,accReq (t, u))
{

if ((t, u) ∈ A && isRealizable(AS[σ | ((u, t), grant)]))
{ return (grant , σ | ((u, t), grant)); }

else
{ return (deny , σ | ((u, t), deny)); }

}

Figure 2: An AEF incorporating a decision procedure for workflow realizability

pseudocode for AEF-DP is depicted in Fig. 2. The decision procedure isRealizable takes a work-
flow schema AS as input and returns true if and only if Sol(AS) is non-empty (i.e. returns true if
and only if AS is realizable).

We now describe the behavior of AEF-DP, where we write σ | x for the state that appends to list
σ the item x of appropriate type. A request (t, u) is denied if either (t, u) is not in the authorization
relation A of AS,2 or if isRealizable, when supplied with input AS[σ | ((u, t, ), grant)], returns
false – meaning that there is no function α in Sol(AS) that maps u to t and σ(t′) to t′ for all t′ that have
been executed – as granting it would make the remaining workflow unrealizable. Otherwise, the request
is granted. In any event, σ is updated to reflect the decision made.

The crucial invariant that this AEF guarantees is that

“Invariant: All grants of access requests mean that the workflow AS is realizable in the
updated state.”

One possible drawback of this approach is that the decision procedure isRealizable needs to
be called each time an access-control request is made. As already discussed, one limiting factor will
certainly be the space and time requirements for such a decision procedure. Therefore, we will now
explore whether automated reasoning tools can be devised that fare better in this regard.

3.2 Constructing an AEF with Solution Sets
The method AEF-DP maintains the realizability of a workflow, but makes no use of “witness” informa-
tion for such realizability. One price we pay for this is that we need to recompute realizability decisions
each time a request is processed by AEF-DP.

Hence, we now discuss an alternative approach that uses a search procedure to compute a (repre-
sentation of a) subset of Sol(AS). The procedure relies on an abstraction of Sol(AS). More precisely,
it computes two partitions

T =

n⋃
i=0

Ti and U ⊇ Ũ =

n⋃
i=0

Ui (2)

where all functions α : T → U such that (ti, α(ti)) belongs to Ti × Ui for all 0 ≤ i ≤ n belong to
Sol(AS). The intuition here is that we may assign to any task in Ti any user in Ui, and that we can
be sure that this will not interfere with any constraints within (Ti, Ui) nor across any of the set-valued
task/user pairs (Tj , Uj). Note that (2) partitions task set T but only partitions a subset Ũ of users of
U that will be allocated to tasks in that workflow instance. In effect, this is an under-approximation of

2In the interests of brevity, our pseudocode does not include sanity checks such as ensuring that the requested task has not
already been performed. As already mentioned, we also assume that multiple occurrences of the same task are distinguishable in
the schema.

34



Authorization Enforcement in Workflows: Maintaining Realizability J. Crampton, M. Huth, J. H.-P. Kuo

(decision,state) AEF-SS(schema AS,state (Σ, σ),accReq (t, u))
{

if (there exists (T ,U) ∈ Σ such that t ∈ T and u ∈ U)
{ return (grant , (Σ, σ | ((u, t), grant))) }

else
{ return (deny , (Σ, σ | ((u, t), deny))) }

}

Figure 3: Constructing an AEF using a static prepartitioning of solutions

Sol(AS) as it represents a subset of that space of solutions and does not represent functions that aren’t
solutions.

Given a method getAbs for computing such partitions, we can write a second AEF, AEF-SS,
pseudocode for which is shown in Fig. 3. This approach assumes the state is an ordered pair (Σ, σ),
where Σ is some representation of two partitions as in (2) computed using getAbs, and (as before) σ
is a list that records which requests have been processed with what decisions. In particular, σ records
which tasks have already been allocated to which users by AEF-SS.

Given a request (u, t), AEF-SS inspects whether u and t belong to the same task/user pair computed
by getAbs, i.e. whether there is some i so that u is in Ui and t in Ti. If so, access is granted; otherwise
it is denied. In particular, the Σ part of the state never changes and AEF-SS never has to recompute
realizability information. However, it is possible that AEF-SS may deny a request that would not
prevent the completion of a workflow instance.

4 Implementation and Evaluation
In this section, we describe how the procedures isRealizable and getAbs can be constructed.
For the isRealizable procedure, we encode the realizability problem as an instance of SAT for
propositional logic (PL); we do this since we want to test whether BDDs might serve as an effective
representation of the solution space. For the procedure getAbs we capture this also as a SAT instance
but in linear-time temporal logic (LTL), as done in [3]. We use LTL and a bounded model checker here
as we can instrument the LTL encoding so that it precomputes partitions as in (2) that can be used as a
basis for AEF-SS. We also report on experimental work that tests the performance of our methods and
these encodings when applied to synthetic (randomly generated) workflow schemas.

4.1 Procedure isRealizable
Formula ηAS encodes the realizability problem for AS as an instance of SAT for PL, where models of
ηAS correspond to elements of Sol(AS) and vice versa. This encoding is shown in Fig. 4. Its set of
propositional variables is

{x(t,u) | (t, u) ∈ A}

where we define the sets of users Ut and u.ρ as

Ut = {u ∈ U | (t, u) ∈ A} (3)
u.ρ = {u′ ∈ U | (u, u′) ∈ ρ} (4)

This encoding is sound and complete since we can show that ηAS is satisfiable if and only if Sol(AS)
is non-empty, i.e. AS is realizable. The intuition behind the encoding is that t may be allocated to u if
x(t,u) is true, and that t must not be allocated to u if x(t,u) is false.
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ηbind =
∧
t∈T

∨
u∈Ut

x(t,u) (5)

ηC =
∧

(D,t→t′,ρ)∈C

η(D,t→t′,ρ)

η(D,t→t′,ρ) =
∧

u∈D∩Ut

x(t,u) → ∧
u′∈Ut′\u.ρ

¬x(t′,u′)



Figure 4: Encoding ηAS
def
= ηbind ∧ ηC : workflow realizability as instance of SAT for PL

Specifically, formula ηbind specifies that all tasks may be allocated to some user – a necessary
requirement for realizability. Formula ηC simply stipulates that all formulas η(D,t→t′,ρ) that encode
entailment constraints must be true. And such a formula η(D,t→t′,ρ) states that if a user u from set
D may be allocated to task t, then all users u′ that are authorized to execute task t′ but are not in a
relationship to u via ρ are such that they must not be allocated to t′. Note that “It is not the case that u′

may allocate task t′ ” is equivalent to “It is the case that u′ must not be allocated to task t′ ”. The need
for this indirection is that the variables do not represent the modality “must be allocated”.

A Boolean function (and so ηAS as well) can be represented as a binary decision diagram (BDD),
a DAG-type data structure that eliminates redundancies in binary decision trees; and this representation
is unique for a fixed order of variables in the BDD. The main reason why we are interested in BDDs
here is that one can efficiently compute specializations of BDDs (in which the truth values of some
variables are fixed) in order to decide the realizability of a workflow in an updated state. Thus we could
implement non-initial calls to isRealizable efficiently relative to the complexity of computing the
“initial” BDD from ηAS . Our experiments therefore focus on the latter computation.

Given ηAS , we first synthesize from it a BDDBAS (using a standard BDD library JavaBDD, which
relies on the CUDD implementation in C, and its default variable ordering) and then check (in constant
time) whether that BDD is equal to the canonical BDD that contains only leaf 0 (and so represents
“unsatisfiable”). If and when this BDD has been built, we can implement the call to isRealizable
in Figure 2 by simply computing the specialization of this BDD that eliminates one variable.

4.2 Procedure getAbs

Our implementation of getAbs is through a reduction of realizability of AS to SAT for the NP-
complete fragment [5] LTL(F) of LTL. We quickly review the syntax and semantics of LTL(F): Given
a finite set AP of atomic propositions (this is T ∪ U here), the propositional temporal logic LTL(F) is
generated by the following grammar:

φ ::= p | ¬φ | φ ∧ φ | Fφ

where p is from AP and F is the temporal connective “Future” such that F p states that p will be true at
some point in the future.

A model of a formula φ is an infinite sequence of states π = s0s1 . . . , where each si is a subset of
AP. We write π |= φ if π is a model for φ. We say that a formula φ is satisfiable if and only if it has
a model. We write πi to denote the infinite suffix sisi+1 . . . of π. The formal semantics of formulas is
then given in Figure 5.
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π |= p iff p ∈ s0 π |= ¬φ iff not π |= φ
π |= φ1 ∧ φ2 iff (π |= φ1 and π |= φ2) π |= Fφ iff there is i ≥ 0: πi |= φ

Figure 5: Formal semantics of temporal logic LTL(F) over models π = s0s1 . . .

δFT
def
=

∧
t∈T

F t

δGU
def
= G(

∨
u∈U

u)

δA
def
=

∧
t∈T

G
(
t→ ¬(

∨
(t,u)6∈A

u)
)

δC
def
=

∧
(D,t→t′,ρ)∈C

δ(D,t→t′,ρ)

δ(D,t→t′,ρ)
def
=

∧
u∈D

(
F (t ∧ u)

)
→ G

(
t′ → ¬(

∨
(u,u′)6∈ρ

u′)
)

δFU
def
=

∧
u∈U

Fu

Figure 6: Encoding δAS
def
= δFT ∧ δGU ∧ δA ∧ δC ∧ δFU of [3]: workflow realizability in LTL(F)

We use the usual abbreviations for disjunction (∨), implication (→), logical equivalence (↔) and the
“Global” temporal connective Gφ, which stands for ¬F¬φ (the informal interpretation being “always
φ”).

The realizability of AS we encode as a SAT instance for LTL(F) formula δAS shown in Fig. 6. Its
satisfiability is decided using the model checker NuSMV on a fully connected model, formula ¬δAS ,
and in an incremental bounded model-checking mode. The set of variables for this encoding is the
disjoint union T ∪ U . The interpretation of a variable t (respectively, u) being true in state si is that it
is in set Ti (respectively, Ui) of the constructed partition. Thus the δAS encoding allows the possibility
that several tasks and users may hold in a state.3

If the model checker returns a “counterexample”, a finite trace of states s0s1 . . . sn that represents a
“lasso” path π that makes δAS true, then we can derive a partition

Ti = si ∩ T Ui = si ∩ U (6)

and show (see [3]) that all α that allocate tasks consistent with all (Ti, Ui) pairings are in Sol(AS).
We now discuss this encoding in greater detail. Formula δFT demands that all tasks have to be true at

some state, whereas δGU ensures that all states make some user(s) true. Formula δA indirectly captures
the authorization relation A: for all tasks t, if t is true at some state then no users that are un-authorized
to execute t can be true at that state. The reason for this indirect encoding is that we need to rule out
that user and task groupings at a state violate any constraints, and that we cannot control or predict these
groupings.

3An encoding of workflow realizability in LTL(F) in which we insist that a single user and task are executed in all states has
poor model checking results [3].
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Formula δC states that all entailment contraints have to be met. And formula δ(D,t→t′,ρ) captures
such an entailment constraint. If a user u from set U is grouped with task t at some state, then at all
states that make t′ true there are no users u′ true there which are not in relationship ρ with u. Again,
this indirection is needed in order for the model checker to discover such groupings of users and tasks
at states.

Intuitively, it is desirable to have states si in which there are as many tasks and users as possible,
as this gives us more flexibility when dealing with access requests. Similarly, we want this search
procedure to have the tendency of accommodating, and so possibly allocating, as many users and tasks
in the sets Ti and Ui. This tendency is actively encouraged through the conjunct δFU in encoding δAS .
The intuition behind the inclusion of this conjunct is that we use a bounded model checker that will find
the shortest possible “lasso” trace that represents a model of the formula. So the model checker will
indeed try to pack as many users into states as possible to capture a solution, and will put all those users
that were not needed for the solution into a “junk” state, and only into one such junk state. We found
this to be beneficial when compared to an encoding that does not include this conjunct [3].

4.3 Experimental data

We now discuss our experimental results, which compare the performance of the BDD approach (ηAS
for isRealizable in AEF-DP) to a bounded model-checking approach (δAS for getAbs in AEF-SS)
on randomly generated workflowsAS (be they realizable or not). These experiments were conducted on
the same Ubuntu Linux machine with Intel R© CoreTM 2 Duo Processor at 2.8 Gigahertz and 4 Gigabytes
of RAM.

We now describe the set of configurations for the workflow schemas AS used in our experiments.
Each AS was generated according to three parameters: the number of users, the authorization density,
and the constraint density. In each configuration the number of tasks was equal to the number of users,
taking values 10, 20, . . . , 140, 150. Authorization density is defined to be the ratio of |A| to the product
of |U | and |T |, where the latter represents the maximum possible cardinality of A. The authorization
densities we considered in our experiments are 0.1, 0.5, and 1.0, therefore ranging from a rather sparse
authorization policy through to one in which all users are authorized to perform all tasks. The constraint
density is defined to be the ratio of |C| to |U |. We let this value range over 0.05, 0.10, and 0.20. The
reason for choosing these lower values, but still having a good spread within that low range, is that
higher values of the constraint density tend to produce only unrealizable ramdomly generated AS and
we are interested in realizable AS as we mean to support such realizability as an invariant in an AES.

We present our results in graphical form in Figures 7 to 9. Each figure shows results for a different
authorization density. In each figure, the y-axis represents the time (on a logarithmic scale) taken to
determine realizability, where that time is the average time over 10 schemas AS for the respective
configuration type. The x-axis represents the configuration type for our experiments. A configuration
type has form uu-cd where uu is the number of users (and so the number of tasks as well) and cd is
the constraint density. The absence of a bar for a given configuration type indicates that the experiment
timed out after 20 minutes or ran out of memory.

Figure 9 suggests that the LTL approach outperforms the BDD approach for high values of ad such
as 1.0: the latter cannot even generate BDDs for workflows with more than 20 users whereas the LTL
approach can do this for at least 150 users. Looking at the data on Figures 8 and 7, we can see that the
BDD approach seems to catch up to the LTL approach as the value of ad becomes lower. The effect of
ad seems to be reversed in both approaches.

We now analyze how both approaches vary with the value of cd. Inspecting the three figures,
we note that in each figure its three “zones” of constraint densities have a very similar shape for both
approaches. Therefore, we can hypothesize that, in general, this value has less of an effect and the same
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Figure 7: Comparison of time taken to determine realizability using BDDs vs. LTL model checking for
authorization density 0.1

type of effect on both the BDD and LTL approaches.
Finally, both approaches find it difficult to scale the decidability of realizability in that the running

time appears to grow exponentially in the number of users (and tasks), as the effort resembles a lin-
ear function on a logarithmic scale. For the LTL approach, we tried to determine its limits when ad
equals 0.5 and cd equals 0.1. These experiments (not reported here) suggest that this approach fails
consistently on our machine for models with more than 230 users.

5 Conclusions
We presented constrained authorized workflow schemas and motivated the need for workflow man-
agement systems to maintain the realizability of such “security-aware” workflows. We suggested two
authorization enforcement functions that use automated reasoning methods in order to maintain realiz-
ability as an invariant of task execution.

One of these methods relies on a decision procedure for realizability encoded in propositional logic.
As a workflow instance executes, this costly procedure needs to be called at each access request instance.
Unfortunately, our attempt to circumvent this need through the synthesis of BDDs and their dynamic
specialization leads to discouraging experimental results for the build of the initial BDD.

The second method is already reported in [3] and, in effect, computes a subset of the set of all re-
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Figure 8: Comparison of time taken to determine realizability using BDDs vs. LTL model checking for
authorization density 0.5

alizability solutions for a workflow instance, where this subset is defined by a sequence of task-user
subsets. Such a sequence can be computed using an appropriately configured bounded model-checker
for linear-time temporal logic with a suitable encoding derived from the workflow schema. The exper-
imental results for this approach are more encouraging but at least two issues need to be resolved in
order to make this approach viable in practice. Firstly, we need to develop refinements of this approach
in order to make the model checking more scalable, for example through the use of further abstraction
techniques.

Secondly, we need to investigate whether the compact “Boolean” subset of solutions computed by
the model checker can, implicitly represent even more solutions and so make the authorization enforce-
ment function more flexible. Delegation models of workflow schemas [4], where users may delegate
task execution rights to other users, are just one motivation for such increased flexibility. This second
issue has also a more general form: we want to understand the trade-offs between the complexity of com-
puting realizability information that supports an authorization enforcement function and the frequency
of denying access requests that, if granted, could in principle lead to realizable workflow instances.

Of course, there are many other approaches to automated reasoning that we may test for their
suitability of supporting workflow realizability. Perhaps an incremental SAT solver may allow for a
relatively quick decision of the realizability of access requests; we mean to investigate this in future
experimental work.
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Figure 9: Comparison of time taken to determine realizability using BDDs vs. LTL model checking for
authorization density 1.0

The authorized workflow schemas studied in this paper share with existing approaches in the litera-
ture that the population of users is already part of the schema. It seems undesirable, somehow, to do the
automated reasoning over such a concrete population. In future work, we therefore mean to investigate
whether such automated reasoning can be done over a dynamically expanding, symbolic set of users.
The aim would be to compute a user/task assignment for symbolic users, which then leaves us with
the orthogonal problem of mapping symbolic users into concrete user populations, be it statically or at
runtime. Our preliminary study of this new approach suggests that one may fruitfully use constraint
satisfaction solvers or efficient instances of colorability problems for the computation of such symbolic
solutions.
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BDD-based automated reasoning in

propositional non-classical logics: progress

report
Rajeev Goré Jimmy Thomson

Abstract

Recent work has shown that a technique using Binary Decision Diagrams (BDDs) to
decide CTL and Int gives promising results. Based on this we explore how the method
can be extended to other non-classical logics. In particular, we describe a putative method
for deciding the modal µ-calculus using BDDs.

1 Introduction

For many logics, we can decide the validity of a given formula ϕ0 by constructing the set of
all subsets of some closure cl(ϕ0), and checking whether these subsets can support a (counter)
model that makes ϕ0 false. If no such model exists, then we can safely declare ϕ0 to be valid.
Typically, we proceed by first building a finite pseudo-model where each “world” is a member
of 2cl(ϕ), and then showing that the pseudo-model can be “unfolded” into a model.

At first sight, this “finite pseudo-model (fpm) method” seems impractical since the first step
requires us to “construct” the set of all (exponentially many) subsets of cl(ϕ0), thus giving a
procedure whose worst case and best case complexity is always of orderO(2|cl(ϕ0)|). However, for
K and CTL, Pan et al. [5] and Marrero [4] have shown that Binary Decision Diagrams (BDDs)
can be used to represent the required subsets efficiently, without actually “constructing” them
explicitly. We have recently shown how to extend this method to handle modal, tense and bi-
extensions of intuitionistic logic Int [3]. In particular, for CTL and Int the resulting reasoners
were highly competitive with the current state of the art [2, 3].

In light of this, we are exploring whether such BDD-based implementations can be extended
to handle a number of other non-classical logics, and if so, to see whether the practicality
remains. Here we concentrate on extending the method to many different classical modal
logics, and in particular, the modal mu-calculus. Practicality remains to be seen since we are
still implementing the various classical modal logics described here. We do have an initial
unoptimised implementation of the putative mu-calculus BDD-method which minimal testing
has shown to give the correct answers so far. We have not made it available since it is quite
possible that our soundness and completeness proofs for the mu-calculus may not pan out.

Since the focus of PAAR is on practicality, we have deliberately given our descriptions at a
lower level than for Int [3]. Thus while previously we elided explicit BDD aspects, here they
are included, so it may be beneficial to read the other paper first.

We assume that the reader is familiar with non-classical logics in general, in particular with
the notion of Kripke semantics and the fpm method for deciding satisfiability. Before discussing
extensions to our implementation of the fpm method, we begin by presenting the ideas behind
the fpm method in general as a guide for following its actual BDD-based implementation.

1.1 An Abstract View of the fpm Method

Given a semantically formulated logic L, a naive way to determine satisfiability and validity is
to consider the set of all models for said logic and literally determine whether some world in
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some model exists that makes a formula ϕ true, or if all worlds in all models make ϕ true. In
theory, the set of all models is infinite, and in some cases the set of worlds in one model may
also be infinite, so we need a way to explore this possibility in a finitary way.

Given a formula ϕ0, the intent of the fpm method is to find a finite filtration of the set of all
worlds, such that each member in the filtration represents an equivalence class in the original
worlds, and the denotation of the formula ϕ0 in the original model depends only on the truth
value of this formula at some representative of this equivalence class. This allows us to examine
all worlds in a finitary way. We will in general be referring to members of the filtration as
worlds or potential worlds, effectively taking any representative of the equivalence class.

The finite filtration itself is constructed by identifying a finite set of formulae cl(ϕ0), usually
called the “closure of ϕ0”, and transforming the given, possibly infinite, model M into a finite
pseudo-model Mcl(ϕ0) such that the truth value of members of cl(ϕ0) is preserved.

1.2 An operational view of the fpm method

With the space of all potential worlds restricted to a finite space 2cl(ϕ0) (initially), it remains
to identify which of these potential worlds correspond to worlds in actual models. The pseudo-
model method constructs a finite pseudo-model (Wf , R

f ) which is canonical in the following
sense: if ϕ0 is satisfiable (falsifiable) then some world of Wf satisfies (falsifies) ϕ0. We find these
worlds Wf by defining a monotonic function on sets of potential worlds that removes worlds
from the argument set if they contradict the semantics of the logic. For example, a potential
world claiming to satisfy both �p and ¬�p goes against the semantics of most logics, and thus
must be removed if present. Thus we construct a chain W0,W1, · · ·Wf of refinements on the
set of an initial set W0, until Wf is immune to our monotonic function (a fixpoint).

Any (non-empty) fixpoint of this appropriately-constructed function corresponds to a set of
worlds which all agree with the semantics of the logic. The “completeness” of this approach
requires us to show that every world in any model must have a representative in Wf . Because
the function we construct satisfies the conditions of the Knaster-Tarski theorem [7] it has a
greatest fixpoint, and moreover the greatest fixpoint is a superset of all fixpoints. Thus the
greatest fixpoint contains representatives for all worlds in all models. For this reason we start
with W0 = 2cl(ϕ0), as repeated iteration from the top element will compute the greatest fixpoint.

The “soundness” of this approach requires showing that each world remaining in Wf can be
extended into a model using only other worlds in the fixpoint. In some logics this is immediate.
In others, like CTL, the set must be “unwound” or otherwise manipulated to construct a model.

Thus generating the set of all worlds modulo the closure cl(ϕ0) of some formula ϕ0 and
computing the greatest fixpoint of a sound and complete semantics-inspired function gives a
decision procedure where satisfiability and validity are determined by checking whether the
intersection of those worlds claiming to satisfy or falsify ϕ0 with the set of all worlds is empty.

We describe specifics of how BDDs are used and how the fixpoint construction works, using
K as an example, first described by Pan et al. [5].

2 Implementation in BDDs

We now describe the BDD implementation at a high level.

Constructing a Finite Set of Finite Worlds. As we have seen, given some finite closure
cl(ϕ0), the naive way to construct the finite set of all finite worlds is simply to use the set of all
subsets of cl(ϕ0). We instead use only the “sensible subsets” following Pan et al. and Marrero.
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Specifically, we construct Atoms(ϕ0) as the base set of atoms whose truth values guarantee
that we can distinguish worlds. Typically this is the non-classical subset of the closure, from
which the truth values of the rest of the closure can be computed using classical conjunction,
disjunction and negation. We then define W = 2Atoms(ϕ0) to be the set of all subsets of these
atoms. Any potential world will either satisfy or falsify each of these atoms, so we can associate
a world w with exactly the set of atoms that it satisfies, and hence view w as a simple bi-valent
valuation on Atoms(ϕ0). The setW is smaller than 2cl(ϕ0), and does not contains worlds which
behave inappropriately with respect to classical conjunction and disjunction.

For the logic K, an acceptable closure cl(ϕ0) is the set of subformulae of ϕ0 and their
negations. The set of atoms however is defined as the smaller set:

Atoms(ϕ0) = {�ψ | �ψ ∈ cl(ϕ0)} ∪ (Prop ∩ cl(ϕ0))

For example, Atoms(�(p⇒ q)⇒ �p⇒ �q) = {p, q,�p,�q,�(p⇒ q)} and the set {p,�(p⇒
q)} corresponds to a world that makes p and �(p⇒ q) true, and makes q, �p and �q false.

BDDs as set of worlds. We need an efficient way to represent potential worlds and (deno-
tations of formulae as) sets of potential worlds.

A BDD over a set V = {v1, · · · , vk} of Boolean-valued variables represents a function
mapping each Boolean valuation on these variables to one of {t, f}. If we associate each atom
a ∈ Atoms(ϕ0) with a unique BDD variable va, then a BDD over these variables is a function
mapping each valuation on Atoms(ϕ0) to one of {t, f}. If we view the valuations which the
BDD maps to t as being “selected”, then a BDD represents a set of valuations, or a set of
potential worlds. Thus a BDD is a function f : 2V 7→ {t, f} that selects a subset from the
powerset 2V of V .

For example, in K with atoms as above, the set {p,�(p ⇒ q)} corresponds to a valuation
under which the BDD variables vp and v�(p⇒q) are true, while vq, v�p and v�q are all false.
The BDD which returns t whenever vp, vq, and v�p are true corresponds to the set of worlds
{{p, q,�p}, {p, q,�p,�q}, {p, q,�p,�(p⇒ q)}, {p, q,�p,�q,�(p⇒ q)}}.

In particular, the BDD >, which returns t for every valuation, represents the set W of all
worlds/subsets over Atoms(ϕ0) in constant space and time!

The fpm method is usually considered to be naive because it must “first construct the set
of all subsets of cl(ϕ0), whose cardinality is exponential in the size of cl(ϕ0)”. The main reason
why the fpm method can be implemented efficiently using BDDs is that they turn this “wisdom”
on its head. Specifically, by using reduced ordered BDDs the BDD only branches on variables
that would cause two valuations to give different results.

Defining denotations. For each a ∈ Atoms(ϕ0) we use JaK to refer to the BDD which is
true exactly when the variable corresponding to a is true. Equivalently, JaK is the set of worlds
that make a true. The denotations of non-atomic formulae in the closure cl(ϕ0) are computed
inductively, usually in an obvious way. For example for K, Jψ ∧ φK = JψK ∧ JφK, similarly for
disjunction and negation, and J♦ψK = ¬J�¬ψK.

Representing relations. All the logics we consider have relational Kripke semantics so we
must be able to represent and reason about these relations.

A BDD f : 2V 7→ {t, f} over a finite set of variables V corresponds to some subset (of worlds)
of 2V . Consider a BDD g(V ∪ V ′), corresponding to some subset S of 2V ∪V

′
. Any member of

S, such as {v1, . . . , vk} ∪ {v′1, . . . , v′k}, corresponds to a particular valuation on V ∪ V ′. If we
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conceptually split the valuation into its two components over V and over V ′, as above, then we
can view the valuation as an ordered pair of sub-valuations. This allows us to think of g(V ∪V ′)
as a subset of 2V × 2V

′
since there is a bijection from 2V ∪V

′
onto 2V × 2V

′
whenever V and V ′

are disjoint. If Atoms(ϕ0), V and V ′ have the same cardinality then g(V ∪ V ′) can be viewed
as a subset of W ×W using any bijection of Atoms(ϕ0) onto V and V ′.

When discussing such BDDs representing pairs, we can think of g(V ∪ V ′) as g(V, V ′). We
will often construct such BDDs by combining BDDs using variables in V or V ′. When we write
JψK, it is constructed from variables in V and represents the first world of a pair, while when
we write JψK′ it is constructed from variables in V ′ and represents the second world in a pair.
There is some subtlety here: writing Jψ′K does not make any sense since ψ is from cl(ϕ0). Thus
JψK′ is a BDD defined over V ′, which is obtained by making a “photocopy” of the BDD over
V for JψK and replacing each vi ∈ V with its clone v′i ∈ V ′.

The case of K. Constraints on the specific relation vary by logic, but we present the reasoning
for K here. The semantics of K refer to a Kripke relation R. The relation itself is unrestricted,
but its interactions with the modal formulae provide constraints such as the following:

∀w.M, w  �ψ ⇒ ∀v.R(w, v)⇒M, v  ψ (1)

Dropping quantifiers, we can rearrange this formula to state a restriction on R:

R(w, v)⇒M, w  �ψ ⇒M, v  ψ (2)

We treat this formula as an upper bound on R, and take the intersection of all the right
hand sides given by all �-formulae in the closure Atoms(ϕ0) as the definition of a maximal R,
where maximal means that it links any two worlds that are “allowed to be linked”:

R(w, v) =
∧

�ψ∈Atoms(ϕ0)

M, w  �ψ ⇒M, v  ψ (3)

The semantics of �-formulae are captured by this maximal R: if two worlds can be related
by this R, and the first world w claims to satisfy a �ψ, then the second world v must satisfy ψ.

The specific BDD representation of this constraint is as follows, where we use R(V, V ′) to
represent a BDD parametrised by sets of variables V and V ′:

R(V, V ′) =
∧

�ψ∈Atoms(ϕ0)

J�ψK⇒ JψK′ (4)

We have now represented both W and R using BDDs over Atoms(ϕ0) and their copies.
Recall that the general procedure requires us to refine W to exclude those worlds that do not
obey the semantics of K. The remaining task is to construct and solve a fixpoint formula
corresponding to the remaining semantics of the logic. We will construct a greatest-fixpoint
formula which is monotonic decreasing, so by the Knaster-Tarski theorem we can repeatedly
iterate the formula starting with the top element W0 = W = > to compute the greatest
fixpoint Wf . Note that the set W, despite representing 2|Atoms(ϕ0)| worlds, is represented very
succinctly by the BDD >, and in general the size of a BDD (and time taken to perform BDD
operations) is not proportional to the size of the set it represents but instead depends upon the
dependencies between the variables in the characteristic function of the set.

For K, the choice of atoms and definition of J·K address the classical semantics of ∧,∨ and
¬, and the construction of R enforces the semantics of the �-formulae. The only semantic
conditions left to address are for ♦-formulae:
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∀w.M, w  ♦ψ ⇒ ∃v.R(w, v) ∧M, v  ψ (5)

This equation can be used almost exactly to enforce the constraint. One thing to note is
that v must be in M, that is it must be in the set of “good” worlds being considered.

good(S) = S ∧
∧

♦ψ∈cl(ϕ0)

J♦ψK⇒ ∃V ′.R(V, V ′) ∧ S(V ′) ∧ JψK′ (6)

By S(V ′) here, we mean a “photocopy” of S, where each variable in V is replaced by the
variable in V ′ that corresponds to the same atom.

Given a set of potential good worlds S, this function retains the worlds that have candidate
R-successors in S to witness each diamond they claim to satisfy. That is, it removes from S all
potential worlds which cannot “satisfy” their diamonds in the set S.

The existential appearing in this formula is QBF-style quantification over a set of variables.
Intuitively, this is logically equivalent to the disjunction of all assignments to those variables.
In practice, the BDD package we used provides such a function. We have not looked into better
ways of doing it ourselves since this is beyond the scope of our research.

3 Potential Extensions to other Non-Classical Logics

We now show how the method for K [5] can be extended in various directions. Note that all
logics considered in this section are known to be decidable (via the “fpm method”), so the main
question is really just whether we can find an easy way to capture the method using BDDs.

3.1 Multimodal K, extra frame conditions and interacting relations

The huge diversity of propositional modal logics arises from the ability to modally characterise
numerous first-order frame conditions on the underlying binary Kripke relation (s).

Multimodal K. Pan et al. do not need to consider extra frame conditions on the reachability
relation since the modal logic K allows arbitrary frames. Extending from K to multimodal K
(aka ALC) is simple as the semantics of the modalities are independent of each other. Instead
of constructing a single R relation, there is now an Rπ relation for each action π. In the greatest
fixpoint computation, instead of referring to the relation R, the appropriate Rπ is used for the
〈π〉ψ formula at hand. Otherwise, everything follows as for K [5].

Extra frame conditions. Adding extra frame conditions is not quite so trivial. Marrero
handles seriality in CTL [4], while our work on Int [3] shows how to handle reflexivity and
transitivity. We revisit these conditions, and show how to handle euclideanness and symmetry.

Having computed a maximal base relation R0, how can we enforce reflexivity? A naive way
is to just take the reflexive closure of R0. However, the R0 we compute is maximally permissive,
so if (w,w) 6∈ R0 then this indicates that w cannot be part of a reflexive model. Thus it is not
sound to just add (w,w) back, instead we must remove w from the set of potential worlds by
considering only the reflexive worlds from the start:

W0 =Wrefl = R0(V, V ) (7)

In a similar way, seriality can’t be enforced by modifying a base maximal relation R0. In
addition, as the fixpoint procedure refines the set of worlds and thus the domain of R, the
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restricted relation may become non-serial, so seriality must be addressed as part of the fixpoint
function. Marrero enforces seriality by modifying the good function as follows:

good(S) = (∃V ′.R(V, V ′) ∧ S(V ′)) ∧ . . . (8)

Both seriality and reflexivity are modular in that adding these constraints work for any con-
text without knowledge of the maximal relation R0, while transitivity requires extra knowledge
of R0. The important thing about transitivity is the concept of preserving constraints forwards:
in the simple case of K4 this is equivalent to “boxes persist”, but with a more complicated
relation or logic this may need to be re-evaluated:

R(V, V ′) = R0(V, V ′) ∧
∧

�ψ∈Atoms(ϕ0)

J�ψK⇒ J�ψK′ (9)

Euclideanness can be treated in a very similar way to transitivity. Instead of constraints
persisting forwards, constraints must persist backwards: if some successor of w has a constraint
(�-formula) then w itself must have that constraint. For K5 this is encapsulated as follows:

R(V, V ′) = R0(V, V ′) ∧
∧

�ψ∈Atoms(ϕ0)

J�ψK′ ⇒ J�ψK (10)

Symmetry can be handled in a modular way given a maximal relation R0 by restricting it
to the maximal symmetric sub-relation as follows:

R(w, v) = R0(w, v) ∧R0(v, w) ≡ R(V, V ′) = R0(V, V ′) ∧R0(V ′, V ) (11)

We can thus handle the basic modal logics KT,KD,K4,K5 and KB. The modularity of
most of these extensions, and the simplicity of transitivity and euclideanness means that we can
also handle combinations of these, allowing us to deal with the 15 basic normal modal logics.

Interacting relations. Another direction to consider is interactions between relations. We
showed that this approach extends to BiKt [3] which has two interacting modal relations.
In that case, we were able to sidestep the complications by showing that we could work in a
different frame without interaction conditions, and get equivalent answers.

Some interaction conditions are plausibly able to be handled directly however. Statements
such as one relation R1 contains R2 result in constraints like so:

R1
2(V, V ′) = R0

2(V, V ′) ∧R0
1(V, V ′) (12)

Thus, if wR1
2v, then wR0

1v. If there are multiple conditions, then these restrictions may have
to be chained together. Also, such restrictions do not preserve transitivity. If R2 is transitive
and R1 is not, then R1

2 may not be transitive after this restriction even if R0
2 is transitive.

Finally, one of the strengths of this method is its versatility. For example, there are two
ways to obtain tense logic Kt. The first is to start with two modal relations R� and R�, and
enforce R� = R−1� by requiring that each relation is a subset of the other. The other is to use a
single relation R which is defined from semantics referring to both �-formulae and �-formulae.
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3.2 Description Logic

Lite description logics are deliberately weakened fragments of multimodal logics, which can of
course be solved using the approaches described here. However, constructing formulae from
BDDs is potentially an exponential operation in the number of atoms, and the fixpoints poten-
tially take an exponential number of iterations to compute, so the decision procedure would be
inherently exponential, not benefiting from the low computational complexity of Lite logics.

Additionally, a common use-case of description logics is in situations where constraints are
relatively simple, but the number of concepts and individuals becomes very large. In these
situations this method may not work well, as the number of atoms becomes large.

However, there are ways in which this approach may benefit the types of reasoning done in
description logics. Specifically, classifying a TBox reduces to calculating the greatest fixpoint
using the denotation of the TBox as an initial value instead of W, then multiple simple queries
can be made of the final set to determine whether C v D for each C and D.

Not all the features of the more expressive description logics are feasible either, specifically
it is not obvious to us how to handle cardinality constraints.

Functional properties may be possible by treating both ∃R.C and ∀R.C in the same way, as
they must both refer to the single successor that an individual must have. The constructed R
relation may not itself be functional, but by choosing exactly one of the options at each world,
a model where it is functional can be generated.

3.3 Hybrid logic

A fixed finite set of nominals is plausible, but binder causes problems both because the logic
becomes undecidable, and it is not obvious how to allow arbitrary worlds to be named.

K-with-nominals can be represented by requiring that that if a nominal i is true at some
world, any other world in the same model claiming to be i must be equivalent to that world.

To represent this, the set of atoms is not just those of K with additional atoms for each
nominal ik, but an additional m× |Atoms(ϕ0)| new atoms for m nominals ik. For each of the
“base” atoms a, the “additional” atom @ia is read as “In this model, the world i makes a true”.
These new atoms must be invariant over the modal relation as shown below at the left, and
must interact with the base nominal atoms as shown below at the right:

R(V, V ′)⇒ J@iaK⇔ J@iaK′ JiK⇒ J@iaK⇔ JaK

Now if there is a path along R and its converse between two worlds (that is, they appear in
the same model) that both claim to make i true, they must be represented by the same set of
atoms. Without complications such as irreflexivity or antisymmetry, we are able to treat the
equivalence classes as worlds themselves, and thus we can construct a model where the nominal
is true at exactly one world.

This choice of atoms works with non-atomic @iψ as well by deconstructing ψ into atoms,
using J@i(ψ ∧ ϕ)K = J@iψK ∧ J@iϕK, similarly for ∨ and ¬, and J@i@jψK = J@jψK.

Although the number of atoms is significantly larger than for K and thus performance may
well suffer, the procedure remains exptime . But because the ika atoms essentially partition
the set of worlds into non-interacting components, the impact on performance may be reduced.

49



BDD-based non-classical reasoning: progress report R. Goré, J. Thomson

4 Using BDDs to decide the µ-calculus

The µ-calculus is infamously tricky to work with, both understanding what a particular for-
mula “means” and deciding whether or not a given formula is satisfiable. The primary difficulty
arises from the almost arbitrary fixpoint computations that can be expressed, and the complex
interactions between nested fixpoints. Since Marrero [4] described a decision procedure making
use of BDDs which involved explicitly calculating least-fixpoints for the temporal “until” even-
tualities, we consider whether this can be extended to the µ-calculus. We present a procedure
which we believe decides the µ-calculus in exptime.

One point to note in particular from Marrero is the way that A(ϕUψ) was treated: not only
did each EX-formula have to have a successor (like diamonds in K), but they had to have a
successor which was consistent with the �-like nature of the least fixpoint being computed. This
concept of considering otherwise-unrelated formulae together is also required for the µ-calculus.

Another thing to note is that the traditional fpm-method does not work for the µ-calculus,
and instead automata are traditionally used. Unlike the other logics considered here, we attempt
to give a more rigorous explanation, and also give the proofs we currently have. Specifically we
believe that we have termination and soundness, but not yet completeness.

4.1 Syntax and semantics of the µ-calculus

Formulae of the µ-calculus are built from mutually disjoint sets of atomic formulae Prop, atomic
actions Act and atomic variables V ar, where p ∈ Prop, X ∈ V ar and π ∈ Act via:

ϕ ::= p | ¬p | X | ϕ ∧ ϕ | ϕ ∨ ϕ | µX.ϕ | νX.ϕ | [π]ϕ | 〈π〉ϕ
Models of µ-calculus formulae are structures M = (W, {Ri}, ρ). Given a valuation ϑ :

V ar → 2W on variables, denotations with respect to a model (W, {Ri}, ρ) are defined via [1]:

JpKϑ = ρ(p) J¬pKϑ = W \ ρ(p) JXKϑ = ϑ(X)

Jϕ ∧ ψKϑ = JϕKϑ ∩ JψKϑ Jϕ ∨ ψKϑ = JϕKϑ ∪ JψKϑ

JµX.ϕKϑ =
⋂
{S ⊆W | S ⊇ JϕKϑ[X:=S]} JνX.ϕKϑ =

⋃
{S ⊆W | S ⊆ JϕKϑ[X:=S]}

J[π]ϕKϑ = {w ∈W | ∀v.wRπv ⇒ v ∈ JϕKϑ} J〈π〉ϕKϑ = {w ∈W | ∃v.wRπv ∧ v ∈ JϕKϑ}

Note that JµX.ϕKϑ (JνX.ϕKϑ) can be expressed as least (greatest) fixpoints of λA.JϕKϑ[X:=A].
We will work with closed formulae, and variables are required to be uniquely bound, so for

X ∈ V ar ∩ cl(ϕ0) there is exactly one ξX.ψ ∈ cl(ϕ0) where ξ ∈ {µ, ν}. Thus a variable is
uniquely associated with a single fixpoint expression.

The questions we seek to answer are whether there exists a model M with a world w such
that w ∈ JϕK∅ (satisfiability), and whether there exists a model and world such that w 6∈ JϕK∅
(falsifiability/validity). We solve both questions simultaneously by determining the set of all
worlds “relevant to ϕ0” in any model M.

4.2 Defining denotations

In addition to the atoms used in multimodal K, we create atoms for fixpoints/variables of the
µ-calculus. That is, given the set cl(ϕ0) of all subformulae of ϕ0 and their negations (ensuring
to rename variables as necessary to maintain unique bindings), we define:
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Atoms(ϕ0) = {[π]ψ | [π]ψ ∈ cl(ϕ0)} ∪ (Prop ∩ cl(ϕ0)) ∪ {µX.ψ | µX.ψ ∈ cl(ϕ0)}

Because least and greatest fixpoints are negation duals, we only add one to the set of atoms
similarly to how only �-formulae are made atoms and ♦-formulae are computed. Because each
variable is uniquely bound by exactly one fixpoint formula, we consider the worlds where X
holds to be equivalent to the worlds where ξX.ψ holds. If computing Jϕ0Kϑ0

eventually requires
computing JXKϑn , then at some intermediate point it must be computing JξX.ψKϑi . The value
of JξX.ψKϑi is a fixed point Z such that Z = JψKϑi[X:=Z]. Thus JXKϑn

= Z, so X and ξX.ψ
have the same denotation, and we refer to the atom as X or ξX.ψ interchangeably.

Thus, we define the following:

JaK = {w ∈ W | w ∈ JaKϑ} where a ∈ Atoms(ϕ0) and ϑ(X) = JξX.ψKϑ
JXK = JξX.ψK where X is uniquely bound by ξX.ψ

JνX.ψK = ¬JµY.φK where µY.φ is the negation dual

J¬pK = ¬JpK
J〈π〉ψK = ¬J[π]¬ψK

Jψ1 ∧ ψ2K = Jψ1K ∧ Jψ2K
Jψ1 ∨ ψ2K = Jψ1K ∨ Jψ2K

It is important to note that JψK and JψKϑ have different meanings: JψK is something that
we construct, and we eventually want it to correspond to the semantic notion of JψKϑ, but this
is not the case yet.

The Rπ relations are constructed in the same manner as for multimodal K, but it is much
more important to note that Rπ is an over-approximation here. Because we now have variables,
the denotation for [π]X is not fixed, so while the Rπ we construct here will be useful, it does
not capture the entire semantics of �-formulae now.

4.3 Enforcing semantics

As with the other logics, we now want to construct a fixpoint formula that enforces the model-
theoretic semantics. The component of the fixpoint formula dealing with 〈π〉ψ formula is the
same as for multimodal K, so the remaining consideration is the fixpoints.

Instead of a shallow “local” evaluation, such as used for the limited eventualities in CTL,
because the fixpoint formulae expressible in the µ-calculus are almost arbitrary, we inspect the
formula deeply to compute the appropriate denotation.

For each least (greatest) fixpoint ξX.ψ in the closure we use the fixpoint semantics of the
logic, rather than the infinite intersection / union, by calculating λA.JψK[X:=A]: the denotation
of ψ given that the denotation of X is A. This involves computing nested fixpoints and dealing
with modalities as well. Diamond-formulae are simple, as the pre-image of the denotation of
the successor world can be computed.

However, box-formulae in the fixpoint are not as simple as negating and treating as dia-
monds. A world w satisfying 〈π〉ψ at some intermediate fixpoint valuation is interpreted as
“w can have a successor satisfying ψ”, which means that the negation or complement of this
set is interpreted as “w cannot have a successor satisfying ψ”. At intermediate stages this

51



BDD-based non-classical reasoning: progress report R. Goré, J. Thomson

interpretation can be overly restrictive, and we should instead consider “it is possible for w to
have 0 or more successors, all of which falsify ψ”.

For example, consider the fixpoint µX.[π]X in a closure {X, [π]X, 〈π〉q, q}. At some stage
when computing worlds where this least fixpoint X holds, we might consider worlds w =
{X, [π]X, 〈π〉q}, u = {X, [π]X, [π]¬q, q}, v = {X, [π]X, 〈π〉q, q}. According to Rπ, we have
Rπ(w, u), Rπ(w, v), Rπ(w,w), Rπ(u,w), Rπ(v, w), Rπ(v, u) and Rπ(v, v). Suppose that at some
iteration of the least fixpoint, u is found to be in the fixpoint, but w and v are not. If we
compute ¬∃V ′.Rπ(V, V ′)∧S(V ′)∧¬X(V ′), as [π]X ≡ ¬〈π〉¬X, then w and v will be excluded,
because Rπ(w, v) and Rπ(v, w). However, it is possible to construct a model with a world w
and without the edge Rπ(w, v), so this result is incorrect.

In order to correct this, we use something like the following formula:

J[π]ψK ∧
∧

〈π〉χ∈cl(ϕ0)

J〈π〉χK⇒ ∃V ′.Rπ(V, V ′) ∧ V(χ)′ ∧G([π]ψ)

Here V(χ) deeply expands χ according to the intuitions here and above, and G([π]ψ) is a term
to account for boxes being true simultaneously.

The intuition behind this formula is that if [π]ψ holds at a world, for that world to be
acceptable then all its existentials must be satisfiable in a way that is consistent with the box:
If 〈π〉χ is true, then there is an Rπ successor where χ is true (the ♦-formula is satisfied) and
this is consistent with the boxes that are true (the G term).

Before going into specifics of what G is, note that as-is the formula can have an infinite loop:
when considering the formula 〈π〉[π]X, the �-formula will recurse on the ♦-formula which will
refer once again to the �-formula. We resolve this by introducing another fixpoint formula,
such that any fixpoint of the formula gives a consistent denotation for [π]ψ. Then the greatest
fixpoint of this formula contains all fixpoints, and thus the greatest fixpoint of the formula gives
a maximal denotation for [π]ψ. This requires some changes elsewhere, which we address after
presenting the expansion as a whole.

The G term in the formula is intended to capture the restriction of boxes, in much the same
way as the constructed Rπ relation. The difference is that it once again deeply expands the
formulae and considers the current set of assumed denotations, both for fixpoint variables and
additionally for �-formulae.

To bring this all together, we define a function V(ψ, S, σvar, σ�) which performs the deep-
analysis of ψ given that all worlds must be in S, some variables have denotations given by σvar,
and some �-formulae have denotations given by σ�, shown in Figure 1.

Note that when a new fixpoint is encountered, the assignments to �-formulae are forgotten
during that calculation, since the assignments to variables changing can potentially change the
denotation of a �. For example [π]X may have some current denotation including worlds with
successors satisfying X, but then X is assigned the empty denotation, meaning that [π]X can
only be true at worlds with no π-successors.

Finally, we bring this all together for the greatest fixpoint formula as follows:

good(S) = S ∧
∧

〈π〉ψ∈cl(ϕ0)

J〈π〉ψK⇒ V(〈π〉ψ, S, ∅, ∅)

∧
∧

µZ.ψ∈cl(ϕ0)

JµZ.ψK⇒ V(µZ.ψ, S, ∅, ∅)

∧
∧

νZ.ψ∈cl(ϕ0)

JνZ.ψK⇒ V(νZ.ψ, S, ∅, ∅)
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V(p, S, σvar, σ�) = JpK ∧ S
V(¬p, S, σvar, σ�) = ¬JpK ∧ S

V(X,S, σvar, σ�) =

{
σvar(X) ∧ S if X ∈ σvar
JXK ∧ S otherwise

V(ψ1 ∧ ψ2, S, σvar, σ�) = V(ψ1, S, σvar, σ�) ∧ V(ψ2, S, σvar, σ�)

V(ψ1 ∨ ψ2, S, σvar, σ�) = V(ψ1, S, σvar, σ�) ∨ V(ψ2, S, σvar, σ�)

V(µX.ψ, S, σvar, σ�) =

{
σvar(X) ∧ S if X ∈ σvar
LFP (λA.V(ψ, S, σvar[X := A], ∅)) otherwise

V(νX.ψ, S, σvar, σ�) =

{
σvar(X) ∧ S if X ∈ σvar
GFP (λA.V(ψ, S, σvar[X := A], ∅)) otherwise

V(〈π〉ψ, S, σvar, σ�) = S ∧ ∃V ′.Rπ(V, V ′) ∧ V(ψ, S, σvar, σ�)′

V([π]ψ, S, σvar, σ�) =


σ�([π]ψ) ∧ S if [π]ψ ∈ σ�
GFP (λA.S ∧ J[π]ψK ∧

∧
〈π〉χ∈cl(ϕ0)

J〈π〉χK⇒ ∃V ′.Rπ(V, V ′) ∧G(A) otherwise

∧V(χ, S, σvar, σ�[[π]ψ := A]))

where

G(A) =
∧

[π]φ∈Atoms(ϕ0)

J[π]φK⇒ V(φ, S, σvar, σ�[[π]ψ := A])′

Figure 1: The function to compute the denotation of a µ-calculus formula by deep-inspection.

In fact, the component dealing with ♦-formulae can also be written in the same manner as
for K, but this more general statement is easier on the proofs.

4.4 Proofs

First we note that all fixpoints can be computed accurately by repeated iteration. This is a
consequence of all the fixpoint formulae being monotone, and the Knaster-Tarski theorem.

We present a proof that the procedure described above is sound: If a formula is falsifiable,
then the procedure will find a witness.

We aim to prove that given a subset S of the filtration, any model M = (W, {Ri}, ρ) such
that the filtration of W is a subset of S, and a world w ∈W , if w ∈ JψK∅ then the representative
of w in the filtration is in V(ψ, S, ∅, ∅).

We do this by proving a stronger theorem:

Theorem 1. Given a model M = (W, {Ri}, ρ), a subset S of W, a partial map σvar from
fixpoint formulae to denotations, and a partial map σ� from �-formulae to denotations, if

1. the worlds of W are all represented in S; and

2. for each fixpoint variable Z ∈ dom(σvar), JξZ.ϕKσvar = σvar(Z);
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3. for each fixpoint variable Z 6∈ dom(σvar), when σvar is used as a valuation then JZKσvar =
σvar(Z) = JξZ.ϕKσvar

; and

4. for each formula [π]ϕ ∈ dom(σ�), J[π]ϕKσvar
= σ�([π]ϕ)

then for all w ∈W , if w ∈ JψKσvar
then w ∈ V(ψ, S, σvar, σ�).

We define an ordering on (ψ, σvar, σ�) ∈ cl(ϕ0)×((V ar∩cl(ϕ0))×W)×({[π]ψ | cl(ϕ0)}×W)
as follows:

Definition 2. (ψ1, σ1
var, σ

1
�) < (ψ2, σ2

var, σ
2
�) iff σ1

var ⊃ σ2
var or (σ1

var = σ2
var and (σ1

� ⊃ σ2
� or

(σ1
� = σ2

� and ψ1 is a strict subformula of ψ2.)))

This ordering is well-founded because ⊂ and strict subformulae are well-founded. The
ordering also corresponds to the definition of the V function.

Proof. We make use of well-founded induction over this ordering

• V(p, S, σvar, σ�). From the definition of J·K for atoms, if w ∈ JpKσvar
then w ∈ JpK. Also

by assumption w ∈ S, so w ∈ JpK ∩ S.

• V(¬p, S, σvar, σ�). From the semantics, if w ∈ J¬pKσvar
then w ∈ M \ JpKσvar

⊆ ¬JpK.
Also by assumption w ∈ S, so w ∈ ¬JpK ∩ S.

• V(Z, S, σvar[Z := X], σ�). By definition, JZKσvar[Z:=X] must be X. Thus w ∈ X, and
w ∈ S by assumption, therefore w ∈ X ∩ S.

• V([π]ψ, S, σvar, σ�[[π]ψ := X]). By assumption 4, w ∈ X, and by assumption 1, w ∈ S.
Thus w ∈ X ∩ S.

• V(µZ.ψ, S, σvar[Z := X], σ�). By assumption 2, w ∈ X, and by assumption 1, w ∈ S.
Thus w ∈ X ∩ S

• V(νZ.ψ, S, σvar[Z := X], σ�). As above.

• V(X,S, σvar, σ�) when X 6∈ dom(σvar). By assumption 3, since w ∈ JXKσvar
we have

that w ∈ JξX.ψKσvar
. By the definition of J·K, this means that w ∈ JξX.ψK or equivalently

w ∈ JXK. Since w ∈ S by assumption, we therefore have w ∈ JXK ∧ S as required.

• V(ψ1 ∧ ψ2, S, σvar, σ�). If w ∈ Jψ1 ∧ ψ2Kσvar then w ∈ Jψ1Kσvar and w ∈ Jψ2Kσvar . By
induction we therefore have w ∈ V(ψ1, S, σvar, σ�) and w ∈ V(ψ2, S, σvar, σ�), and thus
w is in the intersection as required.

• V(ψ1 ∨ ψ2, S, σvar, σ�). As for ψ1 ∧ ψ2.

• V(〈π〉ψ, S, σvar, σ�). If w ∈ J〈π〉ψKσvar
then there exists a v ∈ M such that wRπv, and

v ∈ JψKσvar . By induction, such a v must be in V(ψ, S, σvar, σ�).

Consider one component of the constructed Rπ, say J[π]ϕK ⇒ JϕK′. If w ∈ J[π]ϕKσvar

then w ∈ J[π]ϕK by the definition of J·K. Additionally v ∈ JϕKσvar
due to the semantics of

�-formulae, so v ∈ JϕK. Thus (w, v) is in that component. If w 6∈ J[π]ϕKϑ then we have
w ∈ ¬J[π]ϕK and thus (w, v) is in the component. Thus (w, v) is in each component of
Rπ, so it is in their intersection and (w, v) ∈ Rπ.

Together with the assumed w ∈ S, this means that w ∈ S∧∃V ′.Rπ(V, V ′)∧V(ψ, S, σvar, σ�)′

as required.
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• V(νX.ψ, S, σvar, σ�). Given that w ∈ JνX.ψKϑ, the semantics require that w ∈ JψKϑ[X:=A]

for some A ⊆ JψKϑ[X:=A]. For such A, each v ∈ A, must of course satisfy v ∈ JψKϑ[X:=A].
Since formulae are restricted to being monotone with respect to variable assignments,
A is a subset of some fixpoint, and the greatest fixpoint Z contains all fixpoints. Thus
w ∈ Jψϑ[X:=Z]K.

By induction, for each v ∈ Z we therefore have v ∈ V(ψ, S, σvar[X := Z], ∅), and so Z
is a fixed point of λA.V(ψ, S, σvar[X := A], ∅). Since the greatest fixpoints contains all
fixpoints, w is in the greatest fixpoint, and thus w ∈ V(νX.ψ, S, σvar, σ�).

• V(µX.ψ, S, σvar, σ�). Given that w ∈ JµX.ψKσvar , the semantics require that w ∈
⋂
{A ⊆

M | JψKσvar[X:=A] ⊆ A}.
Take Z = LFP (λA.A ∨ V(ψ, S, σvar[X := A], ∅)). Because Z is a fixed point, Z =
V(ψ, S, σvar[X := Z], ∅). Consider any v ∈ JψKσvar[X:=Z]. By induction, v ∈ V(ψ, S, σvar[X :=
Z], ∅). This means that JψKσvar[X:=Z] ⊆ Z holds, and thus w ∈ Z, and thus w ∈
V(µX.ψ, S, σvar, σ�) as required.

• V([π]ψ, S, σvar, σ�). when [π]ψ 6∈ dom(σ�).

We first show that

w ∈ (J〈π〉χK⇒ ∃V ′.Rπ(V, V ′) ∧G(J[π]ψKσvar
) ∧ V(χ, S, σvar, σ�[[π]ψ := J[π]ψKσvar

]))

for each 〈π〉χ. If w 6∈ J〈π〉χKσvar
then w ∈ J[π]¬ψ1Kσvar

and so w ∈ J[π]¬ψ1K = ¬J〈π〉ψ1K.

Otherwise, there must be some v ∈ M such that wRπv and v ∈ JχKσvar
. By induction,

v ∈ V)(χ, S, σvar, σ�[[π]ψ := J[π]ψKσvar ]) since condition 4 holds by definition. Using the
same method as we did for 〈π〉ψ we have that (w, v) ∈ Rπ.

We must show that (w, v) satisfies each of the conjuncts of G(J[π]ψKσvar
). If w 6∈ J[π]φKσvar

then w ∈ ¬J[π]φK, and thus the pair satisfies the conjunct. Otherwise v ∈ JφKσvar
, so by

induction v ∈ V(φ, S, σvar, σ�[[π]ψ := J[π]ψKσvar
]), so (w, v) satisfies the conjunct.

Thus we have shown that (w, v) must satisfy the existentially quantified formula, and
thus w satisfies the existential quantification for each 〈π〉χ in the closure.

Because w ∈ J[π]ψKσvar
we have w ∈ J[π]ψK, and by assumption we have w ∈ S. By

generalising, we have J[π]ψKσvar ⊆ f(J[π]ψKσvar ) for the fixpoint expression we define, and
thus it is a subset of the greatest fixpoint. Thus w ∈ V([π]ψ, S, σvar, σ�) as required.

a

We can then apply this theorem to show that for any world w of any model M using
only worlds in S, if w ∈ JψK∅, then w ∈ V(ψ, S, ∅, ∅). Condition 1 of Theorem 1 is explicitly
enforced, and conditions 2 and 4 hold vacuously. Condition 3 potentially restricts the valuations
we consider, but this has no impact on closed formulae.

To show that this method is complete, an additional step is required: If w ∈ S, then
w ∈ good(S) for any world w in any model M.

Proof. Given that w ∈ S, the first conjunct is trivially satisfied. For the remaining conjuncts,
Suppose that w ∈ JψK∅ for ψ ∈ {〈π〉ψ1, µX.ψ1, νX.ψ1}. By Theorem 1 we have w ∈ V(ψ, S, ∅, ∅)
as required. Thus w is in each of the conjuncts, and so w ∈ good(S) as required. a

We now show that this procedure remains in exptime.
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Theorem 3. The procedure described above can be computed in O(2O(n)) time.

Proof. Computing a BDD over a set of variables V takes time proportional to 2|V |. Since we
have two variables per atom, and we have O(N) atoms, each BDD formula can be computed in
O(2O(N)) time. Each fixpoint is computed by repeated iteration until the answer is unchanged.
The result space of each fixpoint is W of size 2|Atoms(ϕ0)|, so each fixpoint is computed in
O(2O(n)) iterations.

Consider the V function. Since S is fixed, we can associate each instance of the function with
a tuple of formula, fixpoint denotations, and �-formula denotations. The number of formulae
is polynomial in the size of the initial formula, and there are O(N2|Atoms(ϕ0)|) possible ways of
assigning fixpoint denotations and �-formula denotations. This means that there are O(2O(N))
different calls to V given S. There is the possibility that V may be called with the same
arguments multiple times. However, since it is pure functional, if this is the case then the
results can be cached and the exponential bound retained.

To complete the proof, observe that each call to V does at most an exponential amount
of work, computing a BDD or calling V at most exponentially many times, and the outer-
most greatest fixpoint formula calls interpret a linear number of times each iteration, thus the
procedure takes at most O(2N ) time. a

5 Further work

µ-calculus. We have yet to prove that the method we describe for the µ-calculus is sound:
in theory the fixpoint computed may contain representatives for potential worlds which do not
appear in any model, and thus may find false counterexamples. One solution is to construct a
model for each representative in the final fixpoint, and we are currently working on this.

Methodology for semantic constraints. Another area worth considering is whether it is
possible to algorithmically construct BDDs to represent certain classes of first-order-definable
conditions. Currently we have tried to explain our insights for particular frame conditions
of interest (Section 3), but we do not have a mechanical translation from semantics to BDD
conditions. This kind of construction is possible in tableau methods [6], so similar methods
may allow for less human intuition in these BDD-based methods as well.

Substructural logics. When moving to substructural logics, instead of a binary Kripke
relation, there is often a ternary relation of some sort. In much the same way as we represented
a binary relation by having a single copy a′ of each atom a, we can represent a ternary relation
by having 2 copies a′ and a′′ of each atom a. The question then is whether we construct maximal
ternary relations and use them in the same way that we used the maximal binary relations.

Many substructural logics are undecidable, and thus we won’t be able to make a decision
procedure. Nonetheless we do believe that some decidable substructural are amenable to this
approach. We have started looking at a decidable fragment of separation logic, and believe it
to be feasible, but do not have any results yet.

First order logic. One area that we have yet to consider is extending to first order logics.
Once again many such logics are undecidable, but perhaps we can construct a semidecison
procedure, or perhaps this approach could work for a decidable fragment of first order logic.
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One of the first issues to consider is what set of atoms should be used. As soon as function
symbols are introduced, there are potentially an infinite number of distinct objects, distinguish-
able by how many times the function symbol is applied. If we cannot set a fixed finite space to
care about in the first place, then significant changes must follow. So far we have yet to find a
way of handling this without essentially using a different automated reasoning technique.

Bernays–Schönfinkel class. This class of first order logic requires that in prenex normal
form, all existential quantifiers occur before any universal quantifier, and there are no function
symbols. Equivalently, the skolem form of the formulae contains only nullary functors/con-
stants. This restricted setting is known to be decidable.

We considered treating the constants as nominals, and predicates as relations or propositions
true of a world. However what should the closure be? If the closure includes the negation of
the input formula, then the closure includes formulae which are not in the Bernays-Schönfinkel
class, and will in general include existential statements.

BDDs for other methods. Given that the BDD-based decision procedures for CTL and
Int were competitive, we are also considering whether other automated reasoning methods
could benefit from using BDDs. In particular, we are implementing a tableau procedure using
BDDs. Potential benefits include fast equality checks; simple unsat caching by constructing a
BDD of known-bad formulae and restricting the tableau nodes considered to the complement
of that; and fast saturation phases.
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Abstract

Workflow management systems (WfMSs) are useful tools for supporting enterprise in-
formation systems. Such systems must ensure compliance with guidelines and regulations.
While formal verification techniques can be used in the development stages to help ensure
behavioral properties of many systems, these techniques are generally not available in work-
flow tools. We present a framework which models workflows using Petri nets and translates
the model to a tableau style model checker. The model checker uses the recently introduced
one-pass tableau algorithm and delivers enhanced performance over traditional two-pass
strategies in practical applications. A failed tableau will generate a counter model which
can aid in debugging. We present a case study involving a health services delivery program,
and verify properties written in Computation Tree Logic (CTL). The tableau method can
be modified to accommodate other specification languages such as timed CTL, logics of
beliefs, desires and intentions, temporal description logic, first order logic, and others.

1 Introduction

It is a common practice to analyze a system’s behaviour before its actual implementation.
Established analysis approaches like test beds allow for rigorous, transparent, and replicable
testing of software, hardware, and networking systems. However, they are difficult to set up,
are usually very costly, and require experts. Another approach, simulation, involves providing
certain inputs and observing their corresponding outputs. Providing all possible inputs and
observing their outputs is tedious and usually impractical. These shortcomings led researchers
to the application of formal verification in system analysis and development. This involves
modelling systems using an adequate level of abstraction which decreases analysis cost and gives
a rigorous view of the system. Models are relatively easy to modify and errors found before
implementation can greatly decrease cost. Properly verified models ensure better processes.
We present a framework for applying formal verification to workflow models.

There are two formal verification approaches: theorem proving and model checking. The-
orem proving is a logic based proof theoretic approach which typically uses a very expressive
language for describing systems and property specifications. The system is expressed as a set
of axioms and the specifications are expressed as formulae; a proof system is used to deter-
mine if the formulae are valid. In model checking, the description of a system (also known
as a model) is given by the specification language of a model checker and the model checker
determines if a (usually) temporal logic (such as Computation Tree Logic (CTL), or Linear
Temporal Logic (LTL)) formula holds for the model. Applying a formal verification technique
by modelling a system using a formal specification language is generally a difficult and tedious
task. Our framework starts with a human-friendly specification language, Petri nets, which
has a graphical representation easily modelled with the Coloured Petri net (CPN) tool [23];
the Petri net models are automatically transformed to Kripke structures for formal analysis.
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The system does not have to be represented in the formal specification language of an existing
model checker.

The tableau method is a popular proof procedure applicable to a wide range of logics in-
cluding temporal logics. The traditional tableau method for CTL is a two-pass procedure [2]
which applies a set of tableau rules to construct a tableau in the first pass and determines
the inconsistent nodes (the nodes that cannot be a part of a valid model for the given CTL
formula) in the second pass. A formula is satisfiable if and only if a model for the formula
can be found in the tableau. Recently an improvement over the two-pass procedure, known
as the one-pass tableau procedure [1], was developed. A comparison between the one-pass
and two-pass procedure in [8] showed that the one-pass procedure consistently, and sometimes
dramatically, outperformed the two-pass procedure. The one-pass procedure requires a sin-
gle pass through the tree to determine the satisfiability of a formula. This procedure can be
used for model checking where the tableau is constructed from a given CTL property and a
system model. Here we propose a workflow verification framework based on this technique.
Our framework includes an automatic translator to translate a Petri net workflow model to the
corresponding Kripke structure, and uses the one-pass tableau procedure for model checking.
One-pass tableau-based decision procedures have been used for various logics, but to the best
of our knowledge we are the first to use the one-pass tableau algorithm for model checking. We
show the usefulness of our framework with a case study involving health service delivery.

The rest of this paper is organized as follows: Section 2 presents some related work; Section
3 presents some background topics; Section 4 discusses various components of the one-pass
tableau-based workflow verification framework; Section 5 describes a case study, and Section 6
concludes the paper and offers some directions for future work.

2 Motivation and Related Work

There is no foundational, well recognized, or universally accepted formalism for workflow verifi-
cation [7]. In [19], the authors discussed an automatic translation of workflow models into DVE,
the specification language of the DiVinE model checker. The end result of their work is the
NOVA WorkFlow [6] tool which uses the Compensable Workflow Modelling Language (CWML)
for workflow modelling. Use of the DiVinE model checker limited the NOVA WorkFlow tool to
LTL property specifications. An application of the SPIN model checker to workflow verification
can be found in [22], and another approach using UPPAAL is available in [10]. Spin supports
LTL, and UPPAAL supports Timed Computation Tree Logic. A tableau-based model checker
for Temporal Description Logic (ALCT) can be found in [4] and a similar approach for Timed
BDICTL can be found in [15]. Both the ALCT and Timed BDICTL model checkers use Petri
nets to design workflows, but the Petri net models were translated manually to generate the
state space for model checking.

Among the other workflow management systems, FlowMake [20] can identify structural
conflicts in process models, YAWL [24] has some verification facilities mainly with respect to
structural properties, AgentWork [16] uses dynamic rules to allow users to identify errors in the
execution logic of the workflow while PLMflow [26] can generate workflow from business rules
and can detect deadlocks.

Existing tools involve the usually difficult task of writing workflow models in the specification
language of existing model checkers, or lack temporal verification capabilities, or are restricted
to one property specification language. Tools and techniques to support workflow modelling
and automatic verification in a single but flexible framework are needed.
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According to [9], with suitable optimization techniques, tableau-based methods are poten-
tially more flexible and efficient than other model checking approaches. The one-pass tableau
strategy has been developed recently [1], and a näıve implementation of the one-pass tableau-
based decision procedure for various logics 1 is available at [17]. While the worst-case complexity
of the one-pass algorithm is 2EXPTIME which is worse than the EXPTIME complexity of the
two-pass algorithm, in most practical situations, the worst case rarely arises; indeed the one-pass
algorithm consistently outperforms the two-pass algorithm [8].

3 Preliminaries

In our framework, we use Petri nets to formally describe a workflow model, CTL to describe
properties of the system, and the one-pass tableau-based model checking algorithm.

3.1 Workflow modelling using Petri nets

Worflow management systems (WfMSs) such as YAWL [24] provide users without any pro-
gramming experience a relatively easy way to organize and/or describe complex processes in
a visual format. Financial institutions, healthcare organizations, etc., involving complex pro-
cesses, information and communication systems are adopting WfMSs to orchestrate the various
activities. The main objective of workflow modelling is to provide an abstract view of a system
to support analysis. Petri nets provide a graphical interface along with a strong mathematical
foundation to accomplish this. A Petri net is a graph with two types of nodes—places and
transitions. Arcs connect the two types, and no two nodes of the same type can be directly
connected.

Definition 1 (Petri net). A Petri net is a triple (P, T, F ), where: P is a finite set of places,
T is a finite set of transitions (P ∩ T = ∅), and F ⊆ (P × T ) ∪ (T × P ) is a set of arcs (flow
relation).

Researchers developed various workflow patterns to facilitate the development of process-
oriented applications. For this paper, we consider only the basic control flow patterns, namely
sequential flow, parallel flow, conditional flow, and iterative flow [14]. These suffice to define
many complex workflows. Our framework can handle Petri nets workflows containing all the
four basic control flow patterns. Among the four basic patterns, conditional flow and iterative
flow require special care. For example, in conditional flow, the token will follow one of the
paths; in the iterative flow, the token will follow the same path multiple times. We used a
variable called guard to restrict the token passing along one of the paths or along the same
path. We also need to determine when to terminate an iterative flow which require updating a
variable with each iteration. We call this updating step an action.

In Petri nets, the state space is given implicitly, but for formal verification, we need to
generate the explicit states or markings. A marking M of a Petri net is a function from the
set of places P to the non negative integers. Firing a transition t in a Petri net with marking
M , results in a new marking M ′. A Petri net can be represented as a Kripke structure: the
states are markings and there is a transition in the Kripke structure from M to M ′ whenever
a transition in the Petri net creates a marking M ′ from M .

1PDL, CTL, LTL, Modal Logic KD, KD45, K4, CK, K, S4, KLM Logic P, Intuitionistic Logic G4IP, and
Propositional Classical Logic
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Definition 2 (Kripke Structure). A Kripke structure, over a set AP of atomic propositions, is
a 4-tuple M =

(
S,→, L, I

)
, where S is a finite set of states, →⊆ S×S is a transition relation,

L : S → 2AP is an interpretation function, and I ⊆ S is a set of initial states. L(s) is the set
of atomic propositions satisfied by s.

3.2 Property specifications

We chose CTL as the property specification language. The syntax and semantics of CTL are
available in [1]. In addition to propositional operators, CTL has path quantifiers, A (all paths),
E (some paths), and temporal modalities, G (all future states), F (some future state), X (the
next state), U (until) and B (before). In a formula, a temporal operator must be preceded by a
path quantifier. The inductive definition of CTL formulae in Backus Näur Form is given below:

ϕ ::= ⊥ | > | p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | EX ϕ | AX ϕ | EF ϕ | AF ϕ |
EG ϕ | AG ϕ | E[ϕUϕ] | A[ϕUϕ] | E[ϕBϕ] | A[ϕBϕ]

where p ranges over a set of atomic propositions. Given a Kripke structure M and a CTL
formula ϕ, the semantics of CTL is defined as follows:

1. M, s |= > and M, s 6|= ⊥.

2. M, s |= p if and only if p ∈ L(s).

3. M, s |= ¬ϕ if and only if M, s 6|= ϕ.

4. M, s |= ϕ1 ∧ ϕ2 if and only if M, s |= ϕ1 and M, s |= ϕ2.

5. M, s |= ϕ1 ∨ ϕ2 if and only if M, s |= ϕ1 or M, s |= ϕ2.

6. M, s |= EX ϕ if and only if ∃s′ ∈ S, such that s→ s′ and M, s |= s′.

7. M, s |= AX ϕ if and only if ∀s′ ∈ S, if s→ s′ then M, s |= s′.

8. M, s |= EG ϕ if and only if there is a path s1 → s2 → s3 → · · · , where s1 = s, and for
all si along the path, we have M, si |= ϕ.

9. M, s |= AG ϕ if and only if for all paths s1 → s2 → s3 → · · · , where s1 = s, and for all
si along the path, we have M, si |= ϕ.

10. M, s |= EF ϕ if and only if there is a path s1 → s2 → s3 → · · · , where s1 = s and for
some si along the path we have M, si |= ϕ.

11. M, s |= AF ϕ if and only if for all paths s1 → s2 → s3 → · · · , where s1 = s there is
some si such that M, si |= ϕ.

12. M, s |= E[ϕ1Uϕ2] if and only if there exists a path s1 → s2 → s3 → · · · , where s1 = s
and for some si along the path M, si |= ϕ2 and ∀j, j < i M, sj |= ϕ1.

13. M, s |= A[ϕ1Uϕ2] if and only if for all paths s1 → s2 → s3 → · · · , where s1 = s there
exists si along the path such that M, si |= ϕ2 and ∀j, j < i M, sj |= ϕ1.

14. M, s |= E[ϕ1Bϕ2] if and only if there exists a path s1 → s2 → s3 → · · · , where s1 = s
and for some si along the path M, si |= ϕ2 implies ∃j, j < i M, sj |= ϕ1.
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15. M, s |= A[ϕ1Bϕ2] if and only if for all paths s1 → s2 → s3 → · · · , where s1 = s there
exists si along the path such that M, si |= ϕ2 implies ∃j, j < i M, sj |= ϕ1.

We say an elementary formula is a formula of the form p, ¬p, EXϕ or AXϕ where p is an
atomic proposition and ϕ is a CTL formula. The classification of non-elementary formulae is
shown in Table 1 using Smullyan’s α- and β-notation.

Table 1: Smullyan’s α- & β-notation for CTL
α α1 α2

ϕ ∧ ψ ϕ ψ
EG ϕ ϕ EX EG ϕ
AG ϕ ϕ AX AG ϕ
E[ϕBψ] ¬ψ ϕ ∨ EX E[ϕBψ]
A[ϕBψ] ¬ψ ϕ ∨AX A[ϕBψ]

β β1 β2
ϕ ∨ ψ ϕ ψ
EF ϕ ϕ EX EFϕ
AF ϕ ϕ AX AF ϕ
E[ϕUψ] ψ ϕ ∧ EX E[ϕUψ]
A[ϕUψ] ψ ϕ ∧AX A[ϕUψ]

3.3 Tableau-based satisfiability checking for CTL

Tableau systems obey the subformula principle - all formulae occurring in a tableau proof are
subformulae of the formula being proved. Subformulae are obtained by applying a set of rules
based on the semantics of the particular logic. Applications of these rules forms a tree, called
the tableau. For propositional logic, tableau-based procedures include the following steps: to
show a formula ϕ is valid we try to show its negation ¬ϕ is not satisfiable, i.e., there is no
assignment of truth values to propositional variables in ¬ϕ to make it true. The expression ¬ϕ
is decomposed into subformulae by applying tableau expansion rules. If a branch of the tableau
contains a pair of contradictory formulae (i.e., ψ and ¬ψ), then this branch is marked as closed.
The tree construction stops when all the branches close or there is no other formula to which a
tableau rule can be applied. An open branch in a completed tableau (rules have been applied to
all the formulae) gives a counter example, i.e, an assignment which satisfies ¬ϕ. If all branches
close, the tableau is said to be closed and ϕ is declared valid.

In CTL tableau, Boolean connectives are handled the same way as in propositional logic,
and temporal connectives are handled by decomposing them into a requirement on the “cur-
rent state” and a requirement on “the rest of the sequence” [25]. Implementing the tableau
rules will cause some branches of the tableau to loop forever. However, the tableau can be
made finite by identifying nodes containing the same set of formulae. A formula ϕ of the form
EFϕ,AFϕ,E[ϕ U ψ], or A[ϕ U ψ] is called an eventuality formula [1]. Eventuality formulae
state “something will happen eventually in the future”. To guarantee validity of a CTL formula
ϕ, in addition to checking for propositional inconsistencies, we need to check for unsatisfiability
of all the eventuality formulae. The tableau rules for CTL can be categorized into four cate-
gories: the α rules, the β rules, the X rule, and the terminal rules. The α rules are for the
conjunctive operators (i.e., ∧, EG, AG, EB, and AB) and each creates one child (e.g., the rule
for EGϕ creates a child with the formulas ϕ and EXEGϕ). The β rules are for the disjunctive
operators (i.e., ∨, EF , AF , EU and AU) and each creates two children (e.g., the rule for AFϕ
creats a child with ϕ and a child with AXAFϕ). The X rule is for the X operator and the
number of children created is dependent on the number of EX formulae in a node. The X
rule states that if there is {EXφ1, · · · , EXφn, AXψ1, · · · , AXψm} in a node then there are n
children of the node, with {φ1, ψ1, · · · , ψm} at child 1, {φ2, ψ1, · · · , ψm} at child 2, and so on.
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There are two terminal rules, one (known as the id rule) is applied when there is a contradiction
on a branch and the other (known as the block rule) is applied when expanding a branch causes
a loop. If a node m is about to be created as a child of a node n and there is an ancestor n0
of n having the same set of formulae in m, then m is not created, and n and n0 are connected
with a feedback edge (these situations causes loops in the tableau).

A Hintikka structure for ϕ is a finite partial representation of a model for ϕ. A formal
discussion on Hintikka structures for CTL formulae can be found in [1], [2]. The tableau
procedure is a systematic search for a Hintikka structure; to determine the satisfiability of ϕ
the tableau shows there is no Hintikka structure for ¬ϕ.

The two-pass tableau-based decision procedures [2], [3] test the satisfiability of a CTL for-
mula ϕ in two steps or “passes”. In the first step, it constructs a tableau Tϕ, for ϕ, by applying
tableau construction rules. If any Hintikka structure satisfies ϕ, then there is at least one
represented by Tϕ [8]. In the second step, inconsistent nodes (nodes that cannot be a part of
any Hintikka structure for ϕ) are identified. The second pass uses an algorithm known as the
marking algorithm to mark the inconsistent nodes; the marking algorithm marks the root of the
tableau if there is no Hintikka structure for the input formula [2]. Termination of the one-pass
tableau procedure is guaranteed [11].

The one-pass tableau algorithm for CTL [1] uses a single pass to determine the satisfiability
of a formula. Instead of constructing the tableau first and then finding the Hintikka structure,
the one-pass tableau determines the existence of a Hintikka structure while constructing the
tableau, through the use of a history and a variable associated with each tableau node. In the
one-pass tableau, loops are determined by looking at the history of the current node; the history
is passed from parent to child. The variable propagates information about the unsatisfiable
eventualities from a child to its parent. The history of a node is calculated while applying a
tableau rule. The variable of a terminal node is calculated according to the terminal rule when
a branch of the tableau terminates, and propagated upward.

The tableau rules for the one-pass tableau for satisfiability checking are available in [1]. A
tableau node, in a one-pass tableau, contains three components - a set of formulae Γ, a history
Fev and Br, and a variable uev, the three are Γ :: Fev ,Br :: uev , where the symbol “::” separates
the three components. Here, Fev keeps track of the satisfiable eventualities, Br keeps track of
the formulae that may create loops and is used by one of the terminal rules to identify loops, and
uev keeps track of the unsatisfiable eventualities. The uev of a node is set to {(false,m)} if both
branches created by a β rule are closed due to propositional inconsistencies; the uev is set to
the empty set if there are no unsatisfiable eventualities or propositional inconsistencies in any of
the children; the uev is set to the set of all the unsatisfiable eventualities of the children if both
children have unsatisfiable eventualities; and finally the uev is set to the set of all unsatisfiable
eventualities of a child if either of the two children has unsatisfiable eventualities.

The one-pass procedure starts with the negation of the formula of interest (the input for-
mula) in negation normal form (NNF) as the root and the rules are applied on the root to
construct the tableau. If, after the construction, the uev of the root is not empty, we call it a
closed tableau. A closed tableau means the negation of the input formula is not satisfiable, i.e.,
the input formula is valid. On the other hand, if the uev of the root is the empty set we say the
tableau is open, meaning the negation of the input formula is satisfiable, and the input formula
is not valid. We discuss one of the rules, namely the AF rule below. A detailed discussion of
the one-pass tableau rules may be found in [11].

(AF )
AFϕ; Γ :: Fev,Br :: uev

ϕ; Γ :: {AFϕ} ∪ Fev,Br :: uev1 | AXAFϕ; Γ :: Fev,Br :: uev2
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The uev of the parent is calculated from the uev1 and uev2 of the children as follows:

uev =

 uev1 if uev2 = {(false,m)}
uev2 if uev1 = {(false,m)}
{(AFϕ, n)} otherwise

Here, n = max
(
f(AFϕ, uev1)∪f(AFϕ, uev2)

)
. The function f(AFϕ, uev ′) returns the index of

AFϕ in uev’. We show an example of the AF rule in Fig. 1. In node n6, Fev and Br came from
its predecessor (not shown in the figure). An application of the AF rule on n6 creates nodes n7
and n8. The id rule is applied on n7 and the block rule is applied on n8. We show n6 with the
value of uev calculated from its children. For n6, uev1 = {(false, 1)} and uev2 = {(AFϕ, 0)}.
As uev1 = {(false, 1)}, the uev of n6 is set to uev2 which is {(AFϕ, 0)}.

n6 AF
¬ϕ; EXEG¬ϕ; AF ϕ

:: F ev = { }, Br = {(EG¬ϕ; AF ϕ, ∅)}
:: uev = {(AF ϕ, 0)}

n7 id
¬ϕ; ϕ; EXEG¬ϕ

:: F ev = {AF ϕ}, Br = {(EG¬ϕ; AF ϕ, ∅)}
:: uev = {(false, 1)}

Stop

n8 block
¬ϕ; EXEG¬ϕ; AXAF ϕ

:: F ev = { }, Br = {(EG¬ϕ; AF ϕ, ∅)}
:: uev = {(AF ϕ, 0)}

Stop

Figure 1: Illustration of the AF rule.

4 The One-Pass Tableau-Based Model Checking

A generic framework using the tableau method for model checking is described in [9]. The
main idea of tableau-based model checking is that given a Kripke structure M with initial
state s0 and a property ϕ, the algorithm simulates the construction of the tableau in M. The
construction starts from s0 and moves forward along the transitions in M. More specifically,

1. The tableau construction starts with (¬ϕ, s0) where s0 ∈ S.

2. The tableau construction is similar to the tableau for satisfiability. However, the con-
struction rules must be modified so that the tableau nodes are properly associated with
the states of M.

3. When the tableau construction is completed, M satisfies ϕ iff the final tableau with
(¬ϕ, s0) is a closed tableau.

We show the modifications required to use the one-pass tableau procedure to perform model
checking.

Definition 3 (Closure of a formula cl(ϕ) in CTL). The closure cl(ϕ) of a formula ϕ is the
least set of formulae such that:

1. >, ϕ ∈ cl(ϕ);
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2. cl(ϕ) is closed under taking subformulae;

3. if ψ ∈ cl(ϕ) and ψ does not begin with ¬ then ¬ψ ∈ cl(ϕ);

4. cl(ϕ) is closed under taking all components of α−formulae and β−formulae.

Given a Kripke structure M, and a CTL formula ϕ, L[cl(ϕ), s] :=
(
L(s) ∪ {¬p | p ∈

AP \L(s)}
)
∩cl(ϕ). It can be shown that L[cl(ϕ), s] consists of a set of atomic propositions and

the negation of atomic propositions only. For example, given the Kripke structure in Figure 2,
and a CTL formula ϕ = AG(p→ AFq), L[cl(ϕ), s] = {p, q}.

p, q s0

q, rs1 r

s2

Figure 2: A simple Kripke structure with three states.

In the one-pass tableau-based model checking, the tableau construction starts with (s0,¬ϕ∪
L[cl(¬ϕ), s0]). Here, s0 is the initial state of the model and ϕ is the CTL property to be verified.
In model checking, all the tableau rules are same as the tableau for satisfiability checking except
for the X rule. The X rule which deals with formulae referring to the “next state”, is modified
to denote a transition from one state to another. The next states of a state can be identified
from the given transition relation of the Kripke structure. The one-pass tableau model checking
algorithm given in Algorithm 1. The tableau construction starts from the initial states and to
reduce the branching, the α rules are applied before the β rules. The α and β rules do not
make transitions from one state to another. The X rule is applied when a tableau node has
only EX and AX formulae to which to apply tableau rules. In the tableau-based satisfiability
checking, the number of children of a node having EX and AX formulae depends on the number
of EX formulae in the node. In model checking, the number of children is determined from
the number of EX formulae and the number of states adjacent to the current state. If the
constructed tableau is closed then the property ϕ is declared true; otherwise, an open branch
of the tableau shows a counter example.

4.1 System description

We implemented the tableau-based model checking framework using the C++ programming
language. We used the CPN tool to design the Petri net workflow models. The CPN tool stores
the Petri net in the Petri net markup language (PNML) which is an XML-based interchange
format for Petri nets. Our framework could be modified to deal with any Petri net graphical
editor with an XML based interchange format. The top-level structure of the tableau-based
model checking framework is shown in Fig. 3 and a brief discussion of each component is given
below.

The XML Parser: Most of the information in the XML file generated by the CPN tool is
editor specific information, such as: the position of the nodes, the size of the nodes, and colours
of different parts, etc. Our XML Parser reads the input PNML file from the beginning to the
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Algorithm 1 Given a Kripke structure and a property, this algorithm generates a tableau using
the one-pass tableau procedure

root ← tableauNode(property ∪ L[cl(property), state] , state) {Here, tableauNode(ϕ, s0)
is a constructor that creates a tableauNode with ϕ in the formulaList and s0 in the
stateSpaceID}
nodeStack.push(root)
while one-pass tableau rules have not been applied to all the nodes in nodeStack do

tempTableauNode ← nodeStack.pop()
if the id rule is applicable to tempTableauNode then

apply the id rule
else if a linear rule is applicable to tempTableauNode then

newTableauNode ← tableauNode({α1, α2} ∪ Γ, si) {Here, Γ is the set of formulae in
tempTableauNode and si is the the stateSpaceID in tempTableauNode}
nodeStack.push(newTableauNode)

else if a universal branching rule is applicable to tempTableauNode then
newTableauNode1 ← tableauNode({β1} ∪ Γ, si)
nodeStack.push(newTableauNode1)
newTableauNode2 ← tableauNode({β2} ∪ Γ, si)
nodeStack.push(newTableauNode2)

else if an existential branching rule is applicable to tempTableauNode then
adjList ← all the states adjacent to si in the Kripke structure
for all sj ∈ adjList do

newTableauNode ← tableauNode(∆∪ψ∪L[cl(property), sj ], sj) {Here, tempTableauN-
ode has a formula of the form EXψ;AX∆}
nodeStack.push(newTableauNode)

end for
else

apply the block rule
end if

end while

Specification 

Properties

Tableau 

Based Model 

Checker

Properties hold

Counter example

XML Parser
State Space 

Generator

Start

Kripke structure

PN.txt

Workflow as Petri nets 

using CPN tool

XML Parser

State Space Generator

Formula Pre-processor

Model Checker

Result Handler

Begin

End

Figure 3: The components of the tableau-based model checking framework.
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end and extracts the information related to the Petri net places and transitions and stores, and
stores it in a simple text file.

The State Space Generator: The State Space Generator loads the Petri net model from
the simple text file generated by the XML Parser. The Petri net is represented in the memory
as a list of transitions. Two types of information control a transition firing, a guard and an
action. If we have a loop in the workflow model then a set of transitions are fired until the
guard becomes false. A guard represents a condition of the from variable op value, where
op ∈ {==, ! =, <,>,≤,≥}. An action represents an assignment of the form variable = exp,
where exp is a variable or of the form variable op1 value, and op1∈ {+,−, ∗}. A transition can
have an action and/or a guard, whereas a place can have only an action. Actions associated
with transitions can change the value of a variable in the output places. After loading the Petri
net model from the text file, the Kripke structure is generated by simulating the Petri net[11].

The Formula Pre-processor: The Formula Pre-processor module applies four pre-processing
steps before applying the tableau model checking algorithm. The first step is to rewrite the
U and B operators in the given property. For example, a formula of the form E[ϕ U ψ] is
written as (ϕ EU ψ), this makes it easier to generate a parse tree for the formula. The second
pre-processing step is to generate a parse tree for the property. Using parse trees provides two
benefits: we can easily identify the first operator to apply a tableau rule to (it is the root of
the parse tree) and easily identify the subformulae. The third pre-processing step is to change
the input property ϕ to ¬ϕ. The final pre-processing step is to convert ¬ϕ to NNF.

The Model Checker: The Model Checker module uses two functions − a state space handler
to manage the Kripke structure and a property handler to manage the property parse tree. The
Model Checker module implements the one-pass tableau model checking algorithm according
to the previous discussion.

The Result Handler: The purpose of the Result Handler module is to show the output of
the model checker in a readable format. Currently, our model checker can show the output as
a list of tableau nodes which can be transformed into a tree structure by hand. If a property
does not hold, we can get a counter example by investigating an open branch.

First, we implemented the one-pass tableau algorithm for satisfiability checking and tested
our implementation with a comprehensive set (41 in total) of CTL formulae available at [17];
see the results in [11]. Then we modified the one-pass tableau algorithm for model checking.
We used the Mahone cluster (a parallel cluster of 134 nodes with 64GB RAM per node) of
ACEnet 2 to run our experiments.

5 Case Study

Our research is part of a collaboration among academic researchers, an industry partner and
the local health authority to develop innovative workflow tools for health services delivery [13],
[6]. Healthcare workflows are developed from guidelines or best practises defined by healthcare
professionals. Such guidelines are processes describing the activities for providing treatment to
a patient. Using the CPN tool, we modeled a workflow following the national Hospice Palliative
Care (HPC) guideline 3 and used our tool model check some properties, some of which are listed

2ACEnet: http://www.ace-net.ca
3Canadian HPC association: http://www.chpca.net/
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below.
HPC refers to the comfort care that reduces the severity of a disease rather than providing

a cure. For example, if surgery cannot be performed to remove a tumour, radiation treatment
might be tried to reduce its rate of growth, and pain management could help the patient manage
physical symptoms. The HPC guideline containing 51 tasks is depicted in Fig. 4; the Petri net
model contains 55 places and 51 transitions, and the corresponding workflow state space graph
consists of 67 states. We verified the following properties of the model:

Property 1: AF end of workflow
The end of workflow will always be reached.

Property 2: AG(error in therapy → EF report to supervisor)
Any error in therapy is always reported to the supervisor.

Property 3: AG(prepare care plan → AFpresent care plan)
After a care plan is prepared, it is always presented to the patient.

Property 4: AG¬(¬define limits of conf . ∧ share accurate info)
Limits of confidentiality are always defined before information is shared.

The verification results are summarized in Table 2. Further experiments may be found in
[11], including experiments on verification of large models, and an example of a smaller model
with a failed property and the output of a counter model. In our current implementation the
output of counter models for large Petri nets is difficult for the human eyes to read.

Table 2: Property verification results of the one-pass tableau model checker
Property Time No. of tableau Memory Valid

(in sec) nodes (in MB)
Property 1 3.887 2266 8.1 Yes
Property 2 13.931 4968 16.5 Yes
Property 3 12.389 4778 15.9 Yes
Property 4 11.399 4920 16.4 Yes

6 Conclusion and Future work

In this paper we presented a model checking framework for workflow model verification. We
used the one-pass tableau method for model checking which can efficiently verify properties for a
large workflow model. The framework can be improved and extended easily as the architecture
can be adapted to support different workflow modelling languages (e.g., YAWL [24]) as well as
a variety of property specification languages, such as LTL, timed CTL, other modal logics such
as BDI logics (logics for beliefs, desires, and intentions) as needed to verify various aspects of
large scale enterprise information systems. The latter modifications in general simply require
the addition and/or replacement of one-pass tableau rules. While there are other approaches to
model checking Petri nets (e.g., LoLa [18] and Fast [5]) these in general lack flexibility as they
use a fixed specification language for property specifications. We presented an implementation
of the framework, but a number of improvements are possible. The tree structure, generated
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Figure 4: The HPC model using Petri nets.
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by the tableau model checking algorithm, is not possible to show on the console output. A
graphical user interface showing the tableau would help the user better analyse the counter
models. Another improvement would be to apply high performance computing techniques to
increase the efficiency of the model checking algorithm. In the one-pass tableau method, only
one branch of the derivation tree needs to be considered at any stage, making it suitable to
implement on a bank of parallel processors [1]. In [21], [12], the authors discussed two ap-
proaches to parallel temporal tableau for LTL using the two-pass tableau procedure; these need
investigation for the one-pass method. The first approach applies parallelism by dividing the
sequential algorithm into separate sub-problems and distributing the sub-problems to different
processors. In this approach communication between the processes are maintained using two
shared queues. The second approach does not use any shared queue, hence the inter-process
communication increases. However, dividing into sub-problems does not ensure equal load dis-
tribution across the processors, because one sub-problem may take less time than the others,
i.e., some processors will remain idle while the others are working. The inter-process commu-
nication increases in the second approach. In literature, experiments show that the second
approach performs better than the first approach for LTL [21]. Many optimization techniques
including unit propagation, simplification, and backjumping have been developed for tableau-
based modal logic systems which can be applied to the one-pass tableau-based model checking
algorithm to enhance performance. Extensions of the method to include timing information
are fairly straightforward [15].

Acknowledgements: The authors were supported by an NSERC Discovery Grant, by the
Atlantic Canada Opportunities Agency, and by an ACEnet Graduate Research Fellowship and
benefited from many discussions with clinicians from the Guysborough Antigonish Strait Health
Authority (GASHA).
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Abstract

This paper reports our initial experiments with using external ATP and premise selec-
tion methods on some corpora built with the HOL Light system. The testing is done in
three different settings, corresponding to those used earlier for evaluating such methods on
the Mizar/MML corpus. This is intended to provide the first estimate about the usefulness
of such external reasoning and AI systems for solving problems over HOL Light and its
libraries.

1 Motivation

Usage of external first-order ATPs like Vampire [22], E [24], SPASS [30], and recently also
SMT solvers like Z3 [6] for ITP-based (large-theory) formalization has been developed quite
significantly in the recent decade. Particularly in the Isabelle community, the Isabelle/Sledge-
hammer [3, 2] bridge to such external tools is getting increasingly popular. This helps to
further develop various parts of the technology involved. ATPs have recently gained the ability
to quickly load large theories over large signatures and work with them. Methods for auto-
mated selection of relevant knowledge and for proof guidance are actively developed, together
with specialized automated systems targeted at particular mathematical domains. Formats
and translation methods handling more formalization-friendly foundations are being defined,
and metasystems that decide which ATP, translation method, strategy, parallelization, and
premises to use to solve a given problem with limited resources are being designed. Coopera-
tion of humans and computers over large corpora of formal knowledge is an interesting field,
allowing exploration of new AI systems and combinations of different AI techniques that can
attempt to encode concepts like analogy and intuition, and rigorously evaluate their usefulness.
Perhaps not only Hilbert and Turing, but also the formality-opposing and intuition-oriented
Poincaré1 [21] would have been interested to learn about the new “semantic AI paradise” of
such large corpora of formal and computer-understandable mathematics (from which we do not
intend to be expelled).

The HOL Light [10] system is probably the first among the existing well-known ITPs which
has integrated and extensively used a general ATP procedure, the MESON tactic [11]. Hurd
has developed and benchmarked early bridges [12, 13] between HOL and external systems,
and his Metis system [14] has also become a significant part of the Isabelle/Sledgehammer
bridge to ATPs [20]. Using the very detailed Otter/Ivy [18] proof objects, Harrison also later
implemented a bridge from HOL Light to Prover9 [17].

HOL Light however does not yet have a general bridge to large-theory ATP/AI methods,
similar to Isabelle/Sledgehammer or MizAR [27, 28], which would attempt to automatically

∗Supported by the NWO projects “MathWiki” and “Learning2Reason”
12012 is not just the year of Turing [9], but also of Poincaré, whose ideas about creativity and invention

involving random, intuition-guided exploration confirmed by critical evaluation quite correspond to what AI
metasystems like MaLARea [29] try to emulate in the large-theory formal setting.
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solve a new goal by selecting the relevant knowledge from the large library and running (possibly
several) external ATPs on such (possibly several alternative) premise selections. HOL Light
seems to be a natural candidate for adopting such methods, because of the amount of work
already done in this direction mentioned above, and also thanks to HOL Light’s foundational
closeness to Isabelle/HOL. Also, it seems that thanks to the Flyspeck project [8], HOL Light is
becoming less of only a “single, very knowledgable formalizer” tool, and also getting increasingly
used as a “tool for interested mathematicians” (particularly Vietnamese2) that know the large
libraries much less and have much less experience with crafting their own targeted proof tactics.
For such ITP users it is good to provide a small number of strong methods that allow fast
progress.

The work reported here consists of several experiments intended to give an initial information
about the usefulness of building such a bridge for HOL Light. The evaluation tries to follow
the pattern introduced for Mizar/MML in [25, 26]:

1. Evaluate the ATP efficiency on simple ITP steps (“by” in Mizar, MESON in HOL Light).

2. Evaluate the ATP efficiency on re-proving whole theorems in the libraries from their (as
exact as possible) proof dependencies.

3. Evaluate the ATP efficiency on proving whole theorems when the premises are chosen
from the large library by AI (heuristic, learning) methods.

In general, the work is much less complete and polished than the similar work done for
Mizar and Isabelle, and also in much rawer state than the finished work by Harrison and Hurd
mentioned above. The first issues are now efficiency and encoding of the export from HOL Light
to FOL, and also the compatibility and alignment of the data that we use for re-proving of whole
theorems from their dependencies, and from trained advice. But we hope that obtaining the
initial results and reporting them and the problems encountered could attract some interest
and expert advice with such technical issues, so that the bridges are finished (not necessarily
by us) sooner, and the HOL Light and Flyspeck large mathematical corpora become available
to ATP and AI research in the same way as the Mizar and Isabelle corpora.

Apart from the attempt to inspire in this section, the rest of the paper is organized as
follows. Section 2 explains how problems in the above categories were prepared, building on
the work of Harrison and Adams. Section 3 reports the experiments and results, and Section 4
concludes.

2 Problem Exports

All three kinds of export described below initially rely on using parts of the MESON tactic for
exporting the problems to the TPTP FOF format. MESON is based on the model elimination
method invented by Loveland [15] and later combined with Prolog-like search tree [16]. The
implementation of MESON in HOL-Light first applies a number of tactics that transform the
HOL goal to a FOL goal (or multiple goals). The FOL goal is then passed to an ML procedure
that returns a proof which is later replayed using HOL Light proof steps. This often means that
multiple ATP problems are created from one such MESON call (due to pre-processing), and the
formulas are already skolemized. The MESON-based export can become very slow for larger
problems, probably depending on the use of higher-order features in the problems. However
the export still provides a sufficient number of problems for the first evaluation. Our plan is

2http://weyl.math.pitt.edu/hanoi2009/Participants/
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to later switch to TFF1-based (extension of FOF with types and polymorphism) export [4], for
which for example Why3 [7] already has a usable translation tool to FOF by Andrei Paskevich.

Even though MESON uses CNF, we encode it as FOF to get around some syntactic issues
with TPTP, and also because large-theory systems have a longer tradition of working on the
FOF level. In each problem, apart from the TPTP formulas themselves, we keep as a comment
also the original HOL Light goal and assumptions, and their first-order encoding used internally
by the MESON tactic. This is intended to help debugging the translation, and we invite
interested readers to check that we proceed (at least for most problems) correctly. For the
problems created from the full theorems, we additionally keep the name of the theorem inside
the problem.

2.1 Exporting problems from the original MESON calls

We have first hooked the exporting code into the MESON (and ASM MESON) tactic itself, to
get a large number of TPTP problems corresponding to the HOL Light problems on which the
MESON tactic is used. There does not seem to be any issue running this export, so we ran it
fully on the core HOL Light, HOL Multivariate, and Flyspeck corpora. The problems created
are available online.3 From core HOL Light this yields 2057 problems, from HOL Multivariate
12428, and from Flyspeck 19634. Their average, minimum, and maximum sizes are shown in
Table 1

Table 1: MESON problems

Corpus Problems Average size Minimum size Maximum size
Core HOL Light 2057 8.1 2 64

HOL Multivariate 12428 17.7 2 226
Flyspeck 19634 12.7 2 132

Total 34119 14.3 2 226

These problem sizes (which should additionally be considered as the CNF sizes) are lower
than in the problems corresponding to the “by” (atomic justifications) in Mizar. There the
dependent types with Horn-like adjective mechanisms are a very significant part of the automa-
tion, and particularly in more advanced theories their TPTP encoding can produce tens of
formulas.

The HOL Light type system also does not have the additional features like type classes that
complicate the problems for Isabelle, and it seems that explicit encoding of the type system in
the MESON export is entirely avoided. One guard against type-related unsoundness in MESON
seems to be exhaustive instantiation of different polymorphic variants into different (untyped
first-order) symbols, including equality (this is probably not difficult in a tableau-based system
like MESON). Our export to TPTP currently merges all polymorphic instances of equality into
the one standard FOL equality, which can make some TPTP problems unsound.4

If this all is correct, then it is a bit surprising that the problem sizes (which on our corpora
often correlates with first-order ATP difficulty) of the “full-scale ATP” MESON problems that
actually appear in the HOL Light corpora look comparable to the problems originating from

3http://mizar.cs.ualberta.ca/~mptp/hh/tptp.tgz
4We became aware of this issue thanks to the PAAR workshop reviews, and so far we have not tried to

measure the influence of such unsoundness in the problems. Some related quantification is available in the work
of Hurd and Meng and Paulson.
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the Mizar’s “limited-by-design” and “obvious-inference-only” [5, 23] atomic justifications. This
also hints that HOL Light users might be able to do bigger steps if using external ATPs.

2.2 Exporting theorem problems

The second interesting set of problems is on the “theorem” level of ITP libraries. This level
seems to be quite similar in the major ITPs: “theorem” is typically not corresponding to what
mathematicians call a theorem, but it is rather a self-sufficient lemma with a formal proof of
tens to hundreds lines that can be useful in other formal proofs and hence should be named
and exported. Since the ITP proofs can be longer, proving such theorems fully automatically
is typically a challenge, which makes such problems suitable for ATP benchmarks, challenges,
and competitions.

In Mizar and in Isabelle (done by Blanchette in so far unpublished work) the corresponding
ATP problems for theorems can be produced by collecting the dependencies (premises) from
the proofs (by suitable tracking mechanisms), and then translating the Premises ` Theorem
statement to first-order logic. It seems that HOL Light does not provide (at least not out-of-
the box) such high-level tracking of dependencies, however there is recent work by Adams in
exporting HOL Light to HOL Zero [1] (with cross-verification as the main motivation) that does
(also) high-level dependency tracking. We have used these data (dependency table) as follows:

1. First we attempted to synchronize the theorem names used by Adams with our work
(there can be different naming conventions). This was an iterative process that we ended
when there were 55 remaining differences out of 1782 theorems (possibly caused also by
small version difference).

2. Then for each HOL Light theorem, we have replaced the default “prove” function with a
function that first looks up the dependencies (in the external dependency table), filters
out those that (for whatever reason) do not exist in the current environment, and calls
the MESON exporting code described above for the problem Dependencies ` Theorem

This is problematic not just because of the possible dependency incompatibilities. The
MESON export of some problems can take very long time (one problem that we left overnight
took more than five hours), and create very large files (several megabytes). Thousands of
formulas are no longer a problem for existing large-theory ATP techniques, but the processing
time inside HOL Light makes experiments impractical. This was the main reason why the
re-proving experiments based on the dependency information about whole proofs were limited
to 1178 HOL Light theorems for which we get the TPTP translation before we encounter
such slowdowns. This inefficiency seems to be caused by MESON’s exhaustive treatment of
polymorphism, which is not a problem for normal solving of small HOL Light tasks with
MESON, but does not scale well to large numbers of premises. We either need to a more
efficient implementation of this code in HOL Light,5 or as already mentioned, we might just try
to entirely switch from the MESON export to the TFF1 export which will likely avoid major
optimizations (those can be done while translating from TFF1 to FOF).

The 1178 theorems give rise to 1993 problems after the MESON export, also available
online.6 The average number of formulas in them is 46, the maximum is 2469, which means
that some of these problem should benefit from premise-selection methods.

5After reading the first version of this paper, John Harrison started to look at this issue.
6http://mizar.cs.ualberta.ca/~mptp/hh/theorems.tar.gz
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2.3 Exporting theorem problems with premise selection

Given the large libraries that have been built with HOL Light, the interesting ATP/AI task is to
prove new theorems without having to manually select the relevant premises. ATP problems of
this kind are created for Mizar/MML by consistent translation of the whole MML to TPTP, and
then letting premise selection algorithms find the most relevant premises for a given theorem
t from the large set of t-allowed premises (typically those theorems and definitions that were
already available when t was being proved, expressed, e.g., as TPTP include files).

Currently, the MESON export that we use invents specific symbols for each problem, and
it is not clear to us if it can be easily modified to translate each HOL Light theorem separately
to FOF, so that such separate theorem translations could be later consistently combined into
large ATP problems. Again, the TFF1 layer should make this possible.

So in order to do the initial test of how good ATP/AI methods can be when using the whole
available HOL Light theory at each point, we put the premise selection directly inside HOL
Light. This is done as follows:

1. First we train (using the SNoW system in naive Bayes mode) a premise selector on the
proof dependency data by Adams. Similar to such training on MML data, HOL Light
symbols are used for the input-feature representation of the proved theorems, and the
necessary proof dependencies are used as the output features (labels) for the learning.
The resulting standalone premise selector is now also accessible online.7 The 10-fold cross-
validation (i.e.: training on 9/10 and testing on 1/10 of the data) gives so far on average
about 43% cover of the needed dependencies in the first 100 hits. For Mizar/MML this
is about 70% [25]. Some of this difference can be caused by bugs in the data processing,
but it is also possible that just using symbols for characterizing formulas is weaker on the
HOL Light corpora, and using other features (e.g., all formula (sub)terms) will be useful.

2. Then for each HOL Light theorem, we have replaced the default “prove” function with a
function that extracts the symbols from the theorem8 and sends them as a query to the
premise selector. The premise selector replies with a list of theorem names ordered by their
expected relevance for the goal, from which we again filter out those that do not exist in the
current environment. Then we take the N most relevant of the remaining recommended
premises, and call the MESON exporting code for the problem RecommendedPremises `
Theorem.

This solution is a bit similar to how Isabelle/Sledgehammer selects premises, which is also done
internally on Isabelle terms rather than externally on their TPTP representation.9 However,
Isabelle/Sledgehammer now uses a manually taylored relevance filter [19].

The MESON translation with a higher number of premises is however again a bottleneck, so
we limit the number of advised premises to 60, and do the export to TPTP only for N equal to
10, 20, 30, 40, 50, and 60. For the same efficiency reasons (and to have the same set of theorems
for all N) we also stop the export after producing problems for 964 theorems, resulting in about
1700 TPTP problems. The problem numbers can slightly differ for different N , for example for
NUMPAIR INJ LEMMA only one problem is created by the MESON export when using 20 premises,

7http://mws.cs.ru.nl/~urban/holdata/isab_adv_demo.html
8We could have used Adams’ data for this too, but this way we can use the premise selector also on conjectures

that are not in Adams’ data.
9The Isabelle TPTP export now uses consistent symbol naming, so external premise selectors can be already

tested on Isabelle data. Some initial (so far unpublished) experiments with the MaLARea system have been
started by Blanchette and Urban.
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but two problems are created when using 60 premises. Table 2 summarizes the six datasets,
which are also available online.10

Table 2: Theorem problems (after MESON export) with advised premises

Premises Theorems Problems Avg. size/theorem Avg. size/problem Max size
10 964 1649 86.32 50.46 882
20 964 1662 136.84 79.37 922
30 964 1680 196.44 112.72 1097
40 964 1683 250.80 143.65 1470
50 964 1687 339.06 193.75 1781
60 964 1687 462.47 264.27 2181

For the higher values of N the average problem sizes reach values that can further benefit
from internal ATP large-theory methods developed in the past years. We should also note that
in some cases there is currently a total mismatch between the symbols on which the advisor was
trained, and the symbols that we extract from the theorem that is to be advised (this can be
due to various omissions in the processing and synchronizing of the symbol names with Adams’
data). So again, these problems should be considered as an initial experiment rather than the
best of what the current premise selection techniques can achieve.

3 Experiments

We use Vampire 1.8 and E 1.4 on the problems. All ATPs are run with 5s time limit on an
Intel Xeon X5650 2.67GHz server with 24GB RAM and 12MB CPU cache. Each problem is
always assigned one CPU.

3.1 Using external ATPs to prove the calls to MESON

Table 3 shows the results of running Vampire and E on the MESON problems. The solutions are
also online.11 The problems turn out to be very easy, and the average number of needed Vampire
premises is quite low in comparison to the average problem size. One problem (tptp19150.p) has
been found countersatisfiable by E. After manually adding an extensionality axiom for functions,
both E and Vampire can prove it. It is possible that some knowledge about extensionality of
basic constants of HOL is hard-coded in MESON. So far we have not decided to add this
axiom to the translation of every problem to FOL, because it is explicitly present in some of
the problems. The low number of premises that are actually needed for the proof is also a
bit suspicious, but some problems seem to be really trivial (for example, asking to prove that
c 6= c), which might be partially due to the MESON preprocessing and splitting into multiple
problems. There are some harder problems, for example multivariate/tptp13687.p took E to
generate 152441 clauses and process 15889 of them.

10http://mizar.cs.ualberta.ca/~mptp/hh/advised_theorems10.tar.gz, and so on for 20 to 60.
11http://mizar.cs.ualberta.ca/~mptp/hh/meson_results.tar.gz
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Table 3: ATP results on problems created from the MESON calls

Corpus Problems Avg. size V-proved (%) E-proved (%) Avg. V-premises
Core HOL Light 2057 8.1 2055 (99.9%) 2057 (100%) 2.91

HOL Multivariate 12428 17.7 12422 (100%) 12393 (99.7%) 3.40
Flyspeck 19634 12.7 19592 (99.8%) 19621 (99.9%) 2.15

Total 34119 14.3 34069 (99.9%) 34071 (99.9%) 2.60

3.2 Using external ATPs to prove theorems

Table 4 shows the results of running Vampire and E on the 1993 theorem problems. The
solutions are again online.12 Many problems are reported countersatisfiable by E, which can
mean that we are missing some proof dependencies, processing them in a wrong way, or that
the completeness of the MESON export is limited (note that for the MESON problems in the
previous section we are only using those which succeeded in HOL Light). The average number
of premises that Vampire needed for the 519 proofs went a bit higher than in the previous
section, but it is still suspiciously low. The overall success rate is 26%, however as mentioned
above, these are theorems from the beginning of the core HOL Light corpus, and the export
(and thus also likely the problems) get harder later.

Table 4: ATP results on the 1993 theorem problems

Problems Avg. size V-proved (%) E-proved (%) Avg. V-premises E-CounterSat (%)
1993 46 519 (26%) 517 (26%) 4.6 876 (44%)

3.3 Using external ATPs to prove theorems with premise selection

Table 5 shows the results of running Vampire and E on the six differently advised batches of
theorem problems. The solutions are again online.13 Advising more premises helps quite a
lot, and particularly Vampire is good in handling the larger problems. The advised theorem
problems are a subset of those from previous section, so the result of 455 proved by Vampire in
the 60-advised batch compares quite well to the 519 proved in the previous section. This seems
encouraging, but again, modulo all the possible bugs and imperfections that might be involved.

Table 5: ATP results on the advised theorem problems

Premises Problems Avg. size V-proved (%) E-proved (%) Avg. V-premises E-ContrSat (%)

10 1649 50.46 225 (13.6%) 221 (13.4%) 3.33 352 (21.3%)

20 1662 79.37 294 (17.7%) 288 (17.3%) 4.22 175 (10.5%)

30 1680 112.72 350 (20.1%) 340 (20.2%) 4.55 95 (5.7%)

40 1683 143.65 387 (23%) 354 (21%) 4.86 41 (2.4%)

50 1687 193.75 427 (25.3%) 362 (21.5%) 5.03 29 (1.7%)

60 1687 264.27 455 (27%) 367 (21.7%) 5.13 29 (1.7%)

12http://mizar.cs.ualberta.ca/~mptp/hh/theorems_results.tar.gz
13http://mizar.cs.ualberta.ca/~mptp/hh/advised_theorems_results.tar.gz
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4 Conclusion and Future Work

What we did seems straightforward. Inside HOL Light we encoded the translation to TPTP
using MESON, introduced some bookkeeping to keep track of available theorems, implemented
the calls to the premise advisor, and hooked these functions to suitable places. Outside HOL
Light, most of the work was in researching how to use and synchronize Adams’ dependency
data. Training the basic naive Bayes premise selection and providing the trained advisor is now
a standard technology done already many times.

We might have made mistakes in tweaking the HOL Light data and functions for our purpose,
and one reason for this workshop paper is to expose any serious bugs to better-informed eyes.
However even if there were serious issues in exporting the problems in the TPTP format, it
still seems that doing what we are attempting to do is quite well-researched today, and the
large-theory ATP/AI is out there, ready to be applied to the HOL Light corpora. We have
not done any major sanity checking yet w.r.t. the proofs that we obtain. One issue that we
became aware of (after the reviews of the first version of the paper) is our use of one global
equality predicate, which together with MESON’s removal of type guards can lead to unsound
translations. We have not measured the influence of such unsoundness yet. However, HOL
Light has methods that import MESON and Ivy proofs, and a lot of relevant work has been
done on proof import with Isabelle/Sledgehammer using Metis.

Future work has been mentioned several times. Probably the lowest hanging fruit is to
export all theorems from the corpora in the TFF1 format. This could solve the efficiency
and symbol-consistency problems, and allow us to use premise selection externally rather than
internally.
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C. Paulin, and Laurent Théry, editors, TPHOLs, volume 1690 of Lecture Notes in Computer
Science, pages 311–322. Springer, 1999.

[13] Joe Hurd. An LCF-style interface between HOL and first-order logic. In Andrei Voronkov, editor,
CADE, volume 2392 of Lecture Notes in Computer Science, pages 134–138. Springer, 2002.

[14] Joe Hurd. First-order proof tactics in higher-order logic theorem provers. In Myla Archer, Ben Di
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Abstract

Mathematical textbooks typically present only one proof for most of the theorems.
However, there are infinitely many proofs for each theorem in first-order logic, and math-
ematicians are often aware of (and even invent new) important alternative proofs and use
such knowledge for (lateral) thinking about new problems.

In this paper we start exploring how the explicit knowledge of multiple (human and
ATP) proofs of the same theorem can be used in learning-based premise selection algo-
rithms in large-theory mathematics. Several methods and their combinations are defined,
and their effect on the ATP performance is evaluated on the MPTP2078 large-theory
benchmark. Our first findings are that the proofs used for learning significantly influence
the number of problems solved, and that the quality of the proofs is more important than
the quantity.

1 Introduction

Automated Theorem Provers (ATPs) struggle when a problem has a large number of unneces-
sary premises [9]. Premise selection in large theories seems to be an important instance of the
general proof guidance problem. It has been shown that proper design and choice of knowledge
selection heuristics can change the overall success of large-theory ATP techniques by tens of
percents [1]. This paper continues our work on machine learning algorithms for premise se-
lection [1, 5]. We investigate how the knowledge of different proofs can be integrated in the
machine learning algorithms for premise selection, and how it influences the performance of the
ATPs.

In our earlier experiments [5] we tested and evaluated several premise selection algorithms on
a subset of the Mizar Mathematical Library (MML), the MPTP2078 large-theory benchmark,1

using the (human) proofs from the MML as training data for the learning algorithms. We have
found that (i) learning from such human proofs helps a lot, but (ii) alternative proofs can quite
often be successfully constructed by ATPs, making heuristic methods like SInE surprisingly
strong and orthogonal to learning methods. Thanks to these experiments we now also have
(possibly several) ATP proofs for most of the problems. This gives us an opportunity to learn
from different (and in particular not just human) proofs and their combinations, and observe
the influence on the ATP performance.

The rest of the paper is organized as follows. Section 2 introduces the necessary machine
learning terminology and explains how different proofs can be used in the algorithms. In
Section 3, we define several possible ways to use the additional knowledge given by the different
proofs. The different proof combinations are evaluated and discussed in Section 4, and Section
5 concludes.

∗The authors were supported by the NWO projects “MathWiki a Web-based Collaborative Authoring Envi-
ronment for Formal Proofs” and “Learning2Reason”.

1Available at http://wiki.mizar.org/twiki/bin/view/Mizar/MpTP2078.

82 Pascal Fontaine, Renate Schmidt, Stephan Schulz (eds.); PAAR 2012, pp. 82–94

firstname.lastname@gmail.com
http://wiki.mizar.org/twiki/bin/view/Mizar/MpTP2078


Learning from Multiple Proofs D. Kühlwein, J. Urban

2 The Machine Learning Framework and the Data

We start with the setting introduced in [1, 5]. Γ denotes the set of all first order formulas
(usually axioms, definitions and theorems) that appear in a given (fixed) large mathematical
corpus (MPTP2078 in this paper). The corpus is assumed to use notation (symbols) and
formula names consistently, since they are used to define the features and labels for the machine
learning algorithms. Given a conjecture c and a large number of allowed premises Ac ⊂ Γ, the
premise selection problem is to predict those premises from Ac that are likely to be useful for
automatically constructing a proof of c. We typically experiment with proving theorems from Γ,
so not all formulas in Γ can be allowed as premises for a given c ∈ Γ. In practice, Γ is typically
ordered by the chronological growth of ITP libraries, and we use this ordering to define which
premises are allowed for a given conjecture.

We say that a proof P is a proof over Γ if the conjecture and all premises used in P are
elements of Γ. Given a set of proofs ∆ over Γ in which every formula has at most one proof,
the (∆-based) proof matrix µ∆ : Γ× Γ→ {0, 1} is defined as

µ∆(c, p) :=

{
1 if p is used to prove c in ∆,

0 otherwise.

In other words, µ∆ is the adjacency matrix of the graph of the direct proof dependencies from
∆. This proof matrix, together with the formula features, is used for training machine learning
algorithms in [1, 5], using MML proofs as ∆. [1] and [5] also contain more details on using
machine learning for premise selection.

In [5] we compared several different premise selection algorithms on the MPTP2078 dataset.
Thanks to this comparison we now have ATP proofs for 1328 of the 2078 problems, found by
Vampire 0.6 [7]. For some problems we found several different proofs, meaning that the sets of
premises used in the proofs differ. Figure 1 shows the number of different ATP proofs we have
for each problem. The maximum number is 49. We found 6.71 proofs per solvable problem on
average.

This database of proofs allows us to start considering in this paper multiple proofs for a
c ∈ Γ. For each conjecture c, let Θc be the set of all ATP proofs of c in our dataset, and
let nc denote the cardinality of Θc. Due to the nature of our learning algorithms, we still use
the (generalized) proof matrix setting, where the multiple proofs of c are all in one row of µ
represented using weights. Therefore µ will rather be called the (premise) weight matrix in
the rest of the paper, and the general interpretation of µX(c, p) is the relevance (weight) of a
premise p for a proof of c determined by X, where X can either be a set of proofs defining µ as
above, or a particular algorithm (typically in conjunction with the data to which it is applied)
defining the values of µ. For a single proof σ, let µσ := µ{σ}, i.e.,

µσ(c, p) :=

{
1 if σ ∈ Θc and p is used to prove c in σ,

0 otherwise.

We end this section by introducing the (so far a bit fuzzy) concept of (premise) redundancy,
which seems to be at the heart of the problem that we are exploring. Let c be a conjecture and
σ1, σ2 be proofs for c (σ1, σ2 ∈ Θc) with used premises {p1, p2} and {p1, p2, p3} respectively. In
this case, premise p3 can be called redundant since we know a proof of c that does not use p3.2

2For this we assume some similarity between the efficiency of the proofs in Θc, which is the case for our
experiments based on the 5-second time limit.
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Redundant premises appear quite frequently in ATP proofs, for example, due to exhaustive
equational normalization that can turn out to be unnecessary for the proof. Now imagine we
have a third proof of c, σ3 with used premises {p1, p3}. With this knowledge, p2 could also be
called redundant (or at least unnecessary). But one could also argue that at least one of p2 and
p3 is not redundant. In such cases, it is not yet clear what a meaningful definition of redundancy
should be (see also [6] for related topics in machine learning). Hence for the remainder of the
paper, we use the term redundancy as a (partially) vague concept to talk about premises that
might not be necessary for a proof.
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Figure 1: Number of different ATP proofs for each of the 2078 problems. The problems are
ordered by their appearance in the MML.

3 Using Multiple Proofs

We define several different combinations of MML and ATP proofs and their respective premise
weight matrices. Keep in mind that there are many problems for which we do not have any
ATP proofs. For those problems, we will always just use the MML proof. I.e., for all premise
weight matrices µX defined below, if there is no ATP proof of a conjecture c, then µX(c, p) =
µMML(c, p).
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3.1 Substitutions and Unions

The simplest way to combine different proofs is to either only consider the used premises of one
proof, or take the union of all used premises. We consider five different combinations.

Definition 3.1.1 (MML Proofs).

µMML(c, p) :=

{
1 if p is used to prove c in the MML proof,

0 otherwise.

This dataset will be used as baseline throughout all experiments. It uses the human proofs
from the Mizar library.

Definition 3.1.2 (Random ATP Proof). For each conjecture c for which we have ATP proofs,
pick a (pseudo)random ATP proof σc ∈ Θc. Then we define

µRandom(c, p) :=

{
1 if p is a used premises in σc,

0 otherwise.

Definition 3.1.3 (Best ATP Proof). For each conjecture c for which we have ATP proofs, pick
an(y) ATP proof with the least number of used premises σmin

c ∈ Θc. We set

µBest(c, p) :=

{
1 if p is a used premises in σmin

c ,

0 otherwise.

Definition 3.1.4 (Random Union). For each conjecture c for which we have ATP proofs, pick
a random ATP proof σc ∈ Θc. µmathrmrandomUnion is defined as

µRandomUnion(c, p) :=

{
1 if p is a premise used in σc or in the MML proof of c,

0 otherwise.

Definition 3.1.5 (Union). For each conjecture c for which we have ATP proofs, we define

µUnion(c, p) :=

{
1 if p is a premise used in any ATP or MML proof of c,

0 otherwise.

3.2 Premise Averaging

A more advanced way to combine proofs is to consider some kind of average of the used premises.
We consider three options, the standard average, a biased average and a scaled average.

Definition 3.2.1 (Average). The average gives equal weight to each proof.

µAverage(c, p) =
1

nc + 1

∑
σ∈Θc

µσ(c, p) + µMML(c, p)

The intuition is that the average gives a better idea of how necessary a premise really is.
When there are very different proofs, such average will give a very low weight to every premise.
That is why we also tried scaling as follows:
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Definition 3.2.2 (Scaled Average). The scaled average ensures that there is at least one premise
with weight 1.

µScaledAverage(c, p) =

∑
σ∈Θc

µσ(c, p) + µMML(c, p)

maxq∈Γ

∑
σ∈Θc

µσ(c, q) + µMML(c, q)

Another experiment is to make the weight of all the ATP proofs equal to the weight of the
MML proof:

Definition 3.2.3 (Biased Average).

µBiasedAverage(c, p) =
1

2

(∑
σ∈Θc

µσ(c, p)

nc
+ µMML(c, p)

)

3.3 Premise Expansion

Consider a situation where a ` b and b ` c. Obviously, not only b, but also a proves c. When
we consider the used premises in a proof, we only use the information about the direct premises
(b in the example), but nothing about the indirect premises (a in the example), the premises of
the direct premises. Using this additional information might help the learning algorithms. We
call this premise expansion. We define three different weight functions that try to capture this
indirect information. All three penalize the weight of the indirect premises with a factor of 1

2 .

Definition 3.3.1 (MML Expansion). For the MML expansion, we only consider the MML
proofs and their one-step expansions:

µMMLExp(c, p) = µMML(c, p) +

∑
q∈Γ µMML(c, q)µMML(q, p)

2

Note that since µMML(c, p) is either 0 or 1, the sum
∑
q∈Γ µMML(c, q)µMML(q, p) just counts

how often p is a grandparent premise of c.

Definition 3.3.2 (Average Expansion). The average expansion takes µAverage instead of µMML:

µAverageExp(c, p) = µAverage(c, p) +

∑
q∈Γ µAverage(c, q)µAverage(q, p)

2

Definition 3.3.3 (Scaled Expansion). And finally, we consider an expansion of µScaledAverage.

µScaledAverageExp(c, p) = µScaledAverage(c, p) +

∑
q∈Γ µScaledAverage(c, q)µScaledAverage(q, p)

2

Deeper expansions and different penalization factors are possible, but given the performance
of these initial tests shown in the next section we decided to not investigate further.

4 Results

4.1 Experimental Setup

All experiments were done on the MPTP2078 dataset. Because of its good performance in
earlier evaluations, we used the Multi-Output-Ranking (MOR) learning algorithm [1] for the
experiments. For each conjecture, MOR is allowed to train on all proofs that were (in the
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chronological order of MML) done up to that conjecture. In particular, this means that the
algorithms do not train on the data they were asked to predict. Three-fold cross validation
on the training data was used to find the optimal parameters. For the combinations in 3.1,
the AUC measure was used to estimate the performance. The other combinations used the
square-loss error. For each of the 2078 problems, MOR predicts a ranking of the premises.

We again use Vampire 0.6 for evaluating the predictions. Vampire is run with 5s time limit
on an Intel Xeon E5520 2.27GHz server with 24GB RAM and 8MB CPU cache. Each problem
is always assigned one CPU. 3 For each MPTP2078 problem, we created 20 new problems,
containing the 10, 20, ..., 200 highest ranked premises and ran Vampire on each of them. The
graphs show how many problems were solved using the 10, 20, ..., 200 highest ranked premises.
As a performance baseline, Vampire 0.6 in CASC mode (that means also using SInE with
different parameters on large problems) can solve 548 problems in 10 seconds [1].

4.2 Substitutions and Unions

Figure 2 shows the performance of the simple proof combinations introduced in 3.1. It can
be seen that using ATP instead of MML proofs can improve the performance considerably,
in particular when only few premises are provided. One can also see the difference that the
quality of the proof makes. The best ATP proof predictions always solved more problems than
the random ATP proof predictions. Taking the union of two or more proofs decreases the
performance. This can be due to the redundancy introduced by considering many different
premises. This would suggest that the ATP search profits most from a simple and clear (one-
directional) advice, rather than from a combination of ideas.

4.3 Premise Averaging

Taking the average of the used premises could be a good way to combat the redundant premises.
The idea is that premises that are actually important should appear in almost every proof,
whereas premises that are redundant should only be present in a few proofs. Hereby, important
premises should get a high weight and unimportant premises a low weight. The results of the
averaging combinations can be seen in Figure 3.2.

Apart from the scaled average, it seems that taking the average does perform better than
taking the union. However, the baseline of only the MML premises is better or almost as good
as the average predictions.

4.4 Premise Expansions

Finally, we compare how expanding the premises effects the ATP performance in Figure 3.3.
While expanding the premises does add additional redundancy, it also adds further potentially
useful information.

However, all expansions perform considerably worse than the MML proof baseline. It seems
that the additional redundancy outweighs the usefulness.

3We use Vampire as our default ATP because of its good performance in the CASC competitions, and
because of its good performance on MML reported in [9]. Version 0.6 was chosen to make the experiments
comparable with the results reported in [1] and [5].
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Figure 2: Comparison of the combinations presented in 3.1.

4.5 Other ATPs

We also investigated how learning from Vampire proofs affects other provers, by running E
1.4 [8] and Z3 3.2[3] on some of the learned predictions.4 Figure 5 shows the results. The
predictions learned from the MML premises serve as a baseline.

E using the predictions based on the best Vampire proofs is not so much improved over the
MML-based predictions as Vampire is. This would suggest that the ATPs really profit most
from “their own” best proofs. However for Z3 the situation is opposite: the improvement by
learning from the best Vampire proofs is at some points even slightly better than for Vampire
itself, and this helps Z3 to reach the maximum performance earlier than before. Also, learning
from the averaged proofs behaves differently for the ATPs. For E, the MML and the averaged
proofs give practically the same performance, for Vampire the MML proofs are better, but for
Z3 the averaged proofs are quite visibly better. These effects are probably not so significant
to be immediately investigated, but for example a comparison done on the whole MML (or its
different parts), together with analysis of the strategies that the ATPs use, could provide more
understanding. Another possible next experiment could be to swap the ATPs, and learn from
E’s proofs (or even Z3 proofs, which seem to be coming soon), and see how they improve the
other ATPs.

4With the same settings as Vampire.
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Figure 3: Comparison of the combinations presented in 3.2.

4.6 Comparison With the Best Results Obtained so far

In [5], we found that the a combination of SInE [4] and the MOR algorithm (trained on the
MML proofs) has so far best performance on the MPTP2078 dataset. Figure 6 compares the
new results from this paper with this combination. Furthermore we also try combining SInE
with MOR trained on ATP proofs. For comparison we also include our baseline, the MML
Proof predictions, and the results obtained from the SInE predictions.

While learning from the best ATP proofs leads to more problems solved than learning
from the MML proofs, the combination of SInE and learning from MML proofs still beats
both. However, combining the SInE predictions with the best ATP proof predictions gives
even better results with a maximum of 823 problem solved (a 3.3% increase over the former
maximum) when given the top 70 premises.

4.7 Machine Learning Evaluation

Machine learning has several methods to measure how good a learned classifier is without having
to run an ATP. In general, this is done by comparing the learned prediction with the training
data. The 100%Recall measure is an example. It tells us how many premises (starting from the
highest ranked one) we need to give to the ATP to ensure that all necessary premises (according
to the training data) are included.
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Figure 4: Comparison of the combinations presented in 3.3.

In [5] we found that the machine learning evaluation did not correspond to the ATP eval-
uation. For example, SInE performed worse than BiLi on the machine learning evaluation but
better than BiLi on the ATP evaluation. Our explanation was that we are training from (and
therefore measuring) the wrong data. With SInE the ATP found proofs that were very different
from the MML proofs.

In Figure 7 we see a comparison between a machine learning evaluation (the 100%Recall
measure ) depending on whether we evaluate on the MML proofs or on the best ATP proofs.
Ideally we would like to have that the machine learning performance of the algorithms corre-
sponds to the ATP performance (see Figure 6). This is clearly not the case for the 100%Recall
on the MML proofs graph. The best ATP predictions are better than the MML proof predic-
tions, and SInE solves more than 200 problems. With the new evaluation, the 100%Recall on
the best ATP proofs graph, the performance is more similar to the actual ATP performance
but there is still room for improvement.

5 Conclusion and Future Work

The fact that there is never only one proof makes premise selection an interesting machine
learning problem. Since it is in general undecidable to know the “best prediction”, the domain
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Figure 5: Performance of other ATPs when learning from Vampire proofs.
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Figure 6: Comparison of the best performing algorithms.

has a randomness aspect that is quite unusual (Chaitin-like [2]) in AI.

In this paper we started to explore how to combine different proofs to obtain better infor-
mation for high-level proof guidance by premise selection. We found that it is easy to introduce
so much redundancy that the predictions created by the learning algorithms are not good for
existing ATPs. On the other hand we saw that learning from proofs with few premises (and
hence probably less redundancy) increases the ATP performance. It seems that we should look
for a measure of how ‘good’ or ‘simple’ a proof is, and only learn from the best proofs (A similar
problem appears in machine learning under the name instance selection [6]). Such measures
could be for example the number of inference steps done by the ATP during the proof search,
or the total CPU time needed to find the proof.

Another question that was (at least initially) answered in this paper is to what extent
learning from human proofs can help an ATP, in comparison to learning from ATP proofs. We
saw that while not optimal, learning from human proofs seems to be approximately equivalent
to learning from suboptimal (for example random, or averaged) ATP proofs. Learning from
the best ATP proof is about as good as combining SInE with learning from the MML proofs.
Combining SInE with learning from the best ATP proof still outperforms all methods, but the
improvement is not as strong as in [5].

In the future we want to explore better methods for combining heuristics like SInE with
machine learning methods. Such methods could operate (e.g., using SInE-like symbol expan-
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Figure 7: 100%Recall comparison between evaluating on the MML and the best ATP proofs.
The graphs show how many problems have all necessary premises (according to the training
data) within the n highest ranked premises.
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sion) on the graph of symbol definitions (and similarities) in an analogous way to how the proof
graph expansion was used in Section 3, but enriching the set of learning features instead of the
set of learning labels. This, together with learning from simpler proofs could lead to even better
results. We are also interested in using thresholds (instead of just rankings) in our algorithms.
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[1] Jesse Alama, Tom Heskes, Daniel Kühlwein, Evgeni Tsivtsivadze, and Josef Urban. Premise Selec-
tion for Mathematics by Corpus Analysis and Kernel Methods. CoRR, abs/1108.3446, 2011.

[2] Gregory J. Chaitin. The Omega Number: Irreducible Complexity in Pure Math. In Jonathan M.
Borwein and William M. Farmer, editors, MKM, volume 4108 of Lecture Notes in Computer Science,
page 1. Springer, 2006.

[3] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: An Efficient SMT Solver. In C. R.
Ramakrishnan and Jakob Rehof, editors, TACAS, volume 4963 of Lecture Notes in Computer
Science, pages 337–340. Springer, 2008.

[4] Krystof Hoder and Andrei Voronkov. Sine Qua Non for Large Theory Reasoning. In Nikolaj Bjørner
and Viorica Sofronie-Stokkermans, editors, CADE, volume 6803 of Lecture Notes in Computer
Science, pages 299–314. Springer, 2011.
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Abstract

The Effectiveness of the first-order resolution calculus is impaired when lifting it to
higher-order logic. The main reason for that is the semi-decidability and infinitary nature
of higher-order unification problems, which requires the integration of unification within
the calculus and results in a non-effective search for refutations. We present a modification
of the constrained resolution calculus (Huet’72) which uses an eager unification algorithm
while retaining relative-completeness with regard to bounded unifiers. The first modifi-
cation is the replacement of the unification rules with that of the bounded unification
algorithm in (Ĺıbal’12). This algorithm computes either pre-unifiers, or smaller unification
problems which have terms containing Kleene stars. Following a result about an upper
bound for these problems (Schmidt-Scauß,Schulz’98), the Kleene stars can effectively be
replaced by natural numbers if we are interested in minimal unifiers only and the algorithm
then decides the unifiability problem. Since computing minimal unifiers is not enough for
the completeness of the calculus, we make a second modification and allow increases of
these natural numbers. By applying a semi-eager strategy, we can always eagerly answer
the unifiability question of a set of unification constraints while non-minimal unifiers are
obtained via back-tracking and the increase of these numbers.
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Abstract

We present some parallelization techniques for the Model Evolution (ME) calculus,
an instantiation-based calculus that lifts the DPLL procedure to first-order clause logic.
Specifically, we consider a restriction of ME to the EPR fragment of clause logic for which
the calculus is a decision procedure. The main operations in ME’s proof procedures, namely
clause instantiation and candidate literal generation, offer opportunities for MapReduce-
style parallelization. This term/clause-level parallelization is largely orthogonal to the sort
of search-level parallelization performed by portfolio approaches. We describe a hybrid
parallel proof procedure for the restricted calculus that exploits parallelism at both levels
to synergistic effect. The calculus and the proof procedure have been implemented in a
new solver for EPR formulas. Our initial experimental results show that our term/clause-
level parallelization alone is effective in reducing runtime and can be combined with a
portfolio-based approach to maximize performance.

1 Introduction

The ME calculus [3] is an instantiation-based calculus that lifts to first-order logic without
equality the popular DPLL procedure for propositional logic [6]. Like DPLL, it works with
formulas in clause form, maintains at all times a candidate model for the input clause set, and
keeps modifying that model until it finds one that satisfies all input clauses, or it determines
that the clause set has no models. The main difference with DPLL is that the input clauses need
not be ground and the candidate model is a Herbrand structure, represented finitely by a set of
literals, called a context, instead of simple truth assignment. The calculus combines DPLL-style
rules, such as unit propagation and splitting, with unification operations that generate instances
of input clauses potentially not satisfied by the current candidate model. Such instances provide
literals that can be added to the current context to obtain a new candidate model incrementally
from the old one as needed. Implementations of ME benefit from enhancements similar to those
developed for CDCL SAT solvers—the modern descendant of the DPLL procedure—such as
conflict driven backjumping, lemma learning, and so on.

Roughly speaking, and ignoring those enhancements, a typical proof procedure for ME is
a backtracking procedure relying on the following main data structures: a context M , a set of
literals; a clause set F ; a set R of candidate decision (or split) literals. The procedure starts
with F consisting of the input clauses, R empty, and M = {¬v} denoting a Herbrand structure
in which every ground atom is false. Then, it repeatedly performs the following. By unifying
clauses in F with literals in M , it generates new propagation literals and adds them to M .1

Then it identifies instances of clauses in F that are possibly falsified (by the structure denoted)
by the context M . A simple syntactic check is used to determine if the context is unrepairable,
i.e., both M and any of its enlargements definitely falsify one of those instances. If the context
is instead repairable, the proof procedure uses the generated clause instances to compute new
possible decision literals, and adds them to the candidate set R. Finally, it picks a literal from R

1Intuitively, these are literals all of whose ground instances must be satisfied from that point on; their addition
prevents future extensions of M that would break this requirement.
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according to some selection heuristic, creates a new decision point, and adds the chosen literal
or its complement to the context. When the current context is not repairable, the procedure
backtracks to a previous decision point, if any, and replaces the corresponding decision literal
l, and all literals added after that, by the complement of l. The process ends when no more
instances of F are falsified by M , which means that F is satisfiable, or when M is unrepairable
but there are no decision points to backtrack to, which indicates that F is unsatisfiable.

1.1 Parallelizing ME

In sequential implementations of ME’s proof procedure, computing propagation and decision
literals takes a considerable portion of the runtime. This computation, however, presents several
opportunities for large scale parallelization of some of the term-level and clause-level operations
involved. The work presented here was motivated by the conjecture that such parallelization
would be effective in reducing execution times.

The proof procedure’s exploration of the search space is determined in large part by a
heuristic selection of decision literals—the other main factor being the backtracking heuristics.
Decision literal selection offers its own parallelization opportunities that can be exploited for
instance with a portfolio-style approach using concurrent proof procedures with different selec-
tion heuristics. The success of portfolio approaches in CDCL SAT solvers suggests that ME

proof procedures could benefit from them as well. However, in our case it was not obvious how
term/clause-level parallelization might interact with a portfolio-style one.

To investigate these opportunities and their interactions we designed and implemented a
parallel proof procedure for ME. For simplicity, with started with a restriction of ME to EPR
clauses, (universal) clauses whose literals may contain variables, constants but no function
symbols. While an extension of this work to the whole clause logic fragment is left to future work
the restriction to the EPR case is interesting in its own right because (i) ME yields (practical)
decision procedure for the satisfiability EPR formulas and (ii) many interesting problems can
be recast as EPR satisfiability problems [16, e.g.]. Our initial experimental results show that
both term/clause-level and portfolio-style parallelizations produce significant speed ups for ME.
Furthermore, the two have largely orthogonal effects and so combine nicely to produce better
runtime results than either of them alone.

1.2 Related Work

Parallel approaches in first-order theorem proving have been categorized at three different levels:
term, clause and search level [5]. In term-level approaches parallelize operations such as term
matching or unification; clause-level approaches parallelize operations such as deduction of new
clauses or backward subsumption; search-leval approaches parallelize the exploration of the
search space. Because first-order calculi can generate thousands of clauses, each with tens of
literals, parallelism at term or clause level requires sophisticated data structure and scheduling
algorithms. Usually, the overhead of thread scheduling overcomes the benefit of concurrency.
To our knowledge, with one exception [10], there has been no new work on term/clause level
parallelism in first-order theorem proving after a number discouraging attempts (see [5] again)
done in the 1990s.

Search level parallelism has received most of the attention, especially in SAT and SMT
solving, with two approaches: Guiding Path and Portfolio. The Guiding Path approach, intro-
duced in PSATO [20], follows a Master/Slave architecture. A Master process initiates several
sequential sub-solvers with partial models which partition the whole search space into several
disjoint parts. If any sub-solver gets a satisfiable model, the problem is satisfiable; otherwise,
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it is unsatisfiable if all fail. This concept was further extended with a job stealing heuristics
in ySAT[8]. By encoding QBF into SAT, QMiraXT became the first published parallel QBF
solver[14]. A similar QBF solver can be found in [15, 9].

In the portfolio approach, introduced in ManySAT[11], a master process initializes several
sub-solvers with different heuristics and makes them compete, of the same search space. The
approach requires the various heuristics to be diverse enough. Complementary heuristics often
generate super-linear speedups. This approach was also described as using different random
seeds in [4]. Due to its success of SAT, the portfolio concept was also lifted to SMT solvers,
with similar levels of success [19].

Lemma sharing is also an important factor in parallel SAT solvers. The portfolio approach
benefits not only from the competition between subsolvers, but also from their cooperation
through the exchange of lemmas [11]. There are two main shortcomings in lemma sharing. First,
the set of shared lemmas may grow too large and possibly contain lemmas that are irrelevant
to most subsolvers. Second, lemma communication can be a major source of overhead. Some
SAT solvers minimize these problems by sharing only unit lemmas [4].

MapReduce is a software framework for processing large sets of data in a distributed sys-
tem [7]. Very generally speaking, its main idea is to divide a large but highly distributable
problem into small parts that can be processed completely independently (map step), and then
compute the final result by combining the processed parts (reduce step). The sort of term/clause
level parallelization that we describe in this paper could be seen as example of MapReduce.

1.3 Technical Preliminaries

The version of the ME calculus we consider here works in the EPR fragment of first-order clause
logic without equality, which is restricted to clauses with no function symbols of positive arity.
We use two disjoint sets of variables: a set X of universal variables and a set P of parametric
variables.2 We also use two disjoint sets of constants: a set A of input constants and a set SK
of Skolem constants, with C = A∪SK. A term is either a constant or a variable. Atoms, literals
(denoted by k, l, l0, k0, . . .) and clauses (C,C0, . . .) over the set of terms above are defined as
usual. We write ¬l to denote the complement of a literal l; l0 ∨ l1 ∨ · · · ∨ ln to denote a clause
C modulo AC of ∨; |C| to denote the number of literals in C; and 2 to denote the empty
clause. A Skolemization of a literal l, denoted by lsko is any literal obtained by replacing each
universal variable in l by a fresh Skolem constant. A substitution σ is an idempotent function
from variables X ∪ P to terms X ∪ P ∪ C such that the set Dom(σ) = {z ∈ X ∪ P | zσ 6= z}
is finite. Substitutions extend to terms and clauses as usual. We use the standard notions of
unifier and most general unifier. The join σ ./ ρ of two substitutions σ and ρ is the most general
simultaneous unifier of the set {{z, zσ} | z ∈ Dom(σ)} ∪ {{z, zρ} | z ∈ Dom(ρ)} when such
a unifier exists—otherwise it is undefined. For notational convenience, we will treat the join
operator as left associative. A substitution σ is p-preserving if its restriction to P is a bijection
onto P. It is a p-renaming if it is p-preserving and its restriction to X is a bijection onto X .
A literal l′ is a p-variant of a literal l if lσ = l′ for some p-renaming σ. For any literals l0, l1,
we write l0 ≥ l1 if l0σ = l1 for some p-preserving substitution σ; we call l1 a p-instance of l0.
If L is a set of literals, we write L ≥ l1 if l0 ≥ l1 for some l0 ∈ L. We denote respectively by
Par(l) and Var(l) the set of all parametric and all universal variables occurring in literal l. A
literal l is ground if Var(l) = Par(l) = ∅; universal if Par(l) = ∅; and pure if either Var(l) = ∅
or Par(l) = ∅, or both.

2Parametric variables were called parameters in earlier papers on ME.

98



Exploiting parallelism in ME T. Liang, C. Tinelli

2 A transition system for the ME calculus

To make the paper more self contained, we provide in this section a more formal description of
the variant of ME used in this work. We refer the reader to [3] for more details on ME.

As with formal and abstract treatments of the DPLL procedure and its extensions to Sat-
isfiability Modulo Theories [17, 13, e.g.], one can formalize general classes of proof procedures
for ME in a way that makes it easy to model and analyze operational features like backtracking
and learning. An ME proof procedure can be described abstractly as a transition system over
states of the form unsat, a distinguished fail state, or the form 〈M,F,R,A〉 where F is a clause
set, M is a context, R is a set of remainders, and A is a set of propagation literals (see below).
We model generic ME proof procedures by means of a set of states of the kind above together
with a binary transition relation over these states defined by means of transition rules. For a
given state S, a transition rule precisely defines whether there is a transition from S by this rule
and, if so, to which state S′. A proof procedure can then be abstracted by a transition system,
a set of transition rules defined over states, together with a strategy to generate executions in
the system. We introduce a basic transition system for ME in the following.

Contexts and context unifiers A context M is a finite sequence of decision points (•), and
pure literals. A literal of M is decision literal if it immediately follows a decision point. Every
maximal decision-point-free subsequence Mi of a context M = M0 •M1 • · · · •Mn is a decision
level of M . When convenient, we will treat a context as a set. A literal l is contradictory with
a context M , written l ⊥M , if lσ = ¬kσ for some p-preserving substitution σ and p-variant k
of a literal in M . We write l 6⊥M if l is not contradictory with M .

Definition 1. Let M be a context and C = l0∨. . .∨lm−1∨lm∨. . .∨ln be a clause with 0 ≤ m ≤ n.
A substitution σ is a context unifier of C against M with remainder r = lmσ ∨ . . . ∨ lnσ if the
following hold for some fresh p-variants k0, k1, . . . , kn of literals in M :

1. (i) σ is a simultaneous most general unifier of {{k0,¬l0}, . . . , {kn,¬ln}},

2. (ii) Par(ki)σ ⊆ P for i = 0 . . .m− 1,

3. (iii) Par(ki)σ 6⊆ P for i = m. . . n.

The context unifier σ is also admissible if the literals in r are pure and do not share universal
variables. We write M |σC to denote the remainder of an admissible context unifier σ of C
against M .

We observe that any context unifier can be turned into an admissible one by renaming
selected universal variables to parametric ones.

A clause C conflicts with a context M via a context unifier σ, written C ⊥σ M , if σ is an
admissible context unifier of C against M with an empty remainder. We write C ⊥ M (resp.,
C 6⊥M) if C ⊥σ M for some (resp., no) σ.

2.1 The transition rules

The transition rules of the system are listed in Figure 1. Each rule operates on a current
state of the form 〈M,F,R,A〉, and modifies some of its components. The A-Add rule identifies a
propagation (or assert) literal and adds it to the set A of propagation literals, while removing
from A all p-instances of the new literal. The A-Remove rule removes from A any literal that has
become contradictory with or a p-instance of the current context M. The R-Add rule generates

99



Exploiting parallelism in ME T. Liang, C. Tinelli

A-Add
C ∨ l ∈ F C ⊥σ M Par(lσ) = ∅ A 6≥ lσ

A := {a ∈ A | lσ 6≥ a} ∪ {lσ}

A-Remove
A = {l} ∪A l ⊥ M or M ≥ l

A := A
R-Add

C ∈ F |C| > 1 r = M|σC r 6∈ R

R := R ∪ {r}

Assert
A = {l} ∪A l 6⊥ M M 6≥ l

A := A M := M l
Decide

R = {l ∨ C} ∪R l 6⊥ M ¬lsko6⊥ M A = ∅
R := R M := M • l

Backjump
M = M ′ • lM ′′ F |= C C ⊥ M C 6⊥M ′

M := M ′ ¬lsko A := ∅
Fail

• 6∈ M C ∈ F C ⊥ M

unsat

Figure 1: Transition Rules

a new remainder from a non-unit clause C and adds it to the set R of remainders. The Assert
rule moves a propagation literal to the current context provided that the literal is neither
contradictory with nor a p-instance of the context. The Decide rule selects a literal l from the
available remainders in R and adds it as a decision literal to context, provided that neither l
nor its Skolemized complement is contradictory with the context.

The Backjump rule removes one or more decision levels from the current context and replaces
the oldest of the removed decision literals by its Skolemized complement. A backjump clause C
entailed by the clause set is used to determine how far to backjump. In actual implementations
this clause can be computed from an input clause that conflicts with the current context, by
using a conflict resolution mechanism similar to the one used in CDCL SAT solvers. The Fail
rule applies, producing the distinguished state unsat, if an input clause conflicts with the current
context and the context contains no decision points (to backtrack to).

An actual implementation of the transition system would remove from the set R when
backjumping all remainders computed using literals no longer in the context M. We do not
model this here just to simplify the description of the rules and because keeping stale remainders
in R does effect correctness. Also for simplicity, we hardcode into the rules the heuristics that
choses to process all current propagation literals before applying Decide. This is unnecessary
for correctness if Backjump is modified to remove from A propagation literals computed using
context literals no longer in M after the backjump.

Although we will not show it here, any fair execution of the transition system above starting
with a state where M = {¬v} and all the other fields except F are empty terminates in the
unsat state if and only if the clauses in F are jointly unsatisfiable.

3 A Sequential Proof Procedure

In this section, we describe in some detail a sequential proof procedure we have implemented for
the transition system in the previous section. The procedure mimics closely the behavior of the
Darwin theorem prover [1], a full implementation of ME for clause logic without equality, when
run on an EPR problem. The procedure uses these data structures for the main components
of a state: a context, a priority queue of propagation literals, a priority queue of remainders, a
set of clauses. Its main loop consists of the following steps:

1. Propagation. The highest-priority literal from the propagation queue, if any, is removed
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from the queue. If it is neither p-subsumed by nor contradictory with the context, it is
added to the context; otherwise, it is discarded and this step repeats.

2. Decision. If the context was unchanged by the previous step, the remainder with the
highest-priority literal among all the remainder literals is removed from the remainder
queue, if any. Then, that literal is added to the context if it is neither p-subsumed by
nor contradictory with the context. Otherwise, the remainder is discarded and this step
is repeated.

3. Unit Context Unifier Calculation. If the context was extended in the previous steps,
the newly added context literal k is unified with the complement of each literal l in each
clause in the clause set. Each most general unifier computed this way, is stored as a unit
context unifier for l.

4. Remainder Generation. The procedure identifies all sets {σ1, . . . , σn} of substitutions
where (1) for i = 1, . . . , n, σi is a unit context unifier for literal li in some clause l1∨· · ·∨ln,
and (2) one (or more) of the σi’s was newly computed in the previous step. For each of
these sets {σ1, . . . , σn}, the substitution σ1 ./ · · · ./ σn, when defined, is a context unifier
of the corresponding clause l1∨· · ·∨ ln. The procedure computes all such context unifiers,
makes them admissible, and adds their remainder to the remainder queue.3 The process is
interrupted, however, as soon as a context unifier with an empty remainder is computed.
In that case, the procedure moves immediately to Step 6.

5. Propagation Literal Generation. A process similar to the one in the previous substep
is used to generate propagation literals and add them to the propagation queue.4

6. Backjumping. After an analysis of the conflict represented by the empty remainder
computed in the previous step, the procedures identifies a previous decision level d to
backtrack to. If d is the top level, the procedure ends with an “unsatisfiable” result.
Otherwise, it clears the propagation queue, undoes all additions to the context and to
the remainder queue from that level on, adds to the context (at decision level d− 1) the
Skolemized complement lsko of the decision literal l of d, and resumes the main loop from
Step 1.

If neither of the first two steps is able to add literals to the context, the main loop aborts
and the procedure terminates with success: the context denotes a model of the clause set.

Selection Heuristics In our current implementation, the priority function used in the prop-
agation queue is determined by a ranking of literals where propositional literals5 are preferred
over (i.e., have a higher rank than) universal ones, which in turn are preferred over parametric
literals. Among universal literals, those with more variables are preferred. Among parametric
literals, those with less parameters are preferred. After the criteria above, literals introduced in
the propagation queue in an earlier decision level are preferred. Any ties after that are broken
in an arbitrary, but fixed, way. Something similar is done for the remainder queue. There, the
same literal ranking as the one in the propagation queue is used first locally in each remainder,
to select a literal, and then globally to chose among those selected literals.

For comparison, we also implemented two random selection heuristics: controlled random
and totally random. The controlled random heuristics modifies the priority functions above

3We ignore here the enhancement that considers only productive context unifiers (see [3] for details).
4In reality, this step and Step 4 are interleaved. We present them here as sequential for simplicity.
5That is, literals with a 0-arity predicate symbol.
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by breaking the final ties randomly (as opposed to a fixed way). With the totally random
heuristics no priority function is actually used. The dequeue operation in both queues simply
picks an element from the queue at random.

4 A Parallel Proof Procedure

The sequential proof procedure highlighted above presents several opportunities for paralleliza-
tion. We have focused on parallelizing two main aspects: the computation of context unifiers
and the exploration of the search space.

Term/Clause-level Parallelization At each iteration of the sequential proof procedure most
of the computation is spent in the generation of context unifiers. Since the individual unit
context unifiers computed in Step 3 are completely independent from each other, they can
all be computed in parallel, MapReduce style. The computation of the context unifiers
done in Step 4 (by joining unit context unifiers) can be parallelized in a similar way for
each clause in the clause database.

Search-level Parallelization As in DPLL, in ME the exploration of the search space is driven
by the selection of the next decision literal. In fact, since empty remainders trigger a back-
jump as soon as they are generated, the exploration is also driven by the order in which
propagation literals are chosen. Our experiments on candidate selection confirm that,
again as in DPLL, the selection heuristics can have a significant impact on performance for
some problems. To account for that we also implemented a portfolio-based approach [11]
where the input problem is given to several subsolvers running independently from each
other. The subsolvers differ only for the candidate selection heuristics they use for the
propagation and the remainder queues. They run completely independently except that
they are all stopped once one of them proves or disproves the input problem.

4.1 General Architecture

Our parallel proof procedure follows the actor model of computation, and relies on a small
number of actor classes. All actors communicate asynchronously via message queues and run
in their own computation thread. The actor model considerably simplifies the implementation
of parallel systems with respect to the shared-memory model. It also minimizes synchroniza-
tion needs, leading to less overhead and greater scalability with the increase of computational
resources.

Main Actors The main actors in our architecture, sketched in Figure 2, are one Main Solver,
one Context Manager, one or more Clause Managers, one Unification Pool, and one or more
Candidate Generators. Roughly, the Main Solver parses the input formulas, sets ups a number
of data structures, creates the other actors, and then passes control to the Context Manager.
The Context Manager manages the context data structure, and is the one effectively applying
the rules of the calculus by selecting literals to add to the context, analyzing conflicts caused
by empty remainders, deciding where to backjump, and shrinking the context accordingly. A
Clause Manager is responsible for one or more input clauses and for the computation of
unit context unifiers for them. In an ideal situation, with the system running on a unlimited
number of parallel computational (e.g., cores), we would have one clause manager per clause.
In reality, the clause set is partitioned so that each Clause Manager manages several clauses
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Figure 2: Architecture of the parallel EPR Solver. The solid lines represent data flow, the dash
lines represent control flow. The dotted ovals stand for multiple actors.

sequentially, to reduce the number of threads running on the same core. The Unification Pool
is in charge of computing context unifiers, by merging unit context unifiers received from the
Clause Manager, as well as computing propagation literals or remainders from those context
unifiers. It performs its functions by delegating them to one or more Candidate Generators it
manages. It is essentially a scheduler, creating and assigning unification tasks to the Candidate
Generators as they became available.

The portfolio extension adds several subsolver actors below the Main Solver, each relying
on its own Context Manager, Clause Managers, Unification Pool, and Candidate Generators
according to the architecture above.

4.2 Synchronization

The parallel proof procedure has been designed to minimize the need for the various actors
to synchronize with one another while also minimizing runtime differences between identical
runs when no randomized selections heuristics are used. The main synchronization points are
discussed below.

Synchronization between sub-solvers. Once started, the subsolvers are completely inde-
pendent from the main solver and each other. Synchronization with the main solver occurs
only once a subsolver solves the input problem, i.e., determines if it is satisfiable or not,
at which point the main solver terminates all subsolvers, outputs a response, and quits.

Synchronization before candidate selection. Before selecting a candidate as a new con-
text literal, the Context Manager waits for all context unifier computations in each Can-
didate Generator to terminate, to make sure that all possible candidates are available for
selection in the propagation and the remainder queue.

Synchronization when backjumping. When an empty remainder is generated, the Context
Manager is immediately notified. In turn, it immediately instructs all Clause Managers
and the Unification Pool to abort their computation, and waits for an acknowledgment
from them before backjumping and sending a new context literal to the Clause Managers.
Waiting for an acknowledgment is needed because the actor model does not guarantee
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Seq S1C1U1 S1C3U20 S4C1U1 S4C3U20 CR TR
EPT Solved 161 175 199 197 222 213 186
EPS Solved 125 125 128 129 134 135 128

Total Solved 286 300 327 326 356 348 314

Median runtime (s) 1.48 1.82 1.61 1.52 1.81 1.77 1.43
Average runtime (s) 11.83 19.93 27.29 27.46 27.23 32.62 18.74

Med speedup 0.93 1.27 1.21 1.38 1.35 1.35
Avg speedup 1.29 1.67 1.88 2.34 2.16 1.96
Max speedup 11.99 14.27 45.50 43.62 42.36 39.26

Med speedup (≥ 5s) 1.75 1.93 2.16 2.93 2.61 2.48
Avg speedup (≥ 5s) 2.64 3.21 4.18 5.59 5.10 4.25

Figure 3: Results for several solver configurations over the EPS and EPT problems of TPTP.
The columns represent the tested solver configurations: the sequential solver (Seq); the parallel
solver with i subsolvers, j clause managers, and k candidate generators in the unification pool
(SiCjUk); the parallel solver with 4 subsolvers each using the controlled random heuristics (CR)
or the totally random heuristics (TR).

that messages received by an actor in the same order they were sent. Note that an actor’s
computation cannot be interrupted by another actor. Since Candidate Generators take
a while to complete their tasks, they are not notified about a backjump and just let run
to completion. However, they are required to time-stamp, with the number of backjumps
so far, the candidates they compute. This way, such candidates can be discarded if
they arrive to the Context Manager when they are no longer current because of a later
backjump.

In our current implementation of the parallel proof procedure several parallelization parame-
ters such as the number of subsolvers, clause managers and candidate generators, are controlled
by user-configurable options. Since we focus on parallel strategies, we did not implement at
this time any preprocessing simplifications on the input clause set.

5 Experimental Evaluation

We evaluated the performance of our implementation of the sequential and the parallel proof
procedures described above against the EPR benchmarks of the TPTP library [18] which are
divided into EPS problems (satisfiable clause sets) and EPT problems (unsatisfiable clause
sets).6 Since our current solvers do not include inference rules for equality yet, we focused on
the 483 clausal problems without equality. Of those, 318 are EPT problems and 165 are EPS
problems.

All tests were run on a computer with two 12-core AMD Opteron 6172 processors and 32Gb
of memory, and running under Ubuntu 11.10. The solvers were developed in Scala, a language
based on the Java Virtual Machine. We used OpenJDK 64-Bit Version 1.6.0 as the JVM engine.
All experiments were run using the JVM option “-XX:+UseCompressedOops”. Since CPU time
is not very meaningful when measuring the runtime performance of parallel programs, we used
wall clock time7, with a timeout limit of 300 seconds.

6Detailed results together with the benchmark problems and our implementation can be found at http:

//www.cs.uiowa.edu/~tiliang/paar12/.
7Measured with the same utilities used at SMT-COMP 2011 (http://www.smtcomp.org/2011/).
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5.1 Results

Our experimental results are summarized in Figure 5 for the baseline sequential solver and for
several configurations of the parallel solver. The results refer to a single run of each configu-
ration. Configuration S1C1U1 of the parallel solver uses a single subsolver, one clause group
(managing all clauses), and one candidate generator (again for all clauses) in the unification
pool. It is parallel only in that its various actors run concurrently. In contrast, S1C3U20 is
more properly MapReduce-style for having 3 clause managers and 20 candidate generators.
Configuration S4C1U1 uses 4 subsolvers which differ from each other only in the fixed way they
break the final ties in their selection heuristics. Each subsolver has just one clause manager
and one candidate generator, making this configuration essentially a pure portfolio-style solver.
Configuration S4C3U20 is a hybrid resulting from the combination of the previous two. Con-
figuration CR (resp. TR) is like S4C3U20 except that the subsolvers use the controlled (resp.,
totally) random selection heuristic, each with a different seed.

For each configuration, averages and median runtime values are computed over the problems
solved by that configuration. Speedup factors are with respect to the runtimes of the Seq
configuration, and computed for each problem solved by Seq. The rows marked with (≥ 5s)
remove from consideration easy problems, defined as problems solved by Seq in less than 5s
(216/483). Focusing on those rows for the parallel configurations is instructive because for easy
problems the overhead caused by thread initialization and scheduling generally cancels out most
of the performance improvement due to parallel execution—in fact, it actually increases overall
runtimes for most problems solved by Seq within 1 second.

5.2 Analysis

As we conjectured, the sequential solver exhibits the lowest success rate, measured as the
percentage of problems solved within the time limit, solving only 59% of the 483 problems. All
the parallel configurations solve a superset of the problems solved by Seq, with an increased
success rate that goes from 62% for the minimally parallel S1C1U1 to 75% for the hybrid
S4C3U20. The improvement provided by S1C1U1 shows that just computing unit context unifiers
in parallel with joining such unifiers to generate candidates is already advantageous.

We experimented with a number of additional configurations (not reported here) differing
from S1C1U1 only in the number of clause managers and the size of the unification pool. Our
main conjecture was that increasing those parameters would lead to a greater success rate
because of the relative independence of the computations performed by each clause group
and each candidate generator. Our general findings confirm that conjecture, with a sweet spot
provided by S1C3U20. Adding more clause managers or more candidate generators usually leads
to a degraded performance, possibly because then, as we have verified, the number of threads
significantly exceeds the number of physical cores. These experiments, together with additional
ones on machines with fewer cores, show that the success rate of the S1C*U* configurations
increases lineraly with the number of cores. This strongly suggest that our solver will scale up
well, within the limits of Amdahl’s law [12], as processors with more and more cores become
available.

The very simple portfolio approach implemented by configuration S4C1U1 impressively
achieves almost the same success rate (67%) as that of the more sophisticated MapReduce
configuration S1C3U20 (68%). Its superiority to the sequential solver is consistent with similar
findings by others on parallelizing SAT and SMT solvers. What is interesting in our case is
that the MapReduce and the portfolio strategies are complementary to a certain extent, as
shown in the scatter plot of Figure 4. In particular, each solves about 20 problems that the
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Figure 4: Comparative runtime performance of a MapReduce (S1C3U20) and a portfolio strategy
(S4C1U1). Times are in seconds.

Figure 5: Runtime performance of all configurations.

other cannot solve. The same plot also shows that for problems solved by both, S1C3U20 is
superior to S4C1U1 in terms of runtimes. The overall superiority of S1C3U20 is confirmed by a
Wilcoxon rank-sum test on the whole set, which allows us to accept the alternative hypothesis
that S1C3U20 is faster than S4C1U1 with a p-value smaller than 0.001.

We obtained similar results also for configuration S1C3U10 (not shown), which creates about
as many threads as S4C1U1. It is possible that the subsolvers of S4C1U1 are not diverse enough to
fully exploit the advantages of a portfolio approach. However, additional controlled experiments
with one subsolver using random selection heuristics, for greater variability, did not improve
the overall performance of S4C1U1.

The complementarity of S1C3U10 and S4C1U1 suggests that combining them could have
a synergistic effect on performance. This is confirmed by the results obtained by S4C3U20
which can solve not only all the problems solved by S1C3U10 and by S4C1U1 individually, but
also a few more. In fact, S4C3U20 is also faster than any other configuration on the problems
solved by both. This is reflected by the average speed up factors in Figure 3. As with the
pure portfolio strategies, adding randomization in the selection process, both in a controlled or
uncontrolled fashion, did not improve the performance of S4C3U20 further, actually resulting
in worse performance. The superiority S4C3U20 in general to all other configurations listed
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in Figure 3 is clearly shown in the chart of Figure 5, indicating again that clause-level and
search-level parallelism can be combined to great effect in ME.

Finally, we observe that the best average speedup factor we achieved for hard problems (5+)
seems to be low with respect to the number of cores used. On the one hand, this contrasts with
results achieved by the best portfolio SAT solvers [11, e.g.] whose average speedups versus a
sequential version can be superlinear in the number of cores. On the other hand, our portfolio
implementation is fairly unsophisticated yet and lacks crucial features such as lemma sharing.
Also, EPR satisfiability is a much harder problem that propositional satisfiability (NEXPTIME
vs. NP) and so it is possibly correspondingly harder to parallelize. So, while our results could
be considered a good first step, more work and experimental evaluations are still needed.

6 Conclusion and Future Work

We have described concurrent proof procedures for the ME calculus that rely on term/clause-
level as well as search-level parallelism. Our experiments provide initial evidence that the
former is effective in reducing runtimes in instantiation-based theorem proving when using
MapReduce-style approaches which minimize the interactions between concurrent threads. Our
results show that, in addition to improving performance by themselves, such approaches also
combine synergistically with the traditional portfolio approaches.

We are working on an enhancement of the proof procedure with lemma learning, and lemma
sharing in the portfolio case. Lemma learning in ME is similar to lemma learning in SAT
solvers but has its own distinct features for exploring at the first-order, as opposed to the
propositional, level [2]. Further work will involve conducting further experimental evaluations
on the effectiveness of lemma sharing between subsolvers in our parallel implementation.
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Abstract

This paper presents a labelled tableau approach for deciding interrogative-epistemic
logics (IEL). Tableau calculi for these logics have been derived using a recently introduced
tableau synthesis method. We also consider an extension of the framework for a setting
with questioning modalities over sequences of formulae called sequential questioning logic
(SQL). We have implemented the calculi using two approaches. The first implementation
has been obtained with the tableau prover generation software MetTeL2, while the other
implementation is a prover implemented in Haskell.

1 Introduction

The paper focusses on developing and implementing automated reasoning tools for interrogative
epistemic logics (IEL). Interrogative or erotetic logics have a long tradition alongside declarative
and epistemic logics. Interrogative Epistemic Logic (henceforth, IEL) also referred to as DELQ
(for Dynamic Epistemic Logic of Questions), enriches a standard multi-agent epistemic modal
logic with interrogative components [15, 7]. Intuitively this is done by adding an “issue” relation
over a set of possible worlds. This relation is meant to represent structural changes brought
about by dynamic actions of raising and answering questions. Besides the standard epistemic
modality the logic also introduces a static modality over the issue relation. This gives rise to
interaction between the epistemic and interrogative components. Such aspects are captured by
an intersection modality which is then used to describe how dynamic questioning effects depend
on the structure of the issues raised and previous knowledge.

A second addition are the dynamic actions that express interrogative or epistemic events
explicitly in the language. Their effect is to change the interrogative and epistemic states and
to add more structure to the existing issue or epistemic relations.

While automated reasoning tools are widespread for declarative and epistemic modal logics,
for interrogative epistemic logics there are currently no implemented automated reasoning sys-
tems. The usefulness of automating reasoning for other logics, such as epistemic modal logics,
has been proven already by many applications. Very often in epistemic scenarios obtaining the
relevant information is an essential part. Adding an interrogative component makes modelling
and reasoning about obtaining relevant information possible.

For dynamic epistemic logics (DEL), automated reasoning tools focused so far on solving
model-checking tasks [17]. Other tableau-based provers for modal logics, e.g., [3], incorporate
dynamic modalities for informative actions, e.g., public announcements [4, 2]. However, none
of the existing software tools contain questioning modalities and moreover, none of them offer
a generic method to generate a prover for a logic starting from a semantic specifications.

∗This research is supported by UK EPSRC research grant EP/H043748/1.
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Planning in contexts involving interaction between questions and knowledge is reducible
to testing validities of interrogative epistemic logic. However, the existing proof systems for
dynamic epistemic logics [4, 14] are not fully automated. They are usually Hilbert-style calculi
in which formulae with non factual content have special substitution rules.

A longstanding problem for dynamic logics is the fact that they are not closed under uniform
substitution, and therefore, they are not suitable for an algebraic treatment and do not lend
themselves well to automatic reasoning techniques. Previous research in this area focused on
identifying substitution closed fragments of such logics, which can still preserve some of the
features that have made dynamic logics so successful for modelling information exchange.

The approach of this paper gives an alternative solution based on first translating the se-
mantics of the modal language into many-sorted first-order logic and then turning it into a
tableau calculus for the corresponding first-order fragment. Based on this tableau calculus two
tableau based reasoning tools have been developed for interrogative-epistemic logics.

The paper is structured as follows. We start in Section 2 by introducing the details of IEL.
Then we apply the tableau synthesis framework to IEL in Section 3. In Section 4 we present an
extended logic, called SQL, which uses sequences of formulae inside the dynamic modalities. We
continue in Section 5 with introducing and discussing the MetTeL2 implementation for IEL.
In Section 6 we present and discuss the Haskell implementation Qtab.lhs for IEL which also
illustrates the extension to questioning sequences. We draw some conclusions in the final section.
Further implementation details and illustrative code output, which could not be included due
to space limitations, can be found in the long version of the paper [8].

2 Interrogative Epistemic Logics

The approach of IEL [15, 7] starts by enriching a standard multi-agent epistemic modal logic
with interrogative components. This is done in two stages. The first addition consists of a
static modality over an “issue” relation. The intuitive meaning of this modality is close to the
traditional epistemic notion, but instead of representing actual knowledge it stands for what
the agents would like to find out. It represents future epistemic goals that are expressed by
asking questions and will eventually be achieved by obtaining answers.

For technical reasons a third modality, expressing the interaction between the epistemic and
the interrogative components is also introduced using the intersection of the standard epistemic
relation and the newly introduce issue relation. This also has an intuitive meaning that goes
beyond the traditional epistemic notion. It expresses how the future knowledge depends on both
the current epistemic state of the agent and the epistemic goals guiding the ongoing questioning
dynamics. This is what the agent will come to know if all the questions he raised so far would
be answered one way or another.

In this paper nominals are added to the language alongside propositions. The second ad-
dition consists of two dynamic modalities, one for questioning actions or queries and one for
answering actions or resolution actions. Intuitively, such modalities change the underlying
structures by refining their component relations.

A formula ϕ in the language of IEL is defined by the following BNF:

ϕ ::= n | p | ¬ϕ | ϕ ∨ ϕ | 2ϕ | [Q]ϕ

Here, n, p, a denoting nominals, propositions, and agent labels, respectively. 2 stands for
modalities, that is 2 ∈ {Qa, Xa,Ka}, respectively being static questioning, interaction, and
epistemic modalities. Finally, Q stands for actions that change the underlying models, that is
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Q ∈ {ϕ?a, !a}, representing dynamic questioning actions and resolution actions, respectively.
This language is meant to express minimal interrogative-epistemic facts. The @ operator, which
is a standard addition for hybrid logics is introduced later in the specification language where
it is useful for both internalizing the semantics and formulating labeled tableau rules.

The language can express the interaction between questions and information in two ways.
First, by using a (static) intersection modality Xaϕ. Second, through the dynamic modali-
ties [Q], encoding model-changing operations by means of questioning and resolution actions.

The logic has a standard modal semantics over issue-epistemic models, M = 〈W,
a
≈, a∼, V 〉.

When used inside a tuple representing a model
a
≈ and

a∼ are meant as shorthand notations for

(
a
≈)a∈A respectively (

a∼)a∈A for A the set of all agent labels. We use the expected Boolean

clauses and the usual relational (modal) clauses involving
a
≈ for Qa and

a∼ for Ka. We also use
equivalence relations for ≈ and ∼ throughout the paper. However, if needed, the framework
can be generalized to other structures by correspondingly changing the background theory.

The intersection modality Xa is defined using
a
≈∩ a∼ as follows:

M |=w Xaϕ iff ∀v ∈W : w (
a
≈∩ a∼) v ⇒M |=v ϕ

Dynamic modalities express model changing operations of asking and resolution:

[ϕ?]aψ “after ϕ is asked, ψ is the case” M? =〈W,
a
≈?,

a∼, V 〉;
a
≈? =

a
≈∩

ϕ
≡M

[ ! ]aϕ “after having answered the questions raised, ϕ is true”

M! =〈W,
a
≈, a∼!, V 〉;

a∼! =
a∼∩

a
≈

Here,
ϕ
≡M= {(w, v) | ||ϕ||Mw = ||ϕ||Mv } is the set of M -world pairs in which ϕ has the

same truth value. The intuitive reading for a questioning action represented by the modality
[ϕ?]aψ is that of splitting the domain into ϕ worlds and non-ϕ worlds, by raising a question,
or by making ϕ an issue. The intuitive reading for the resolution action represented by the
[!]aϕ modality is to add new knowledge by refining the epistemic relation in such a way that
afterwards all the issues raised so far are solved. Indexing the actions with agent labels can also
model privacy in questioning or can be used to add agent-specific preconditions for question
execution. However, we assume our actions to be ‘public’ and ‘preconditionless’, i.e., they
affect the epistemic/questioning states for all agents, and they do not require any conditions for
execution. For this reason, indexing the modalities with agent labels will only play a genuine
role in this paper for the static part of the logic.

The language of IEL has two parts. The static part is a hybrid modal logic with nominals
and intersection. The dynamic part adds the dynamic modalities capturing model changing
operations. The static part of the logic is axiomatised by a customary hybrid logic system [12]
with nominals, S5 axioms for ∼ and ≈, and an intersection axiom for static resolution expressed
by the following pure formula:

K̂ai ∧ Q̂ai↔ X̂ai, where i is a nominal.

Here, Q̂a, K̂a and X̂a are the diamond modalities defined as the duals of the box modalities
Qa,Ka, Xa introduced before.

The dynamic part of IEL introduces modalities which change the underlying static models.
The logical behaviour of this new kind of connectives is captured by reduction axioms. These
describe the relation between the underlying static structures before and after a questioning
action or resolution action takes place. Formulas containing dynamic modalities can be reduced
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to equivalent static formulas using reduction axioms like the following ones (for b ∈ {n, p},
2 ∈ {Q,X} and q ∈ {ϕ?, !}):

[q]a b↔ b, [q]a¬ψ ↔ ¬[q]aψ, [q]a(ψ ∧ χ)↔ [q]aψ ∧ [q]aχ (1a)

[ ! ]a2aψ ↔ 2a[ ! ]aψ, [ ! ]aKaϕ↔ Xa[ ! ]aϕ, [ϕ?]aKaψ ↔ Ka[ϕ?]aψ (1b)

[ϕ?]aQaψ ↔ (ϕ ∧Qa(ϕ→ [ϕ?]aψ)) ∨ (¬ϕ ∧Qa(¬ϕ→ [ϕ?]aψ)) (1c)

[ϕ?]aXaψ ↔ (ϕ ∧Xa(ϕ→ [ϕ?]aψ)) ∨ (¬ϕ ∧Xa(¬ϕ→ [ϕ?]aψ)) (1d)

This treatment is in line with the generic DEL methodology introduced in [4, 14] extended
to include an additional interrogative component. Further technical details, possible extensions
and examples of applications of IEL can be found in [7, 15].

We start from IEL as minimal logic when synthesizing and implementing the tableau cal-
culus. Several extensions of the framework that handle various levels of privacy for epistemic-
questioning actions can be added in a modular way using the same general synthesis method.

• Multi-agent questioning preconditions

• Group-opaque dynamic questioning effects

• Epistemic indistinguishability in questioning

• Dynamic questioning sequences

Due to lack of space in this paper we will discuss in detail only the last extension.
The extension requires questioning actions of a more complex type capable to model modal-

ities over sequences of questions not just one formula. We briefly motivate now why such an
extension is desirable and useful. The concrete details of the extension method are introduced
later in Section 4, after all the needed details of the specification language are introduced.

Note that the standard IEL reduction axioms do not have cases for iterated modalities.
Indeed, such cases are not, at some level of abstraction, necessary since they can be dealt with
logically “from inside out”. For any formulae ϕ,ψ, χ of IEL, [ϕ?][ψ?]χ can be dealt with in the
following order, given the recursive structure of the reduction axioms:

[ϕ?][ψ?]χ↔ [ϕ?](trs([ψ?]χ))↔ trs([ϕ?](trs([ψ?]χ)))

Here trs stands for the translation of the right side in the reduction axioms from Equation 1, as
defined in Equation 4. While such a rule of thumb can be useful to some extent for human rea-
soning it is nevertheless not optimal for automatic reasoning. Even though we left out iterated
modalities during the exposition of the logic we later deal with them as the implementation
details require them. For this a direct recursion over the formulae would be optimal, and we
approach this aspect in both of our implementations in Sections 5 and 6. Here we only briefly
discuss some of the available modelling options.

One possible way to achieve this is by directly reducing iterated modalities to an equivalent
non-iterated dynamic modality and then use the existing reduction axioms. For instance, for
public announcement logic (PAL), which uses world-elimination instead of link-cutting, iteration
of dynamic modalities boils down to the following equivalence for announcement composition:

[!ϕ][!ψ]χ↔ [!(ϕ ∧ [!ϕ]ψ)]χ

However, there can be no such nor similar equivalent for IEL without sequences:

No single question can induce a 4-equivalence-classes partition.
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All these complications are avoided by a language with questioning sequences:

[ϕ?][ψ?]χ↔ [〈ϕ,ψ〉?]χ

This can be achieved in a modular way by keeping the syntax and the semantics of the
language unchanged for both the static part and the dynamic resolution part and replacing our
initial questioning modality with a modality defined over sequences of questions. This is also a
dynamic modality for the collective action of asking questions or raising issues but the syntax
uses a list of formulae σ = 〈ϕ0, . . . , ϕn〉:

[σ?]ϕ “after the questions in σ are asked, ϕ is the case”.

The semantic definition of the dynamic modality is changed accordingly, the action’s effect is

to change an initial model M into a new model Mσ? =〈W,
x
≈?,

a∼, V 〉 with:

x
≈? =

x
≈〈〉? ∩

|σ|−1⋂
n=0

ϕn≡Mn
for any agent x.

For any model M and questioning sequence σ = 〈ϕ0, . . . , ϕn〉, the model Mk denotes the model
obtained after a questioning action using the sequence σk = 〈ϕ0, . . . , ϕk〉 for 0 ≤ k ≤ n. An
empty questioning sequence does not change a model: M〈〉? = M and, in particular, ≈〈〉? = ≈.
This allows one to deal with longer sequences recursively using a head-tail pattern:

[〈〉?]ϕ↔ ϕ and [〈ϕ0, ϕ1, . . . , ϕn〉?]ϕ↔ [〈ϕ0〉?][〈ϕ1, . . . , ϕn〉?]ϕ.

The case of iterating the resolution modality [ ! ] is much simpler because sequences of any
length [〈!, !, . . . 〉] can be collapsed to a resolution sequence of length one [〈!〉]. This is so because
the resolution modality is idempotent: !; ! = !. Therefore, we only have to consider iteration
between sequential asking modalities and single, i.e., depth one, resolution modalities.

This leads to the more general reduction axioms we introduce in Section 4. The reduction
axioms in Equation 1 can be also seen as particular cases in which we take n = 1 inside the
dynamic questioning modality [σ(n)?]. We lift the restriction to single questions from the vanilla
version of the language and allow questioning sequences in two stages. First by introducing
special reduction axioms for minimal sequences, i.e., sequences of length two, in Section 5.
Second, we introduce questioning sequences of arbitrary length and give fully general reduction
axioms for them in Sections 4 and 6. We continue our exposition using the simplest version of
IEL and afterwards return in Section 4 to considering the SQL extension in more detail.

3 The Tableau Synthesis Framework Applied to IEL

In order to obtain a sound, complete and terminating tableau calculus for IEL we apply the
tableau synthesis framework introduced in [11, 10]. In brief, the tableau synthesis method works
as follows. The user defines the formal semantics of their logic in the first-order specification
language of the framework. The semantic specification can then be automatically transformed
into tableau rules that form a calculus which is sound and complete provided the semantic
specification satisfies certain conditions. In a next step the possibility to refine the tableau
calculus in two ways is explored. First, it may be possible to refine that tableau rules by reducing
their branching factor and, second, it may be possible to internalise semantic constructs of the
tableau language in the language of the logic. Finally, the unrestricted blocking mechanism
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can be added to the obtained calculus. The blocking mechanism ensures termination of the
calculus if the logic has the finite model property. The final calculus is sound, complete and
terminating, and, hence, provides the basis for a decision procedure for the logic.

The object language of specification of syntax of the logic IEL has several distinct sorts. The
main sort of the language is the sort of formulae (sort f) which are denoted as ϕ,ψ, . . .. Other
sorts are individuals (sort i) denoted i, j, . . ., propositional atoms (sort p) denoted p, q, . . ., and
agent labels (sort a) denoted as a, a0, a1, . . ..

For reasons of economy and simplicity, we fix a (minimal) set of connectives for the syntax
specification of IEL. The connectives and their types are listed in Figure 1.

Useful additions to the specification language include the singleton set operator {·} and
the operator #·, which respectively link the individual and formula sorts, and the proposition
and formula sorts. The operator @·· is the at (or satisfaction) operator, which is useful for
internalising the semantic specification.

The meta-language of IEL for the specification of the semantics extends the object language
of IEL with an additional domain sort d and the following symbols: binary predicate symbols
(of type (d, d)) R a

≈, R a
≈∩ a∼, and R a∼; the equality symbol

.
≈ (we use a dot to distinguish equality

from the issue relation); domain variables x, y, z, . . .; and the first-order quantifiers ∀ and ∃.
Finally, the meta-language contains three interpretation symbols νi, νf, and νp. For every
nominal i of sort i, νi(i) is a term of sort d. For every IEL-formula ϕ of sort f, proposition p of
sort p, and term t of sort d, νf(ϕ, t) and νp(p, t) are atomic formulae in the semantic specification
language for IEL.

Figure 2 shows the definition of the semantics of the IEL connectives in the meta-language.
We give the standard Boolean and modal semantic definitions in the right column and the
semantics of the sort-bridging connectives in the left column. Both are followed by definitions
for the dynamic modalities. We denote the set of all these formulae by S0.

Additionally there are conditions which specify properties of relations and equality. They
are captured by the background theory axioms Sb which are listed in Figures 3 and 4.

The described semantic specification captures in first-order sentences the semantic condi-
tions for IEL from Section 2. In particular, the difference between the semantic definition of
the static modalities and the dynamic modalities becomes more apparent. While the static
modalities are dropped by the definitions, the dynamic ones are only dropped in the definitions
for atomic components in their scope. However, for complex formulae the dynamic modality is
applied in the right hand side of the definition to a formula with lower complexity. This is also
reflected in the semantic specifications that the reduction axioms vary depending on whether
they are for propositional atoms, for singletons, and for formulae.

The next step is to transform the semantic specification into a normalised implicational
form [11]. This is done by decomposing each logical equivalence of the specification S0 into the
left-to-right implication and the contrapositive of the right-to-left implication. The resulting
sets of formulae are denoted by S+ and S−.

Connective Type

{·} i 7→ f

@·· (i, f) 7→ f

¬· f 7→ f

· ∧ · (f, f) 7→ f

Connective Type

#· p 7→ f

Q·· (a, f) 7→ f

K·· (a, f) 7→ f

X·· (a, f) 7→ f

Connective Type

[·?]·· (f, a, f) 7→ f

[ ! ]·· (a, f) 7→ f

Figure 1: Connectives of the object language of IEL.
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∀x(νf({i}, x)↔ x
.
≈ νi(i)) ∀x(νf(¬ϕ, x)↔ ¬νf(ϕ, x))

∀x(νf(#p, x)↔ νp(p, x) ∀x(νf(ϕ ∧ ψ, x)↔ νf(ϕ, x) ∧ νf(ψ, x)))

∀x(νf(@iϕ, x)↔ νf(ϕ, νi(i))) ∀x(νf(Qaϕ, x)↔ ∀y(Ra
≈

(x, y)→ νf(ϕ, y)))

∀x(νf([ϕ?]a#p, x)↔ νf(#p, x))) ∀x(νf(Kaϕ, x)↔ ∀y(Ra∼(x, y)→ νf(ϕ, y)))

∀x(νf([q]a{i}, x)↔ νf({i}, x))) ∀x(νf(Xaϕ, x)↔ ∀y(Ra
≈∩a∼

(x, y)→ νf(ϕ, y))))

∀x(νf([q]a¬ψ, x)↔ νf(¬[q]aψ, x))) ∀x(νf([q]a(ψ ∧ χ), x)↔ νf([q]aψ, x) ∧ νf([q]aχ, x))

∀x(νf([ϕ?]aKaψ, x)↔ νf(Ka[ϕ?]ψ, x)) ∀x(νf([ ! ]aQaψ, x)↔ νf(Qa[ ! ]aψ, x))

∀x(νf([ ! ]aKaψ, x)↔ νf(Xa[ ! ]aψ, x)) ∀x(νf([ ! ]aXaψ, x)↔ νf(Xa[ ! ]aψ, x))

∀x(νf([ϕ?]aQaψ, x)↔ (νf(ϕ ∧Qa(¬ϕ ∨ [ϕ?]aψ), x) ∨ νf(¬ϕ ∧Qa(ϕ ∨ [ϕ?]aψ), x))

∀x(νf([ϕ?]aXaψ, x)↔ (νf(ϕ ∧Xa(¬ϕ ∨ [ϕ?]aψ), x) ∨ νf(¬ϕ ∧Xa(ϕ ∨ [ϕ?]aψ), x))

Figure 2: Semantic specification S0 of connectives for IEL (q ∈ [ϕ?], [ ! ])

∀x∀y(Ra
≈∩ a∼

(x, y)↔ Ra
≈

(x, y) ∧Ra∼(x, y)),

∀x∀y∀z((Ra
≈

(x, y) ∧Ra
≈

(y, z))→Ra
≈

(x, z)), ∀x∀y∀z((Ra∼(x, y) ∧Ra∼(y, z))→Ra∼(x, z)),

∀x∀y∀z((Ra
≈∩ a∼

(x, y) ∧Ra
≈∩ a∼

(y, z))→Ra
≈∩ a∼

(x, z)),

∀x∀y(Ra
≈

(x, y)→Ra
≈

(y, x)), ∀x∀y(Ra
≈∩ a∼

(x, y)→Ra
≈∩ a∼

(y, x)),

∀x∀y(Ra∼(x, y)→Ra∼(y, x)), ∀xRa
≈

(x, x), ∀xRa
≈∩ a∼

(x, x), ∀xRa∼(x, x)

Figure 3: Semantic specification of background theory axioms for the relations

It is not difficult to check that the semantic specification is well-defined in the sense of [11].
A semantic specification S is well defined iff S is normalized and the following conditions hold:

(wd1) ∀S0,∀Sb |= ∀S,

(wd2) the relation ≺ induced by S is a well-founded ordering on formulae, and

(wd3) for every formula ϕ = σ(ϕ1, . . . , ϕm), defining a connective σ:

∀S0,∀Sb � sub≺(ϕ) |=c ∀x
((∧

Φϕ+ → φσ(ϕ1, . . . , ϕm, x)
)
∧
(
φσ(ϕ1, . . . , ϕm, x)→

∨
Φϕ−
))

Here Φϕ+ is the set obtained by collecting all instantiations of consequents from S+ (the pos-
itive specifications in S) matching the formula ϕ. Φϕ− is the set obtained by collecting all
instantiations of antecedents from S− (the negative specifications in S) matching formula ϕ.

Condition (wd1) expresses the decomposition of the specification S to S0 and Sb after
normalization. The set S0 contains the connective definitions, and the set Sb contains the
background theory conditions. The set S0 is further decomposed in two disjoint sets S+ and S−.
Since the semantic specification is the union of the connective definitions and the background

∀x(x
.
≈x), ∀x∀y(x

.
≈y→y

.
≈x), ∀x∀y∀z(x

.
≈y ∧ y

.
≈z → x

.
≈z),

∀p̄∀x̄∀yi(xi
.
≈ yi → f(p̄, x̄)

.
≈ f(p̄, x1, ..., xi−1, yi, xi+1, ..., xn)),

∀p∀x∀y(νf(#p, x) ∧ x
.
≈ y → νf(#p, y)), ∀p∀x∀y(νp(p, x) ∧ x

.
≈ y → νp(p, y)).

Figure 4: Semantic specification of equality axioms
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Tableau Expansion Rules (generated from S0 = S+ ∪ S−):

@l[ϕ?]2aψ

@lϕ,@l2a(¬ϕ ∨ [ϕ?]ψ) | @l¬ϕ,@l2a(ϕ ∨ [ϕ?]ψ)
(2 ∈ Q,X),

@l[ ! ]Kaψ

@lXa[ ! ]ψ
, (3a)

@l¬[ϕ?]2aψ

@l(¬ϕ ∨ ¬2a(¬ϕ ∨ [ϕ?]ψ)), @l(ϕ ∨ ¬2a(ϕ ∨ [ϕ?]ψ))
(2 ∈ Q,X),

@l¬[ ! ]Kaψ

@l¬Xa[ ! ]ψ
. (3b)

@l�b

@lb
,

@l�¬ϕ
@l¬�ϕ

,
@l�(ϕ ∧ ψ)

@l�ϕ, @l�ψ
,

@l[ϕ?]Kaψ

@lKa[ϕ?]ψ
,

@l[ ! ]2aϕ

@l2a[ ! ]ϕ
(2 ∈ Q,X), (3c)

@l¬�b
@l¬b

,
@l¬�¬ϕ

@l�ϕ
,

@l¬�(ϕ ∧ ψ)

@l¬�ϕ | @l¬�ψ
,

@l¬[ϕ?]Kaψ

@l¬Ka[ϕ?]ψ
,

@l¬[ ! ]2aϕ

@l¬2a[ ! ]ϕ
(2 ∈ Q,X), (3d)

@l¬2aϕ

@l3a{f¬2(l, a, ϕ)},@f¬2(l,a,ϕ)¬ϕ
(2 ∈ Q,K,X),

@l2aϕ,@l3a{l2}
@l2ϕ

(2 ∈ Q,K,X), (3e)

@l¬¬ϕ
@lϕ

,
@lϕ ∧ ψ

@lϕ, @lψ
,

@l¬(ϕ ∧ ψ)

@l¬ϕ | @l¬ψ
, (3f)

Background Theory Rules (generated from Sb):

@lX̂a{l2}
@lQ̂a{l2}, @lK̂a{l2}

,
@lQ̂a{l2}, @lK̂a{l2}

@lX̂a{l2}
, (3g)

@l3a{l2},@l2{l3}
@l3a{l3}

,
@l{l}

@l3a{l}
,

@l3a{l2}
@l23a{l}

,
@l3a{l2}, @l23a{l3}

@l3a{l3}
, (3h)

@l3a{l2}
@l2{l2}

,
@l{l2}
@l2{l}

,
@l¬{l2}
@l2¬{l}

,
@lϕ

@l{l}
,

@lϕ,@l{l2}
@l2ϕ

, (Clash):
@lϕ, @l¬ϕ

⊥ . (3i)

Figure 5: Refined calculus for IEL, where � ∈ {[ϕ?]a, [ ! ]a}, b ∈ {#p, {n}}, 3 ∈ {Q̂, K̂, X̂}

theory, conditions (wd1) and (wd3) are trivially satisfied. Showing condition (wd2), i.e., well-
foundedness of the ordering ≺ induced by the normalised specification, is more involved than
usual because of the statements capturing the reduction axioms. Well-foundedness of the order
can be established by assigning IEL formulae the following complexity measure:

c(p) = 1, c(!) = 1, c(¬ϕ) = 1 + c(ϕ), c(ϕ ∧ ψ) = 1 + max(c(ϕ), c(ψ)), (2a)

c(2aϕ) = 1 + c(ϕ) for 2a ∈ {Ka, Qa, Xa}, and (2b)

c([q]ψ) = (c(q) + 5) · c(ψ) for q ∈ {ϕ?, !}. (2c)

Turning the normalised semantic specification into tableau rules in accordance with [11]
then produces a sound and complete tableau calculus for checking satisfiability for IEL. We
do not present this calculus here, but present (in Figure 5) immediately the calculus obtained
after refinement.

Two refinements described in [11] have been applied. The first refinement is the internali-
sation of the domain symbols including interpretation symbols νi, νf, and νp in the language of
the logic. For example, the rules generated for the 2 operators are (2 ∈ {Q,K,X}):

νf(¬2aϕ, l)
R(l, f¬2(l, a, ϕ)), νf(¬ϕ, f¬2(l, a, ϕ))

and
νf(2aϕ, l), l2

.
≈ l2

¬R(l, l2) | νf(ϕ, l2)
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R denotes the appropriate accessibility relation associated with 2a. f¬2 represents one of three
fixed Skolem functions used as a convenient way to create witnesses for formulae of existential
extent. Because IEL is a hybrid logic it fully supports individuals and the rules can be rewritten
as

@l¬2aϕ
@l3a{f¬2(l, a, ϕ)}, @f¬2(l,a,ϕ)¬ϕ

and
@l2aϕ, @la3a{l2}
@l¬3a{l2} | @l2ϕ

.

Similarly for the other rules.
The second refinement attempts to replace branching rules by rules with fewer or no

branches. For example, the rule for positive occurrences of 2,

@l2aϕ, @la3a{l2}
@l¬3a{l2} | @l2ϕ

, is refined to
@l2aϕ, @l3a{l2}

@l2ϕ
.

Other refined rules in the presented calculus are the rules expressing triangular properties in (3g)
and (3h). These rule refinements are justified because the (†) condition from [11] can be shown
to hold in each case. The presented calculus is therefore sound and complete for IEL.

Finally, if the logic has the finite model property then the generated tableau calculus can
be turned into a decision procedure by adding the blocking mechanism introduced in [9] which
is based on the following unrestricted blocking rule:

(UB):
@l{l}, @l0{l0}

@l{l0} | @l¬{l0}

For the static part of IEL the finite model property is obtained by a standard filtration argument.
The reduction axioms introduced before provide a way to translate formulae from the dynamic
part to equivalent formulae in the static language. The translation is:

t(p) = p, t(¬ϕ) = ¬t(ϕ), t(ϕ ∧ ψ) = t(ϕ) ∧ t(ψ), (4a)

t(2aϕ) = 2at(ϕ) for 2a ∈ {Ka, Qa, Xa}, (4b)

t(lhs) = t(rhs) for the reduction axioms in (1a)–(1d). (4c)

This implies that IEL has the finite model property and we can obtain the following result:

Theorem 1. The calculus listed on Figure 5 is sound and complete for IEL satisfiability and
it is also terminating if equipped with the unrestricted blocking mechanism.

4 Extension to Sequential Questioning Logic

In this section we generalize the IEL/DELQ framework to a setting using questioning sequences
and we call the emerging theory Sequential Questioning Logic (henceforth, SQL).

The language of SQL is recursively defined by the following BNF:

ϕ ::= n | p | ¬ϕ | ϕ ∨ ϕ | 2ϕ | [σ(k)?]ϕ | [ ! ]ϕ

with n, p, a,¬,∨,2, [ ! ] as before and σ(n)? representing dynamic questioning actions where
σ(n) = 〈ϕ0, . . . , ϕn−1〉 is a sequence of SQL formulae. The semantics of the operators is also as
before with the generalized intersection already introduced in Section 2 used for sequences. The
fact that the questioning modalities are the only ones different between IEL and SQL dialects
allows us to add questioning sequences while preserving all the other components.
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Figure 6: SQL specific dynamic connectives, semantics and tableau rules

conn. type semantics rules

[·?] [f] 7→ f

∀x(νf([σ?]#p, x) ↔ νf(#p, x)))

As in Figure 5 with [σ?] instead of [ϕ?]

∀x(νf([σ?]{n}, x) ↔ νf({n}, x)))

∀x(νf([σ?]¬ϕ, x) ↔ νf(¬[σ?]ϕ, x)))

∀x(νf([σ?](ϕ ∧ ψ), x) ↔ νf([σ?]ϕ, x) ∧ νf([σ?]ψ, x))

∀x(νf([σ?]Kaϕ, x) ↔ νf(Ka[σ?]ϕ, x))

∀x(νf([σ(n)?]Qaϕ, x)↔ see below
See the generalized rules below

∀x(νf([σ(n)?]Xaϕ, x)↔ see below

The static part of SQL brings nothing new, it is axiomatized, as before in IEL, by standard
hybrid logic axioms for nominals and intersection. The dynamic part of SQL brings some new
features that generalize the initial setting from IEL, and we do not require formulae in σ(n) to
induce a partition of the domain.

The significant new feature in SQL relative to IEL is the presence of dynamic questioning
modalities over sequences of questions. This has to bring about new reduction axioms. For
formulae ϕ with factual content the jump to questioning sequences is an obvious generalization
of the pattern in previous reduction axioms. For such ϕ0, ϕ1 in a minimal sequence we have:

[ϕ0, ϕ1]Xϕ↔ (ϕ0 ∧ ϕ1 ∧X((ϕ0 ∧ ϕ1)→ [ϕ0, ϕ1]ϕ))

∨ (ϕ0 ∧ ¬ϕ1 ∧X((ϕ0 ∧ ¬ϕ1)→ [ϕ0, ϕ1]ϕ))

∨ (¬ϕ0 ∧ ϕ1 ∧X((¬ϕ0 ∧ ϕ1)→ [ϕ0, ϕ1]ϕ))

∨ (¬ϕ0 ∧ ¬ϕ1 ∧X((¬ϕ0 ∧ ¬ϕ1)→ [ϕ0, ϕ1]ϕ)).

This generalizes in the expected way to longer factual sequences. However, this cannot be
extended beyond factual formulae, not even for minimal questioning sequences of length two.
This approach fails for complex formulae that have questioning content or, in general, extra-
factual or higher-order content. Consider as an illustration the following complex questioning
formula: ξ := (Q̂i → (j ∨ k)) ∧ ((Q̂j ∧ p) → Q̂i). A model with a domain of three worlds
i, j, k, universal issue and epistemic relations, and a valuation that makes p true at k provides
a counterexample when we make the following substitutions: ϕ0 7→ ξ, ϕ1 7→ ξ, ϕ 7→ ¬p.

For questioning sequences the disjunctive structure of the reduction axiom has to induce
a partition of the domain. However, the questioning sequence does not have to give rise to a
partition. This difference is not always fully understood and appreciated. If the questioning
sequence has a more complex structure, for instance, if it induces a cover of the domain, more
complex patterns are needed in the reduction axiom, that can ensure that the right hand side
remains an exhaustive exclusive disjunction. In this way, fully general reduction axioms for
SQL can be obtained and they will have the pattern given below.

We present the new additions in a synthetic way in Table 6. The questioning modalities
have a different type than before as they are now defined over lists of formulae. Except for this
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type difference most of the tableau rules will be as before. The new connectives using sequences
will have new reduction axioms and new rules as specified in the table.

The reduction axioms will have the following pattern, for � ∈ {Q,X}:

[σ(n)]�aϕ↔
2|σ(n)|∨
i=0

( |σ(n)|∧
k=0

([σ(k − 1)]ϕk)β(i)(k) ∧ �a(

|σ(n)|∧
k=0

([σ(k − 1)]ϕk)β(i)(k) → [σ(n)]ϕ)
)
,

where |σ(n)| is the length of the questioning sequence σ(n) = 〈ϕ0, .., ϕn−1〉,

and the value of ϕβ(k)(i) is determined by: ϕβ(k)(i) =

{
¬ϕ if β(k)(i) = 1, and

¬ϕ if β(k)(i) = 0.

β(k)(i) represents the i-th position in the binary encoding β(k) of the decimal number k.

The corresponding tableau rules are obtained as follows, for χki =
∧|σ(n)|
k=0 ([σ(k−1)]ϕk)β(i)(k):

@l[σ?]�aϕ

@l

∧|σ(n)|
k=0 χk1 ∧ �a(

∧|σ(n)|
k=0 χk1 → [σ(n)]ϕ) | · · · | @l

∧|σ(n)|
k=0 χkn ∧ �a(

∧|σ(n)|
k=0 χkn → [σ(n)]ϕ)

In addition the complexity function for formulae has to add to Equation 2 values that take
into account the length of the questioning sequences.

5 Implementing an IEL Prover with MetTeL2

In this section, we describe our experience in using MetTeL2 [13] to generate a tableau prover
for the tableau calculus derived in the previous section. MetTeL2 is a prototypical tableau
prover generator developed with the tableau synthesis framework as its theoretical founda-
tion. Given the specification of a logic and the specification of a tableau calculus for this
logic MetTeL2 generates Java code for a tableau prover implementing the tableau calculus.
MetTeL2 has been successfully applied to several of logics, including Boolean logic, modal log-
ics K, KT, S4, description logics ALCO and ALBOid, and a hybrid logic with global counting
operators [6]. The list is constantly growing. These test cases and downloadable copies of the
generated provers are publicly available from the MetTeL website.

The underlying language for syntax specification of IEL in MetTeL2 is in line with the
tableau synthesis framework object specification language. As the object language is settled in
Section 3, preparing the syntax specification for MetTeL2 is straightforward. For example, the
syntax specification contains declaration of four sorts.

sort formula, agent, prop, individual;

Further, declarations of each connectives follow their representation in Figure 1. For instance,
the connective # is specified by the following declaration.

formula proposition = ’#’ prop;

The declaration of the dynamic modality for questioning is given by:

formula query = ’[?’ formula ’]’ agent formula;

The syntax for Skolem terms which are fresh labels introduced during the application of
diamond rules is given as follows.
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individual fq = ’fq’ ’(’ individual ’,’ agent ’,’ formula ’)’;
individual fk = ’fk’ ’(’ individual ’,’ agent ’,’ formula ’)’;
individual fx = ’fx’ ’(’ individual ’,’ agent ’,’ formula ’)’;

The specification of the tableau calculus in MetTeL2 reflects all the rules of Figure 5.
There are decomposition rules for positive as well as negative occurrences of all connectives.
The exception is negation, which only has a rule for negative occurrence, namely elimination of
double negation. For example, the rules for the three static modalities are specified as follows.

@l<q> A P / @l <q> A {fq(l,A,P)} @fq(l,A,P)P priority 7$;
@l<k> A P / @l <k> A {fk(l,A,P)} @fk(l,A,P)P priority 7$;
@l<x> A P / @l <x> A {fx(l,A,P)} @fx(l,A,P)P priority 7$;
@l ~(<q> A P) @l <q> A {l2} / @l2~P priority 2$;
@l ~(<k> A P) @l <k> A {l2} / @l2~P priority 2$;
@l ~(<x> A P) @l <x> A {l2} / @l2~P priority 2$;

The rules for dynamic modalities have specific cases for atomic formulae, i.e., propositional
atoms or nominals, and cases for complex formulae with non-factual content: questioning,
epistemic or both. The cases for atomic formulae are specified as follows.

@l ([?P] A #B) / @l #B priority 2$; @l ~([?P] A #B) / @l ~(#B) priority 2$;
@l ([?P] A {l2 }) / @l ({l2 }) priority 2$; @l ~([?P] A {l2 }) / @l ~{l2} priority 2$;
@l ([!] A {l2 }) / @l {l2} priority 2$; @l ~([!] A {l2 }) / @l ~{l2} priority 2$;
@l ([!] A #B) / @l #B priority 2$; @l ~([!] A #B) / @l ~(#B) priority 2$;

Having the rules for intersection of accessibility relations in the background theory is im-
portant because it plays a crucial role in the reduction rule for the dynamic modalities:

@l<q> A {l2} @l<k> A {l2} / @l<x> A {l2} priority 2$;
@l<x> A {l2} / @l<q> A {l2} @l<k> A {l2} priority 2$;

In MetTeL2, appearance of an equality formula in a branch immediately triggers ordered
rewriting within the branch. The unrestricted blocking rule is implemented with use of this
feature and the equality formula on its left branch forces the branch to be rewritten with respect
to the additional equality.

An important feature provided by the MetTeL2 implementation is the possibility to assign
priorities to the tableau rules. This can be used to control the way the rules are applied in
the generated prover. Each rule is followed by a number, which defines the rule application
priority. Rules with smaller priority values have higher priority and applied more eagerly.
Use of this feature is essential for the efficiency of the generated provers and especially in the
case of IEL because the rules corresponding to reduction axioms with disjunctive patterns can
be assigned lower priorities (higher priority values), thus reducing the branching factor and
improving efficiency.

From the syntax specification and the tableau calculus, a tableau prover for IEL is automat-
ically generated by MetTeL2 according to the process described in detail in [13]. The generated
prover can be used like most other tableau provers. Given a set of formulae as an input, the
prover returns an answer Satisfiable or Unsatisfiable together with a model in the
first case or with a set of contradictory formulae in the latter case.

We have tested the generated prover on a small set of sample formulae, where all the answers
were correct.
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6 Implementing IEL and SQL in Haskell

The second implementation uses the literate Haskell script Qtab.lhs. In this section, we
provide a brief description of this implementation and include the implementation itself in the
long version of the paper [8]. The implementation started from a pre-existing tableau prover
for hybrid logic [16], to which we have added the details needed to model dynamic questioning
actions. The tableau construction functionality was also completely changed. The current
setting is more congenial with the framework from [11], which includes having a background
theory for intersection and using unrestricted blocking.

We give next a broad view of the modules contained in the Qtab.lhs architecture and
their functionality. Syntax.hs: Preliminary module containing the data structures for modal
and first-order logic formulae as well as the tableaux. Qtab.lhs: The module containing the
main functionality for the tableau prover such as the decide function that takes a formula
in the IEL language and decides if it is or is not a tautology. Also functions controlling the
order in which the formulae are analysed. Decomp.hs: The module containing the functionality
associated with tableau expansion rules by logical decomposition. This proceeds either by
standard logical analysis or by rules synthesized from reduction axioms. Backgrd.hs: The
module containing the main components of the IEL background theory. In particular, the
rules governing the behaviour of nominals and the rules for intersection are defined here. Also
the unrestricted blocking mechanism is handled by functions in this module. Divide.hs: The
order in which branches in a tableau are expanded is determined by their syntactic structure.
The module contains functions used to recognize structural properties of formulae and to divide
tableau nodes into component lists of prioritised formulae. Auxilar.hs: The module containing
auxiliary functionality (such as displaying tableaux and translating formulae).

One particular aspect in which the Haskell implementation proved to be useful was in deal-
ing with questioning sequences. Questioning sequences can also be added in MetTeL2, see the
rules for sequences of length two in the appendix of the long version. The features of functional
programming and the way in which recursion is implicitly built in Haskell definitions makes
working with arbitrary sequences of questions easier. It also made it obvious that modalities
capturing questioning sequences can be modelled as fully functional algebraic data structures
suitable for recursive manipulation. The decomposition rules for the static connectives and res-
olution are as in Figure 5. We include several illustrations of Qtab.lhs output for questioning
sequences of length two in the long version. The decomposition rules for the general case of
arbitrarily long sequences follow the pattern of the rules from Table 6. We include below some
illustrative examples of prover output for some paradigmatic examples of SQL formulae:

*Sql> deciden (Quest [Prop (P 0), Prop (Q 0)] (Box 2 (Disj [Prop (P 0), Prop (Q 0)])))

(False,5)

*Sql> deciden (Quest [Prop (P 0), Prop (Q 0)] (Box 1 (Disj [Prop (P 0), Prop (Q 0)])))

(False,14)

*Sql> deciden (Quest [Prop (P 0)] (Reso (Box 2 (Prop (P 0)))))

(False,12)

The first example illustrates a questioning sequence of length two combined with the static
knowledge modality, which has a commutating behaviour. The second example illustrates a
questioning sequence of length two in combination with the static issue modality, which uses
reduction axioms based on the disjunction pattern: The third example illustrates a questioning
sequence combining both asking actions and resolution actions. Because the resolution modality
is idempotent, all resolution sequences are equivalent to a sequence of length one. Therefore
the following reduction axioms are used for dealing with the aspect of the interaction between
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a questioning-sequence followed by a resolution-sequence:

[σ?][ ! ]Qaψ ↔ [σ?]Qa[ ! ]ψ, [σ?][ ! ]Kaψ ↔ [σ?]Xa[ ! ]ψ, [σ?][ ! ]Xaψ ↔ [σ?]Xa[ ! ]ψ (5a)

The final illustration shows the difference between knowing that and knowing whether.
After a yes/no question about p the issue relation decides whether p, this turns out to be a
SQL validity, however, it does not settle that p holds.

*Sql> (deciden (Neg (Quest [Prop (P 0), Neg (Prop (P 0))] (Box 1 (Prop (P 0))))))

(False,40)

*Sql> (deciden (Neg (Quest [Prop (P 0), Neg (Prop (P 0))]

(Disj [Box 1 (Prop (P 0)), Box 1 (Neg (Prop (P 0)))]))))

(True,84)

More detailed code output, traces of step-by step inference and tableau generation, and
further explanation of the code functionality is included in the long version of the paper.

7 Concluding Remarks

In this paper we have shown what can be achieved when applying tableau synthesis and imple-
mentation for dynamic modalities of the simplest kind. This is only an initial illustration that
serves as a case study for further extensions. We have considered one such extension to ques-
tioning sequences. Further extensions that we want to consider in the future include dynamic
questioning actions that can model privacy and insecure communication and employ product
update [2, 1] for computing issue relations [7] and a richer repertoire of questioning actions that
go beyond the propositional case and include wh-questions [5, 18].

MetTeL2 provides a robust and efficient platform for automatically generating a tableau
prover for IEL. On the small set of formulae we used for testing, MetTeL2 was faster than the
Haskell prover, because it implements clever backtracking techniques and other optimisations,
currently not supported in the Haskell implementation.

On the other hand, the Haskell implementation provides a framework in which more ex-
perimental features of further extensions can be easily programmed and tested before they
are ready to become mainstream conditions. We used the case of SQL to illustrate such an
extension. We conclude with two main points about the overall significance of our approach.

We have shown how a dynamic component, in particular, dynamic questioning actions, can
be integrated in the tableau synthesis framework. Based on the synthesised tableau calculus,
two implementations have been developed: MetTeL2 and Qtab.lhs. This dynamic extension
relies on rules in which the complexity of the formulae inside the scope of the dynamic modalities
is reduced, even if the complexity of the conclusion formula in the rule can increase.

The second contribution facilitated by the implementations is an extension of the underlying
dynamic logic itself. Implementing the reduction details made it obvious that a logical language
containing sequences of questions, not just modalities for questioning actions, can be modelled
in the framework, and extends the dynamic logic in a useful direction.
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[18] A. Wísniewski. Erotetic search scenarios, problem solving, and deduction. Logique & Analyse,
185-188:139–166, 2004.

123

http://www.mettel-prover.org/papers/KEn12.pdf
http://www.mettel-prover.org/papers/KEn12.pdf
http://www.mettel-prover.org/papers/IEL-long.pdf
http://www.mettel-prover.org/papers/IEL-long.pdf


CDCL with Less Destructive Backtracking

through Partial Ordering
Anthony Monnet, Roger Villemaire
Université du Québec à Montréal

Montreal, Quebec, Canada
anthonymonnet@aol.fr, villemaire.roger@uqam.ca

Abstract

Con�ict-driven clause learning is currently the most e�cient complete algorithm for
satis�ability solving. However, a con�ict-directed backtrack deletes potentially large por-
tions of the current assignment that have no direct relation with the con�ict. In this paper,
we show that the CDCL algorithm can be generalized with a partial ordering on decision
levels. This allows keeping levels that would otherwise be undone during backtracking
under the usual total ordering. We implement partial ordering CDCL in a state-of-the-art
CDCL solver and show that it signi�cantly ameliorates satis�ability solving on some series
of benchmarks.

1 Introduction

Con�ict-driven clause learning (CDCL) [14] is a very e�cient algorithm for solving the proposi-
tional satis�ability problem, currently used in virtually all complete state-of-the-art SAT solvers.
For each con�ict, it deduces a new clause that will allow an early detection of future similar
con�icts, thus helping to prune the search space. It also performs a con�ict-directed backtrack-
ing, which may undo several decision levels at once in order to return faster to the cause of the
con�ict and propagate this new learnt clause as early as possible in the search tree.

Despite this approach was proved very e�ective, each con�ict-directed backtrack deletes a
possibly large amount of instantiations that have no direct connection with the detected con�ict.
Indeed, by de�nition, none of the deleted levels contains any variable from the con�ict, except
for the con�ict level itself. In the worst case, these levels could even belong to a distinct
connected component of the problem, meaning that they can't be a�ected by the con�ict and
the resulting assertion, even indirectly. This results in a partial loss of previous search work,
which may delay the discovery of a model or of another con�ict. CDCL may have to rebuild this
part of the search and reprocess all propagations. Given that propagations are the most time-
consuming task of SAT solving, it is natural to try avoiding the destruction of instantiations
that are still consistent with the current state. Several methods have been conceived to tackle
this issue and minimize the amount of unrelated instantiations that are deleted, for instance
tree decompositions [10, 3, 12, 5, 16] and phase saving [19].

In this paper, we propose a novel variation of the CDCL algorithm that detects instan-
tiations that would be undone by the regular algorithm but can be safely retained. This is
achieved by relaxing the ordering between decision levels. Indeed, with the usual total order,
con�ict-directed backtracking must delete all levels above the assertion level in order to return
to that level and propagate the con�ict clause. We show that this total ordering is not required
to maintain essential properties of the algorithm, and that a partial ordering re�ecting depen-
dencies between decision levels can be used instead. As a consequence, instantiations are only
deleted by the con�ict-directed backtracking if they actually interfere with the con�ict reso-
lution. Partial order backtracking [7, 15, 4] has previously been described for the Constraint
Satisfaction Problem (CSP), but to the best of our knowledge, it has never been used in the
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context of SAT solving, moreover within the CDCL algorithm. This is the main contribution
of our paper.

We also provide experimental results obtained by implementing partial order CDCL (PO-
CDCL) in a state-of-the-art CDCL solver. We show that although PO-CDCL is not e�cient on
all SAT benchmarks, it seems to signi�cantly reduce the solving trace on instances with a low
partial order density, and that some benchmark series have a consistantly low density. Thus
PO-CDCL manages to solve these series faster than the original CDCL solver.

The rest of this paper is organized as follows: section 2 summarizes the CDCL algorithm.
Section 3 quickly introduces previous related works, namely tree decompositions, phase saving
and partial order CSP. Section 4 presents the algorithm of partial order CDCL and gives the
proof of some of its essential properties. Finally, section 5 shows and analyzes experimental
results obtained by our implementation of PO-CDCL.

2 Con�ict-Driven Clause Learning

Let V be a set of variables and L = {v,¬v | v ∈ V} the set of literals on V. A propositional
formula in conjunctive normal form F(V, C) is de�ned by a set V of variables and a set C of
clauses on V, each clause c ∈ C being a set of literals. An assignment σ ⊂ L is a set of non-
con�icting literals considered true. σ can be extended and interpreted as a partial function
associating boolean values to variables, literals, clauses and formulas. If σ is de�ned on v ∈ V,
we will say that v is instantiated by σ; if it isn't, we will note σ(v) = undef. A total assignment
σ on V is a model of the formula F(V, C) i� σ(F(V, C)) = true. Given a formula, the SAT
problem consists in determining whether it is satis�able, i.e. whether it has at least one model.

The CDCL algorithm [14] determinates the satis�ability of a formula through a combination
of depth-�rst search and inference. Algorithm 1 presents a pseudocode of CDCL. The search

Algorithm 1 CDCL

1: σ ← ∅ /* begin with the empty assignment */
2: loop

3: c←Propagate /* propagate new instantiations */
4: if c 6= NIL then /* a con�ict was found during propagations */
5: if λ = 0 then /* con�ict at decision level 0 */
6: return false /* F is unsatis�able */
7: else

8: γ ← Analyze(c) /* infer the con�ict clause γ */
9: a← AssertionLevel(γ, λ)
10: Backtrack(a) /* backtrack to assertion level */
11: λ← a /* a becomes the current level */
12: C ← C ∪ {γ} /* γ is learnt */
13: PropagateAssertion(γ)
14: else /* no con�ict during propagations */
15: if all variables are instantiated then

16: return σ /* σ is a model of F */
17: else

18: λ← NewLevel
19: Decide(λ)
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Algorithm 2 AssertionLevel(γ, λ) [CDCL]

a← max({λ(l) | l ∈ γ} \ {λ})
return a

Algorithm 3 Backtrack(a) [CDCL]

for v ∈ V |λ(v) > a) do

σ(v)← undef

part of the algorithm is conducted by repeatedly choosing instantiations to add to the current
assignment σ (through the procedure Decide) until either all variables are instantiated or a
con�ict is reached. Con�icts are solved by undoing some of the last search choices.

The inference engine used within CDCL is the unit propagation rule: for any clause c =
{l1, . . . , li} such that σ(l1) = σ(l2) = . . . = σ(li−1) = false and σ(li) = undef, c entails li
under σ so li is added to σ. c is called the antecedent of li, noted α(li) = c. Unit propagation
is exhaustively applied to all unit clauses by procedure Propagate before making any new
decision. The nth decision and all unit propagations it entails form the nth decision level of the
search; all propagations which were deduced without any decision belong to decision level 0.
We will note λ(v) the decision level of a variable v and λ the current level of the search.

Propagate encounters a con�icts if it �nds a clause c for which all literals are false under
the current assignment σ. CDCL Analyzes this con�ict and its reasons to produce a con�ict
clause γ which is also falsi�ed by σ but only has one literal of current decision level λ. If λ = 0,
then the con�ict can't be avoided and F is unsatis�able. Else γ de�nes an AssertionLevel
a, which is the second largest decision level in this clause (Alg. 2). CDCL performs a Back-
track to the assertion level by entirely deleting all decision levels above a (Alg. 3). γ becomes
unit, is propagated by PropagateAssertion, and Propagate is called again to deduce all
possible inferences from this new instantiation. When a call to Propagate exhausts all unit
propagations without encountering any con�ict, a new decision is taken. If all variables have
already been instantiated then σ is a model of F .

All modern CDCL solvers implement unit propagation using watched literals [17], a method
allowing a very e�cient detection of unit propagations. Its pseudocode is shown by Alg. 4.
As long as a clause has at least two literals that aren't false under σ, it can't be propagated.
Therefore, for each clause c, CDCL keeps track of two of its literals ω(c) = {w1, w2} ⊆ c. For
each new propagation l, CDCL checks all clauses c where ¬l is watched. If the second watched
literal w is true under σ, then c is true and obviously can't be propagated; CDCL doesn't need
to replace ¬l. Else, CDCL looks for another non-false literal w′ to watch instead of ¬l. If it
can't �nd one, either w is false (and c is a con�ict), or w is unde�ned. In the latter case, c is
unit and w is added to σ.

Checking clauses for propagations (lines 4 to 17 of Alg. 4) is the innermost loop of the
Propagate procedure, which is generally by far the procedure in which the most time is spent
during solving. Because of this, we will use in the rest of the paper the number of clause checks
as a secondary indicator of solving e�ciency, less implementation-dependent than solving time.

Note that the Backtrack procedure is described here as implemented in zChaff [17]
and Glucose [1] for instance. One of the original CDCL solvers GRASP [14] uses a less
destructive backtracking: it generally only deletes the last decision level and instantiates the
assertion as a new �pseudo-decision�. It only performs an actual con�ict-directed backtracking
when the decision at the con�ict level is already a pseudo-decision itself. Although pseudo-
decisions allow the use of less destructive backtracks, they are propagations stored in a pseudo-
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Algorithm 4 Propagate [CDCL]

1: Π←{instantiations not yet propagated}
2: while {Π 6= ∅} do

3: choose l ∈ Π
4: for c ∈ C | ¬l is watched in c do

5: w ← the second watched literal in c
6: if σ(w) 6= true then

7: Ω← {l′ ∈ c |σ(l′) 6= false} \ {w}
8: /* Ω is the set of literals that could replace ¬l */
9: if Ω = ∅ then /* no other literal in c can be watched */
10: if σ(w) = undef then /* c is unit */
11: σ(w)← true /* w is propagated by c*/
12: Π← Π ∪ {w}
13: else

14: return c /* c is a con�ict */
15: else

16: choose w′∈Ω
17: ω(c)← {w,w′} /* w′ is watched instead of ¬l */
18: Π← Π \ {l}
19: return NIL /* no con�ict occured */

level without any other literal of their antecedent. Therefore they can be deleted without these
causes, leaving an undetected unit clause. GRASP-type backtracks thus do not ensure that all
possible unit propagations have been performed before taking a new decision, unlike backtracks
used in zChaff and Glucose. As a result, con�icts discovered by GRASP can involve clauses
that were already unit several decision levels earlier, which means these con�icts could have been
avoided much earlier in the search by an exhaustive unit propagation. As unit propagations
are crucial for e�ciently pruning the search space, we suspect that the incompleteness of unit
propagations in GRASP is partly responsible for its lower performance wrt. zCha� ([17],
Section 4.4.4. of [13]). Enforcing complete unit propagations within a GRASP backtrack type
would require to exhaustively check all clauses after each con�ict, which may be time expensive,
and would still cause pseudo-decisions. In contrast, PO-CDCL aims to reduce the amount of
instantiations undone during con�ict-directed backtracking while keeping the exhaustive unit
propagation property.

3 Related Works

Several methods have been proposed to directly or indirectly minimize the quantity of search
progress lost during con�ict-directed backtracking while solving SAT or CSP problems.

Some of them rely on tree decompositions [20] of the connectivity graph between variables.
They constrain the order of decision variables so that the instance �rst breaks into several
connected components, and then that the solving of one component can't undo instantiations
in another component [10, 3, 12, 5, 11]. The main practical drawback is that challenging SAT
problems are typically so large that computing a good decomposition becomes untractable [16].

Phase saving [19] is a more heuristic and very lightweight approach. It simply memorizes
the last polarity assigned to a variable and reuses it if the variable is picked for a decision.
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Phase saving actually doesn't prevent instantiations from being undone, but makes it possible
to rediscover the deleted instantiations later and recover the search progress. This recovery
however doesn't save the cost of repeating the time-consuming propagation phase.

A set of CSP solving algorithms was designed with the goal of undoing less search progress
than con�ict-directed backjumping (CBJ) by relaxing the order between variables. While CBJ
resolves a con�ict by deleting all instantiations and restoring all eliminated values from the
culprit variable on (the most recent variable in the nogood), dynamic backtracking (DB) [7]
only undoes the culprit variable and restores only eliminated values where the culprit variable
was part of the nogood. Partial order backtracking (POB) [15] uses the same backtrack as DB
and additionally allows to pick any variable in the nogood as the culprit variable. To ensure
termination, it however progressively sets permanent order constraints between variables. Both
algorithms were hybridated [8] and generalized [4].

Similarly to DB and POB, PO-CDCL undoes less search progress than regular con�ict-
directed algorithms, and like POB it allows some freedom in the choice of the assertion level.
However, instead of setting de�nitive constraints on the order of variable instantiations, it sets
local constraints on the order in which decision levels will be undone. Moreover, PO-CDCL is
speci�cally adapted to various aspects of CDCL, such as the integration of unit propagations and
the watched literal mechanism, which correctness implicitely relies on the total order between
decision levels.

Finally, some techniques aim to enhance performances of SAT solvers by increasing the
quantity of instantiations undone by backtracks [18, 2], which is a totally opposite strategy
wrt. PO-CDCL.

4 Partial Order CDCL

This section introduces PO-CDCL, a generalization of the usual CDCL that relies on a partial
order on decision levels during the search. In the �rst subsection, we will present the algorithm
of PO-CDCL, and in the second we will show amongst others that it is correct and complete
and that it terminates.

4.1 Algorithm

Algorithm 1, that we used to describe CDCL, remains the backbone of PO-CDCL, but some
of its elements are modi�ed.

In the original CDCL, decision levels are assumed to be totally ordered such that i < j
i� the decision of level i was set before the decision of level j. In PO-CDCL, we only set a
strict partial ordering ∆ between decision levels. We will say that i is a dependency for j,
or equivalently that j depends on i, and note i <∆ j if (i, j) ∈ ∆. i ≤∆ j is the re�exive
extension of <∆. i <∆ j means that decision level i had an in�uence on propagations at level
j. Consequently, level j should be deleted when level i is deleted or modi�ed. Two cases of the
Propagate procedure add dependencies between levels (see Alg. 5):

1. At lines 14 and 15, when a unit clause c = {l1, . . . , li} propagates the literal li, then this
propagation at the current level obviously depends on all other levels occurring in c:
λ(l1), . . . , λ(li−1) <∆ λ (except when λ(lj) = λ).

2. At line 7, when σ(w) = true, we add the dependency λ(w) <∆ λ if λ(w) 6= λ. Indeed, in
this case a clause c is checked because one of its watched literals ¬l is false, but ¬l doesn't
need to be replaced because the second watched literal w is true. w is the reason why we
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Algorithm 5 Propagate [PO-CDCL]

1: Π←{instantiations not yet propagated}
2: while {Π 6= ∅} do

3: choose l ∈ Π
4: for c ∈ C | ¬l is watched in c do

5: w ← the second watched literal in c
6: if σ(w) = true then

7: ∆← ∆ ∪ {(λ(w), λ)} /* λ depends of λ(w) */
8: else

9: Ω← {l′ ∈ c |σ(l′) 6= false} \ {w}
10: /* Ω is the set of literals that could replace ¬l */
11: if Ω = ∅ then /* no other literal in c can be watched */
12: if σ(w) = undef then /* c is unit */
13: σ(w)← true /* w is propagated by c*/
14: for l′ ∈ c \ {w} |λ(l′) 6= λ do

15: ∆← ∆∪ {(λ(l′), λ)} /* λ depends of λ(l′) */
16: Π← Π ∪ {w}
17: else

18: return {c} /* c is a con�ict */
19: else

20: choose w′∈Ω
21: ω(c)← {w,w′} /* w′ is watched instead of ¬l */
22: Π← Π \ {l}
23: return ∅ /* no con�ict occured */

Algorithm 6 AssertionLevel(γ, λ) [PO-CDCL]

Θ← {λ(l) | l ∈ γ}\{λ} /* Θ is the set of levels involved in the con�ict, except λ*/
Γ← {i ∈ Θ, @j ∈ Θ | i <∆ j} /* Γ is the set of maximal elements in Θ */
choose a ∈ Γ
return a

can stop watching c for unit propagations, but we have to make sure that w will not be
uninstantiated before ¬l, else c could become unit without being properly watched. This
is impossible with a total order on decision levels but could happen with a partial order.

AssertionLevel also has to be modi�ed, as indicated in Alg. 6. Partial order will allow
some freedom in the choice of the assertion level. In CDCL, it is uniquely de�ned as the largest
level in the set Θ = {λ(l) | l ∈ γ} \ {λ} of decision levels involved in the con�ict clause, minus
the current decision level. In PO-CDCL, due to the partial order, Θ may have several largest
elements. Each of these largest elements is eligible as a valid assertion level, so that the assertion
level can be arbitrarily picked amongst them.

Finally, we also modify Backtrack (see Alg. 7) since the goal of our method is to undo
less instantiations during this phase. CDCL resolves a con�ict by undoing all instantiations
which decision level is larger than the assertion level a. PO-CDCL performs a similar deletion,
except that it only deletes decision levels i such that a <∆ i (λ may not depend on a but must
obviously be deleted in any case). This deletion ensures the antisymmetry of ∆: if a level i such
that a <∆ i wasn't deleted, the search returning to level a may produce a propagation of level
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Algorithm 7 Backtrack(a) [PO-CDCL]

Λ← the set of all decision levels
for i ∈ Λ | (a <∆ i)or (i = λ) do

for v ∈ V |λ(v) = i do

σ(v)← undef

a depending on level i, so we would have simultaneously a <∆ i and i <∆ a. The antisymmetry
of ∆ is crucial to ensure that the assertion level of a con�ict is well-de�ned. Indeed, without
this property, the set of decision levels involved in a con�ict clause may not have any maximal
element.

Note that we should also always enforce ∀i 6= 0, 0 <∆ i; else, when backtracking to level 0,
it would be possible to make a propagation at top-level which depends on a decision.

4.2 Properties

In this subsection, we will prove some properties of PO-CDCL, including that it is correct,
complete and that it terminates. Most other properties we will prove are implicit or obvious
properties within the original CDCL, but are less straightforward in the case of a partial order.

Proposition 1. ∆ is antisymmetric.

Proof. Algorithm 5 only adds dependencies to the current decision level λ. To show the anti-
symmetry of ∆, it is thus su�cient to prove that no other level depends on λ at the moment it
becomes the current level. λ can be a newly created decision level, in which case it has initially
no dependency. Else, the search returned to λ because it has been chosen as the assertion level
for some con�ict. Then Backtrack deleted all decision levels which depended on λ. In both
cases, no non-empty level depends on λ.

Corollary 1. ∆ is a strict partial order.

De�nition 1. A propagation l is valid i� ∀a ∈ α(l), υ(a) = false.

Proposition 2. During a PO-CDCL solving, all propagations remain valid.

Proof. The only way to make a propagation invalid would be to delete a level to which a literal
from its antecedent belongs, without deleting the level of the propagation itself. Dependencies
added in Alg. 5 when a propagation occurs ensure that such a case can't happen.

De�nition 2. A SAT solver is propagation-complete i� when its Propagate function stops
without having detected a con�ict, no more clause is unit.

Lemma 1. Whenever Propagate terminates without encountering any con�ict, the following
propreties hold. All clauses not yet satis�ed watch two unde�ned literals. Satis�ed clauses may
watch true, false, or unde�ned literals, but each clause watches at most one false literal. If a sat-
is�ed clause watches a false literal w1, the second watched literal w2 is true, and λ(w2)≤∆λ(w1).

Proof. We will prove the lemma by recurrence on con�ictless calls to Propagate.

Initialization: Before the initial propagation round of the search, all variables are uninstanti-
ated, so all clauses are unsatis�ed and watch two unde�ned variables.
Assume a clause c whose two watched literals become false. Propagate will eventually
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check one on them and try to replace it by a true or unde�ned literal. If it fails, it means
that the clause is already unsatis�able before any decision was made, so the entire formula
is unsatis�able. If it succeeds, the clause now belongs to the next case.
Now assume a clause c with only one false watched literal w1. If the second watched
literal w2 is true, then c is true and λ(w1) = λ(w2) = λ0 so the property is true. If w2

is unde�ned, Propagate will look for a second non-false literal w3. If there is one, c
will watch w3 instead of w1. Else, it means that the clause is unit, so w2 is added to the
current assignment and c is then a true clause watched by one true and one false literal
of the same level.

Recurrence: Let's assume the property holds after the nth con�ictless call to Propagate.

If the property holds before the (n+ 1)th con�ictless call, then we can prove it still holds
after this call using the same reasoning as for the initialization phase. However, there may

be one or more con�ictual calls between the nth and (n + 1)th con�ictual call. We will
now show by another recurrence that after the backtrack following any of these con�ictual
calls (but before the learnt clause is added to the formula) the recurrence is veri�ed.
Let's assume the property holded after the previous backtrack (or after the last con�ictless
call in the case of the initialization). When a con�ict occurs, then several decision levels,
including the current level, are undone. After a backtrack, all clauses are then either in
a state verifying the recurrence property, or in a state reached by deinstantiating some
literals from such a recurrence state.
Let c be a clause, w1, w2 its watched literals and σ, σ′ the partial assignments resp. before
the con�ictual call and after the following backtrack (so σ′ ⊆ σ).

• If σ(c) = undef, then by recurrence σ(w1) = σ(w2) = undef. Since σ′ ⊆ σ, σ′(w1) =
σ′(w2) = undef so the property still holds.

• If σ(c) = true and σ(w1) = false, then by recurrence σ(w2) = true and λ(w2) ≤∆ λ(w1).

� If σ′(w2) = true, σ′(c) = true and the property still holds regardless of σ′(w1).

� Else σ′(w2) = undef. Since λ(w2) ≤∆ λ(w1), σ′(w1) = undef, so the property holds
regardless of σ′(c).

• If σ(c) = σ′(c) = true and σ(w1), σ(w2) 6= false, then the property holds regardless of
σ′(w1) and σ′(w2).

• If σ(c) = true, σ(w1), σ(w2) 6= false and σ′(c) = undef, then σ′(w1) = σ′(w2) = undef so
the property holds.

Corollary 2. After a con�ictless run of Propagate, no clause is false under the current
assignment.

Proposition 3. PO-CDCL is propagation-complete.

Proof. According to Lem. 1, after a con�ictless run of Propagate, all unsatis�ed clauses watch
two distinct unde�ned literals. Hence, none of these clauses is unit (which proves Prop. 3) or
false (which proves 2).

Theorem 1. PO-CDCL is correct.
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Proof. A SAT solver is correct i� any total assignment it returns is indeed a model of the
input formula, i.e. if it satis�es all clauses. A total assignment can only be returned by PO-
CDCL after a con�ictless run of Propagate. According to Cor. 2, no clause is false under this
assignment. As the assignment is total, no clause can be unde�ned either. So all clauses are
satis�ed, and the total assignment is a model.

Theorem 2. PO-CDCL is complete.

Proof. A SAT solver is complete i� it never erroneously reports a satis�able formula as being
unsatis�able. Lemma 3 of [22] proves the completeness of CDCL by showing that the empty
clause can be derived by recursively resolving the �nal con�ict clause against the antecedents of
its variables. This proof is also valid within CDCL because according to Prop. 2 all propagations
are valid, hence all literals of its antecendent are still false, except for the propagation itself. The
proof also shows that the resolution is �nite, since the process doesn't resolve against the same
variable twice. This is also still true in PO-CDCL, because ∆+ is a partial order (Cor. 1).

Theorem 3. PO-CDCL always terminates.

Proof. ∀i ∈ N, let Λi and ∆i be the set of decision levels and the associated partial order after
the �rst i instantiations in the PO-CDCL search (�at time i�). If the search terminates after
n instantiations, we will assume that ∀i > n, Λi and ∆i represent the state at the end of the
search. PO-CDCL as we described it never actually deletes any decision level or dependency,
so we can write ∀i < j ∈ N, Λi ⊆ Λj and ∆i ⊆ ∆j . Let us de�ne the (possibly in�nite) sets
of all decision levels and dependencies during the search: Λ∞ =

⋃
i∈N Λi, ∆∞ =

⋃
i∈N ∆+

i .
Thanks to the in�nite chain of inclusions on (Λi)i∈N and (∆i)i∈N, ∆∞ is a partial order on Λ∞,
and ∀i ∈ N, ∆∞ ∩ (Λi × Λi) is a partial order on Λi. Let Ψ be any total order extending ∆i.
Similarly, its restriction to Λi × Λi is a total order on Λi. We now have a total order on all
decision levels which is compatible with the local partial order at any point of the search.
∀i ∈ N, ∀j ∈ Λ∞, let us note ki(j) the number of variables instantiated at level j at time i

(or at the end of the search if it terminated after less than i instantiations).

ρi(j) =

{
0 if j = 0 or ki(j) = 0

|{k ∈ Λ∞ \ {0} | k <Ψ j and ki(j) 6= 0}|+ 1 else

is a function that orders all non-empty decision levels at time i according to Ψ. Finally, let us
de�ne

f(i) =
∑
j∈Λ∞

ki(j)

|V|ρi(j)+1
.

f(i) is de�ned, as in Lem. 1 from [22], such that one variable at a decision level j has
more weight that the sum of the weight all variables at higher decision levels. As in this
lemma, it proves that f(i) is a strictly growing function until the search �nishes. Indeed, when
some decision levels are uninstantiated, their weight is compensated by the assertion added
at assertion level, which is strictly lower than all undone levels.1 Similarly, the weight of a
decision level can decrease when a decision is taken in a formerly empty level with a lower ρ
order, but again their weight loss is compensated by the higher weight of this new decision. As
f(i) strictly grows as long as the search continues and can only take a �nite number of values,
the search is �nite.

1this proof assumes that for each con�ict we set that the con�ict level depends of the assertion level, which
has been omitted from the presented code but can be added without inconsistency.
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Algorithm 8 Analyze(φ)

/* φ is the false clause detected during unit propagation */
/* γ will be the con�ict clause produced by con�ict analyzis */
γ ← φ
while {|{l ∈ γ |λ(l) = λ}| > 1} do

/* there remains more than one literal of level λ in γ */
l← Last(γ, λ) /* pick the last instantiated literal of level λ in γ */
γ ← γ ⊗var(l) α(l) /* resolution of γ and α(l) on the variable of l */

De�nition 3. A learnt clause is non-redundant if obtained by resolving at least two clauses of
the formula. A con�ict is non-redundant if its analyzis produces a non-redundant learnt clause.

A learnt clause is useful if it becomes unit after the backtrack.

Proposition 4. All clauses learnt during a PO-CDCL are non-redundant and useful.

Proof. A shown by Alg. 8, if the con�ict clause is produced without any resolution, it means that
the false clause φ only contained one literal of level λ. This implies that before the propagation
round responsible for the con�ict, either φ was already false or it was unsatis�ed with only one
unde�ned variable. Both possibilities can be ruled out using the proof of Lem. 1. Hence all
clauses learnt during PO-CDCL are non-redundant.
Before the backtrack, γ contains by de�nition exactly one literal at the con�ict level. Since the
con�ict level is always undone by the backtrack, γ is unit after the backtrack unless another
decision level involved in the con�ict is undone. The latter case is impossible by de�nition of
the assertion level (see Alg. 6). Therefore γ is useful.

5 Experimental Results

In order to evaluate the practical e�ciency of PO-CDCL, we implemented PO-Glucose2 as
a modi�cation of state-of-the-art solver Glucose 1.0 [1]. Glucose was chosen because it has
ranked as one of the most e�cient solvers on application benchmarks during the last SAT
competitions and races [?] and is based on miniSAT [6] which has also been a regular winner
of these competitions.

Our implementation does not explicitely store the entire partial order ∆; instead, we only
keep track of all direct dependencies between decision levels. The algorithm only requires to
�nd all levels depending directly or indirectly of candidate assertion levels during the Asser-
tionLevel procedure, which can be easily done by a few recursive traversals of the dependency
tree from these levels. Maintaining the full transitive relation ∆ would require a time-expensive
enforcement of transitivity after each new propagation, which is much less e�cient according
to our preliminary tests.

For the choice of the assertion level, we kept in our experiments the basic CDCL strategy by
choosing amongst candidate assertion levels the latest created one. We don't modify restarts
(they still undo all instantiations except top level assertions), nor their frequency.

Glucose uses phase saving by default. As we partly designed PO-CDCL as an alternative
to phase saving, we disabled it in our implementation PO-Glucose. Moreover, preliminary

2Source code of PO-Glucose is available at http://www.info2.uqam.ca/~villemaire_r/Recherche/SAT/

120210partial_order_glucose.tar.gz
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Table 1: Compared performances of Glucose without phase saving (TO), Glucose with phase

saving (TO-phase) and PO-Glucose (PO) on the set of 300 application benchmarks from the SAT

2011 competition. The �rst line shows the total solving time for each implementation (tot.), counted

in days, hours and minutes. Each instance was given a time limit of one hour, the number of instances

that couldn't be solved within that limit is indicated in column #to. The second line gives the total

number of clause checks needed for solving all instances (checks are counted in billions). Limit was set

to 100 billions of checks for each instance, the number of unsolved instances is again given in column

#to.

TO TO-phase PO

#to tot. #to tot. #to tot.

time (d:hh:mm) 122 6d02h05m 111 5d15h47m 144 7d03h23m

clause checks (Bn) 113 13 911 103 12 869 127 15 200

experiments indicated us that enabling phase saving in PO-Glucose almost always caused a
signi�cation degradation of performances. In order to make sure that performance di�erences
were not solely caused by disabling phase saving, PO-Glucose was compared with the original
Glucose implementation including phase saving, but also with a slight variant where phase
saving was disabled. Experiments were conducted on a 3.16 GHz Intel Core 2 Duo CPU with
3 GB of RAM, running a Ubuntu 11.10 OS.

Our tests con�rm that in practice the PO-CDCL algorithm is able to save instantiations
compared to regular CDCL during the solving of any non-trivial benchmark, although the
average number of instantiations saved per con�ict varies a lot amongst benchmarks (from less
than one to several thousands).

In order to test the behaviour of PO-Glucose on a wide range of SAT benchmarks, we
ran it on the set of 300 application benchmarks from the SAT 2011 Competition. Results are
summarized in Table 1. They clearly show that in general PO-Glucose tends to degradate
solving performances compared to Glucose, no matter if phase saving is enabled or not. If we
compare PO-Glucose withGlucose with phase saving (the best performing of bothGlucose
variants), only 26 of the 300 instances are solved faster by PO-Glucose, while 153 are to the
contrary solved slower than by Glucose. Glucose is globally slightly less e�cient when phase
saving is disabled, but even then it still clearly outperforms PO-Glucose.

This counterperformance is partly due to the cost of maintaining and handling dependencies
during solving. As we pointed it out, unit propagation is one of the most frequent operation
performed during SAT solving and is often responsible for the largest part of the solving time.
For all propagations, PO-CDCL requires to ensure that the current decision levels depends on
the decision levels of all variables in the antecedent clause. This task is relatively lightweight,
but as it occurs very frequently it results in a sensibly slower solving: on average, PO-Glucose
performs about 30% less clause checks than Glucose in the same time, and in some extreme
cases this decrease can reach 75%. Our implementation of PO-CDCL thus starts with a handi-
cap over the regular CDCL and has to drastically reduce the solving trace in order to outperform
it in terms of solving time.

Also, PO-CDCL actually follows a longer search path than CDCL on many instances, despite
our original intuition. For instance, amongst the 153 instances on which PO-Glucose takes
more time than Glucose, it also performs more clause checks on 143 of them. Since the CDCL
algorithm is very sensitive to variations, the partial order may have negative side-e�ects on some
aspects of the algorithm, for instance on the dynamic VSIDS heuristic used to choose decision
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Table 2: Compared solving time of Glucose without phase saving (TO), Glucose with phase saving

(TO-phase) and PO-Glucose (PO) on some example instances. For each instance, direct dep. gives

the average direct dependency density δ(∆dir), a lower bound of the actual density δ(∆), during the

execution of PO-Glucose. AProVE07-03, homer14.shuffled, post-c32s-gcdm16-23 and k2fix_gr_rcs_w9.shuffled

are taken from the application benchmarks of the SAT 2011 competition. 7pipe_k and 12pipe_bug4

are two microprocessor formal veri�cation benchmarks taken respectively from the pipe_unsat_1.0 and

pipe_sat_1.0 series.

TO TO-phase PO direct dep.

AProVE07-03 6m24s 7m16s 16m57s 69.13%

homer14.shuffled 7m51s 10m51s 25m14s 39.47%

post-c32s-gcdm16-23 1m18s 1m20s 3m41s 33.36%

k2fix_gr_rcs_w9.shuffled >1h00m00s 30m20s 9m13s 4.51%

7pipe_k 23m36s >1h00m00s 3m07s 3.92%

12pipe_bug4 >1h00m00s 18m49s 4m11s 2.07%

variables. We think the issue is that on many instances the advantages gained from using a
partial order are outweighted by these drawbacks.

The principle of PO-CDCL being to take advantage of some independence between decision
levels, the obvious question is whether this is a frequent phenomenon in SAT solving. During
the solving of a problem, if decision levels often depend on all or most previously created
levels, PO-CDCL will behave very similarly to CDCL. In that case the overhead of PO-CDCL
obviously comes with little bene�t. The independence between decision levels can be measured
by the density of the partial order ∆.

At any point of the search, let l be the current number of decision levels (not includ-
ing level 0). We will de�ne the cardinality of ∆ as |∆| = |{(i, j), i <∆ j}|, i.e. the num-
ber of dependencies between decision levels. The maximal cardinality for l decision levels is
|∆|max(l) = (l− 1)(l− 2); it is reached i� ∆ is a total order on the l levels. The current density

of ∆ is then de�ned by δ(∆) = |∆|
|∆|max(l) . A low density (near 0) means that there are very

few dependencies between decision levels compared to the maximum possible number of depen-
dencies given the current number of decision levels. Conversely, a value of δ(∆) approaching 1
denotes a high amount of dependencies and means that ∆ is close to de�ning a total order on
decision levels. Considering the previous discussion, we expect PO-Glucose to perform better
on instances with a low average value of δ(∆) during its execution.

Table 2 shows this average value on some example instances, or more exactly a lower bound of

it: the average value of δ(∆dir) = |∆|dir
|∆|max(l) where ∆dir is the set of direct dependencies between

decision levels. These examples seem to validate our intuition that PO-Glucose has more
chances to ameliorate performances on instances with low level dependencies. Instances that
PO-Glucose solves signi�cantly faster than both Glucose variants often have only around
5% or less of the maximum possible direct dependencies. On the contrary, PO-Glucose tends
to generally degradate the solving performance on instances having an average direct density
of 30% or more. Partial order CDCL thus has indeed more chances to be e�cient on instances
where decision levels interact moderately with each other.

Although most SAT instances we thoroughly examined have little independence during
the search, we identi�ed at the opposite some benchmark series where all instances share a
low dependency level, resulting in most cases in signi�cant solving speedups. For instance,
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Table 3: Solving performances of total order Glucose without (TO) and with (TO-phase) phase saving and

PO-Glucose (PO) on two benchmark families of formal veri�cation of microprocessors. All tests were run

with a time limit of 1 hour. For each test the necessary amounts of time (in seconds) and of clause checks (in

millions of checks) is given, and the best performance amongst the three solvers is printed in bold. Average

direct density of ∆ is respectively 1.5% on pipe_sat_1.0 and 5% on pipe_unsat_1.0. Some instances of pipe_unsat_1.0

have been ommited: 2pipe_k, which in solved in less then 1s and 1M clause checks by all solvers, and 10pipe_k to

14pipe_k, which all 3 solvers are unable to solve within the time limit.

time (s) checked clauses (M)

TO TO-phase PO TO TO-phase PO

pi
pe

_s
at

_1
.0

bug1 >3 600 15 9 >68 766 427 20

bug2 >3 600 722 17 >30 290 12 122 117

bug3 1 875 178 2 246 22 776 5 344 30 485

bug4 >3 600 1 702 251 >42 762 52 933 3 236

bug5 115 34 25 2 261 1 181 265

bug6 1 750 354 138 35 695 10 056 1 525

bug7 >3 600 783 389 >21 687 21 393 3 902

bug8 >3 600 1 569 3 230 >84 337 35 203 31 314

bug9 >3 600 5 13 >66 840 73 82

bug10 8 1 525 282 145 36 226 3 089

total >25 348 6 887 6 601 >375 562 174 962 74 034

pi
pe

_u
ns

at
_1

.0

3pipe_k 0 2 1 13 82 15

4pipe_k 6 22 15 217 876 385

5pipe_k 13 68 37 520 2 604 911

6pipe_k 23 77 9 847 2 709 173

7pipe_k 1 416 4 727 187 56 905 228 327 3 977

8pipe_k 3 538 4 059 1 058 139 673 94 965 27 288

9pipe_k 174 258 150 5 948 7 187 2 006

total 5 171 9 212 1 456 204 123 336 750 34 756

table 3 shows detailed statistics obtained on two benchmark sets from formal veri�cation of
microprocessors [21]. These benchmarks have particularly low dependency between decision
levels, as shown in the caption of Table 3 and on a couple of examples in Table 2, and PO-
Glucose signi�cantly outperforms both versions of Glucose on most instances. Moreover, the
management of dependency structures is particularly time-expensive on these instances. Thus
the performance of PO-Glucose is even more signi�cant when purely algorithmic indicators
are considered, such as the total number of checked clauses: speedups up to one or even two
orders of magnitude are common. This means that on these instances partial ordering CDCL
consistently manages to explore the search space much more e�ciently than the regular CDCL
algorithm. Moreover, one family contains satis�able benchmarks and the other unsatis�able
benchmarks. Thus PO-CDCL can be e�cient not only for reaching quickly a model of the
instance, but also for pruning the search space.
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6 Conclusion

In this paper, we addressed the issue of information loss in CDCL algorithms during con�ict-
directed backtracks. We designed a variation of CDCL that de�nes a partial order on deci-
sion levels, and showed this order allows to undo less instantiations during backtracks, while
keeping all essential properties of the algorithm. Finally, we implemented our algorithm in a
state-of-the-art SAT solver and evaluated its e�ciency. We noticed that PO-CDCL performs
particularly well on benchmarks where the partial order as a low average density during the
search. Moreover, some series of benchmarks are characterized by a consistently low density
and can be solved signi�cantly faster by PO-CDCL.

We are currently exploring some avenues to further ameliorate performances on instances
that we already identi�ed as relevant to partial order CDCL. For instance, the choice of the
assertion level was set rather arbitrary in the experiments presented above, but using more
relevant strategies to choose this level can lead to even better performances on the formal
veri�cation instances on which we focussed in this paper.
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Abstract

We present the tool qbf2epr which translates quantified Boolean formulas (QBF) to
formulas in effectively propositional logic (EPR). The decision problem of QBF is the
prototypical problem for PSPACE, whereas EPR is NEXPTIME-complete. Thus QBF is
embedded in a formalism, which is potentially more succinct. The motivation for this work
is twofold. On the one hand, our tool generates challenging benchmarks for EPR solvers.
On the other hand, we are interested in how EPR solvers perform compared to QBF solvers
and if there are techniques implemented in EPR solvers which would also be valuable in
QBF solvers and vice versa. Furthermore, we provide an improved encoding of QBF in
EPR based on dependency schemes which are a powerful concept in QBF solving.

1 Motivation

Propositional logic has proven itself to be an extremely valuable formalism for solving a wide
range of reasoning problems of industrial scale. With its decision problem (SAT) being the
prototypical problem for the complexity class NP, propositional logic serves not only as the host
language for a wide range of application problems like planning and verification, but also is an
enabling technology for large reasoning frameworks [20]. Building around this success story,
research has been focused on related formalisms which have the same expressive power as SAT,
but whose additional language features allow exponentially smaller problem encodings.

Two of such formalisms are quantified Boolean formulas (QBF) [17] and effectively proposi-
tional logic (EPR) [14]. While QBF extends the language of propositional logic with quantifiers
over propositional variables, EPR is a syntactically restricted subset of first-order logic. As
consequence, the majority of recent QBF solvers extend techniques found in modern SAT solvers,
whereas EPR solvers are strongly inspired by first-order theorem provers. From a practical
point of view, it would be interesting to know if there are benefits in transferring the reasoning
techniques of one formalism to the other formalism. In order to directly compare QBF and
EPR solvers, benchmarks are required which can be run by both kinds of solvers. One way of
obtaining such benchmarks is embedding the “weaker” QBF in the “stronger” EPR. To this
end, we present the tool qbf2epr which performs such an encoding. Therefore, we shortly revisit
the basics of EPR and QBF in the next section, which are required for the embedding of QBF
in EPR presented in Section 3. This embedding is implemented in the tool qbf2epr. Experiments

∗This work was partially funded by the Vienna Science and Technology Fund (WWTF) under grant ICT10-018
and by the Austrian Science Fund (FWF) under NFN Grants S11408-N23 and S11409-N23 (RiSE).
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performed with recent QBF and EPR solvers are presented in Section 4. For improving the
embedding of QBF in EPR, we then consider dependency schemes in Section 5. Dependency
schemes are a powerful concept in QBF solving, which provide a relaxed notion of quantifier
dependencies. We conclude this paper with a discussion of future research directions.

2 Background

In the following, we introduce the concepts and terminology used in this paper necessary to
describe the transformation of a QBF to an equisatisfiable EPR formula. In particular, we recap
the formalisms EPR and QBF. We assume familiarity with propositional logic as well as with
first-order logic.

Effectively Propositional Logic (EPR). The formulas of EPR (also known as Bernays-
Schoenfinkel class) form a subset of first-order predicate logic (FOL) consisting of formulas with
the structure

∃X∀Y. ρ ≡ ∃X∀Y.
n∧

i=0

mi∨
j=0

lij

where X and Y are disjoint sets of variables and ρ is a function free first-order formula in
conjunctive normal form over X and Y . When transforming such a formula to Skolem normal
form, the existentially quantified variables are simply replaced by new constants. If the universally
quantified variables are grounded by all combinations of these constants, then the resulting
formula is an exponentially larger representation of the EPR formula in propositional logic.
In this paper, we use standard first-order semantics, which is specified over a domain D and
an interpretation function ι : FOL → {T,F}. For our purposes, the domain of interest is
binary. Several important use cases for EPR have been identified, including LTL bounded model
checking [18] or reasoning with quantified bit vectors [9, 27].

Quantified Boolean Formulas (QBF). QBF extend propositional logic with quantifiers
over propositional variables, i.e., a QBF may contain a subformula ∀qx.ψ or ∃qx.ψ. The formula
ψ is again a QBF and is called scope of variable x. In this paper, we mainly consider QBF Π.ψ
in prenex conjunctive normal form (PCNF) with Π = Q1X1 . . . QnXn, where the Xi are disjoint
sets of variables, i denotes the quantification level of the variables in Xi, Qj ∈ {∀q,∃q}, and ψ
is a propositional formula in conjunctive normal form. A formula in conjunctive normal form
consists of a conjunction of clauses. A clause is a disjunction of literals. A literal is a variable
or the negation of a variable. Note that we annotate the connectives, quantifiers, and truth
constants with the superscript q in order to distinguish them from the corresponding symbols in
EPR. A QBF ∀qxΠ.ψ is satisfiable iff Π.ψ[x\⊥q] and Π.ψ[x\>q] is true. Respectively, a QBF
∃qxΠ.ψ is true iff Π.ψ[x\⊥q] or Π.ψ[s\>q] is true. QBF find their application for instance in
various verification scenarios [3].

3 From QBF to EPR

In this section, we discuss the translation of QBFs in prenex conjunctive normal form to EPR
formulas. This translation is based on the results presented in [2, 21]. Benedetti [2] introduced
the Skolemization-based QBF solver sKizzo which rewrites QBF to a first-order formula, before
reducing it to a propositional formula. Piskac et al. illustrate the encoding of quantified formulas
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with equality over a finite domain to EPR [21] which we specialize to standard QBF. The
translation is straightforward, but optimized with respect to specific QBF properties.

3.1 Transformation of a QBF to a First-Order Formula

In this first step, we reformulate the QBF problem as an instance of first-order predicate logic
as follows.

Definition 1. The embedding [[]]p : QBF → FOL with respect to the unary predicate symbol p
is given by

[[∃qx.φ]]p = ∃x.[[φ]]p

[[φ ∨q ψ]]p = [[φ]]p ∨ [[ψ]]p

[[x]]p = p(x)

[[>q]]p = p(true)

[[∀qx.φ]]p = ∀x.[[φ]]p

[[φ ∧q ψ]]p = [[φ]]p ∧ [[ψ]]p

[[¬qx]]p = ¬p(x)

[[⊥q]]p = p(false)

The embedding wraps the predicate p around the variables and QBF truth constants >q

and ⊥q are mapped to the dedicated function symbols true and false. Whereas in predicate
logic variables and in consequence the quantifiers operate on the term level, the situation is
different in QBF. Here the variables incarnate predicates. To lift the variables to term level, we
introduce a predicate p of arity one, for which it holds that ι(p(true)) = T and ι(p(false)) = F.

Lemma 1. Let φ be a QBF and let p be a unary predicate symbol. Then φ is satisfiable iff the
first-order formula ([[φ]]p ∧ p(true) ∧ ¬p(false)) is satisfiable.

Lemma 1 can be easily shown by induction over the formula size. It describes the embedding
of arbitrary structured QBF to FOL. In the following, we consider QBFs in prenex conjunctive
normal form only. This is no severe restriction, because the transformation to PCNF is
polynomial and most QBF benchmarks are only available in PCNF anyhow. We impose no
restriction on the number of quantifier alternations. If a QBF φ has a prefix with n quantifier
alternations, then the FOL formula [[φ]]p obviously has n quantifier alternations as well.

3.2 Elimination of Existential Quantifiers

In order to obtain a FOL formula with the prefix structure ∃X∀Y , we substitute existentially
quantified variables which are in the scope of universally quantified variables a1, . . . , am by
a Boolean function with a1, . . . , am as arguments. This technique of symbolic representation
of quantifier dependencies is know as Skolemization [24]. In automated theorem proving,
Skolemization is used to eliminate one type of quantifiers in a satisfiability preserving manner.

Definition 2. Let χ = ∃x1 . . . ∃xn∀a1 . . . ∀am∃yΠ.ρ be a FOL formula in PCNF. Then the
quantifier ∃y can be eliminated as follows

∃x1 . . . ∃xn∀a1 . . . ∀am∃yΠ.ρ; ∃x1 . . . ∃xn∀a1 . . . ∀amΠ.ρ[y\fy(a1, . . . , am)]

where fy is a function symbol not occurring in χ. The function sk(χ) applies this substitution
on FOL formula χ until fixpoint.

Obviously, in Definition 2 an existential variable is replaced by a function with all universal
variables as arguments which have a lower quantification level. In Section 5, we will provide an
optimization of this substitution in order to obtain functions with less parameters.
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Lemma 2. Let ρ be a FOL formula in prenex conjunctive normal form and let ρ′ = sk(ρ). Then
it holds that (i) the prefix of ρ′ contains at most one quantifier alternation, (ii) if ρ′ has one
quantifier alternation, then it has the structure ∃X∀Y , (iii) ρ′ is satisfiable iff ρ is satisfiable.

Points (i) and (ii) of Lemma 2 follow from the construction of sk(.), and point (iii) is an
application of Skolemization [24]. With the introduction of function symbols, we move further
away not only from the language of QBF but also from EPR, although we have now the required
structure of the quantifier prefix. To obtain an EPR formula, the function symbols must be
eliminated.

3.3 Removal of Function Symbols

In the last step, we have introduced function symbols which allowed us to symbolically represent
quantifier dependencies and to reduce the prefix to the required structure having only one
alternation. Since the language of EPR does not allow function symbols, these have to be
removed from the formula again.

Definition 3. The function func(ρ) applies the following rewriting rule

p(f(a1, . . . , am)) ; pf (a1, . . . , am)

on FOL formula ρ until fixpoint where pf is a predicate and f is a function symbol.

We are interested in interpretations of the functions over a two valued domain, hence function
symbols can also be seen as predicates. Therefore we can remove the enclosing predicate symbol
for such functions.

Lemma 3. Over a two valued domain, the rewriting function func(ρ) preserves satisfiability.

Finally, we have all the building blocks required to transform a QBF to an EPR formula
which manifests in the following proposition.

Proposition 1. Let φ be a formula in prenex conjunctive normal form and let p be a symbol not
occurring in φ. Then (func(sk([[φ]]p))∧ ptrue ∧¬pfalse) is an EPR formula which is equisatisfiable
to φ.

Proposition 1 follows from Lemma 1, Lemma 2, and Lemma 3. The following example
illustrates the translation of a QBF to an EPR formula.

Example 1. Given the QBF φ = ∃qa∃qb∀qx∀qy∃qc∃qd.(a ∨q x ∨q c) ∧q (a ∨q b) ∧q (b ∨q y ∨q d)
the following three steps have to be performed.

1. Transformation to FOL.
We embbed φ in first-order logic w.r.t. predicate p and obtain

[[φ]]p = ∃a∃b∀x∀y∃c∃d.(p(a) ∨ p(x) ∨ p(c)) ∧ (p(a) ∨ p(b)) ∧ (p(b) ∨ p(y) ∨ p(d)).

2. Elimination of Existential Quantifiers.
In order to obtain the required prefix structure, we apply Skolemination and eliminate all
existential quantifiers not occurring in the first quantifier block, i.e., ∃c and ∃d. Then

sk([[φ]]p) = ∃a∃b∀x∀y.(p(a)∨ p(x)∨ p(fc(x, y)))∧ (p(a)∨ p(b)∧ (p(b))∨ p(y)∨ p(fd(x, y))).

3. Elimination of Function Symbols.
Finally, we lift the function symbols to predicats resulting in the formula

func(sk([[φ]]p)) = ∃a∃b∀x∀y.(p(a)∨ p(x)∨ fc(x, y))∧ (p(a)∨ p(b)∧ (p(b))∨ p(y)∨ fd(x, y)).
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Figure 1: Comparison DepQBFwith iProver and Vampire.

4 Evaluation

The embedding of QBF in EPR as described in the previous section is implemented in the tool
qbf2epr [1], with input format QDIMACS, the standard format for QBFs in prenex conjunctive
normal form [10]. The produced formulas are formulated in the TPTP language [25]. We
investigated how a state-of-the-art EPR solver performs on the QBF benchmark set of the
evaluation 2010 [19]. As EPR solver we used iProver [12], which won the EPR devision of the
CASC competition [26] in the last years. As a reference QBF solver, we ran DepQBF [16].
DepQBF is a search-based solver relying on the QDPLL algorithm for QBF [7]. QDPLL is a
QBF-specific variant of the DPLL algorithm for propositional logic. Given a QBF in QDIMACS
format, DepQBF processes the formula without any modifications whereas iProver operates on the
EPR embedding generated by qbf2epr. All considered QBFs are in PCNF already, hence there
was no need for explicit clausification in iProver in our experiments. Table 1 summarizes our
main results.1 The benchmark set contains 568 formulas.

As probably expected, the QBF solver DepQBF outperforms iProver in terms of the number of
solved instances as well as in terms of time and memory requirements. DepQBF solved more than
twice as many instances in half of average time spent by iProver on the instances translated by
qbf2epr (cf. left subfigure of Figure 1). The translation to EPR failed on four out of 568 formulas
due to limited time or memory. This does not influence the overall picture as none of these
four formulas were solved by DepQBF. On average, translation time spent by qbf2epr was 13.33
seconds (in parentheses next to 673.50, the average run time of iProver). Average memory usage
of DepQBF is lower by a factor of 40. Note that iProver ran out of memory on 237 instances, which
also contributes to the median time of 900 seconds, as we treat these situations like running out
of time.

If we focus on instances which were solved by both DepQBF and iProver, then again instances
were solved faster and with less memory by DepQBF in their native QBF encoding. The
performance of iProver is closest to DepQBF on unsatisfiable instances, where iProver spends
50% more time on average. This observation is also related to 21 instances which were solved

1Setup: 64-bit Ubuntu Linux 9.04, Intel R©Q9550 2.83 GHz with 900 seconds / 7 GB total time and memory
limit. Exceeding the memory limit is counted as a time out. We used iProver version 0.8.1 and an internal version
of DepQBF. Binaries of all tools and log-files are available online [1].
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Solved SAT UNSAT Avg. Time Med. Time Avg. Mem. Med. Mem.

DepQBF 372 166 206 334.60 29.92 93.3674 22.2
iProver 155 51 104 673.50 (13.33) 900 3924.48 3673.0

Only formulas solved by both iProver and DepQBF

DepQBF
134 44 90

28.08 0.09 19.056 2.55
iProver 54.87 3.62 432.5 85.60

Only satisfiable formulas solved by both iProver and DepQBF

DepQBF
44 44 –

2.60 < 0.01 4.02 < 0.01
iProver 36.94 0.48 120.548 29.10

Only unsatisfiable formulas solved by both iProver and DepQBF

DepQBF
90 – 90

40.54 0.18 26.4067 7.35
iProver 63.63 5.54 585.01 167.15

21 formulas solved by iProver but not by DepQBF

iProver 21 7 14 166.43 127.89 1505.07 616.9

Table 1: Performance comparison of DepQBF and iProver.

by iProver but not by DepQBF. From those 21 instances, 14 are unsatisfiable. Successful QBF
preprocessing techniques like blocked clause elimination [5] showed only little improvements on
the performance of the EPR solver.

Apart from the QDPLL-based solver DepQBF, we considered the QBF solver Quantor [4], which
is based on quantifier elimination. Quantor solved 203 instances (99 satisfiable, 104 unsatisfiable)
in 590.15 seconds average time. Although Quantor solves fewer instances than DepQBF, the results
indicate that QDPLL and quantifier elimination, the two major approaches for QBF solving,
perform better on QBF than iProver does on translated instances.

Note that iProver solved 37 unsatisfiable instances which were not solved by Quantor. A closer
look at the set of formulas exclusively solved by iProver (and by none of the two QBF solvers) seems
to suggest that techniques applied in iProver are particularly beneficial for solving unsatisfiable
QBFs. Many of these exclusively solved formulas encode problems of black box bounded model
checking (BMC) [11] (family biu* in the benchmark set). Solving BMC encodings in QBF and
EPR is in general considered to be challenging [3, 9].

Additionally, we were interested how a first-order theorem prover handles the translated QBFs.
We therefore ran the same experiment with the state-of-the-art theorem prover Vampire [22].
Vampire solved 65 formulas (24 satisfiable, 41 unsatisfiable). A comparison to DepQBF is shown
in the right part of Figure 1. Again several instances of black box bounded model checking are
included in the set of solved formulas.

5 From QBF to EPR with Dependencies

The embedding of QBF in EPR as introduced in Section 3 always included all universal variables
of lower quantification level in the Skolem function of an existential variable, even if they were
independent of each other. In order to reduce number of arguments the Skolem functions, we
clarify the notion of (in)dependence based on a QBF specific concept called dependency scheme
and evaluate the impact of this optimization on the runtime of the EPR solver.
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5.1 QBF Dependency Schemes

Most state-of-the-art QBF solvers use prenex conjunctive normal form as introduced in Section 2
as input format. On the one hand, PCNF supports sophisticated reasoning techniques and allows
for highly optimized data structures, but on the other hand structural information which might
be valuable for the solving process is blurred by the transformation to PCNF. For example, in
general it is not given that a formula consists of a quantifier prefix and the propositional matrix.
To obtain the required structure, prenexing has to be performed which refers to the satisfiability
preserving transformation of shifting all quantifiers outside the formula.

Whereas in the original formula the quantifiers are arranged in a tree established by the
nesting of the scopes, prenexing flattens this tree into a linear list. So a much stronger order is
imposed on the variables, which is restrictive for the solving process. Since prenexing is not
deterministic, multiple prenexing strategies are often applicable. It has been shown that the
selection of the wrong strategy adversely influences the solving time [8]. Therefore, solvers are
strongly dependent on the normalform transformation tool, if the prefix is simply processed
from left to right.

To overcome this restriction, dependency schemes [23] have been introduced which allow
for relaxing the prefix ordering without changing the truth value of a formula. A dependency
scheme D is a binary relation over the variables of a QBF expressing (in)dependence of two
variables. A variable y depends on variable x iff (x, y) ∈ D. Consider the QBF φ = ∀qx∃qy.ψ
with (x, y) 6∈ D. Then φ is equivalent to ∃qy∀qx.ψ, i.e., if two variables are independent, then
their quantifiers may be swapped. The prenex directly implies a trivial dependency scheme
P where (x, y) ∈ P iff variable x occurs before variable y in the prefix. As in the case of P ,
dependency schemes may contain spurious dependencies. These spurious dependencies may
be eliminated by a stronger dependency scheme, but dependencies crucial for the truth value
of a formula may never be omitted. Less spurious dependencies contained in a dependency
scheme imply more freedom for variable selection. It can be shown that there exists one unique
optimal dependency scheme, but its computation is in PSPACE. Since the computation of the
optimal dependency scheme is as hard as solving a QBF, it is not practically feasible. Therefore,
non-optimal, but nevertheless powerful dependency schemes are used for QBF solving. For a
detailed survey on theory and practice of dependency schemes in QBF solver, we kindly refer
to [15].

5.2 Translation to EPR with Dependency Schemes

In the following, we extend Definition 2 with a dependency scheme in order to reduce the number
of arguments of the Skolem functions.

Definition 4. Let φ be a QBF in PCNF with a dependency scheme D. Further, let χ = [[φ]]p =
∃X∀A∃yΠ.ρ be an embedding of φ in FOL, where X and A are sets of variables (and Π the
rest of the quantifier prefix). Then the quantifier ∃y can be eliminated as follows

χ; ∃X∀AΠ.ρ[y\fy(a1, . . . , ak)]

where (ai, y) ∈ D, |{ai|(ai, y) ∈ D}| = k, and fy is a function symbol not occurring in χ. The
function skD(χ) applies this substitution on FOL formula χ until fixpoint.

Note that Definition 4 does not refer to any specific dependency scheme. If we would use the
dependency scheme induced by the quantifier prefix, then we would obtain the same translations
as with Definition 2.
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Lemma 4. Let ρ be a FOL formula in prenex conjunctive normal form obtained from a QBF
φ with dependency scheme D. Further, let ρ′ = skD(ρ). Then it holds that (i) the prefix of ρ′

contains at most one quantifier alternation, (ii) if ρ′ has one quantifier alternation, then it has
the structure ∃X∀Y , (iii) ρ′ is satisfiable iff ρ is satisfiable.

Whereas (i) and (ii) directly follow from the construction of skD(), (iii) holds because it can
be shown that two QBFs in PCNF are equivalent if they have the same matrix and the same
quantifiers, and the quantifier ordering of both obey the same dependency scheme.

Example 2. The QBF ∃qa∃qb∀qx∀qy∃qc∃qd.(a ∨q x ∨q c) ∧q (a ∨q b) ∧q (b ∨q y ∨q d) with
dependency scheme D = {(a, x), (x, c), (b, y), (y, d)} is equisatisfiable to the EPR formula

∃a∃b∀x∀y.(p(a) ∨ p(x) ∨ fc(x)) ∧ (p(a) ∨ p(b)) ∧ (p(b) ∨ p(y) ∨ fd(y)).

5.3 Implementation and Evaluation

The QBF solver DepQBF [16] which we already applied for the evaluation in Section 4 uses
the standard dependency schema [23] in a DPLL-based decision procedure and provides a very
efficient implementation for its calculation. The standard dependency scheme is calculated by
analyzing the structure of a formula in terms of connections between variables in sequences of
clauses. The dependency scheme of Example 2 is a standard dependency scheme. There are
dependencies between a and x as well as between x and c, because these variables occur in the
same clause. The same holds for b and y and y and d. However, there is no dependency between
d and x as well as c and y. In consequence, we may replace c by fc(x) and d by fd(y). A formal
description of the standard dependency scheme can be found in [23].

We extended DepQBF in such a way that it provides a dependency service, i.e., it can be
called with a formula as argument, and then compute pairs of dependent variables. qbf2epr uses
this service to obtain the universal variables on which a given existential variable depends. Then
only these variables are included in the Skolem function.

With the improved translation, we performed the same evaluation as before using iProver
as EPR solver. With the dependency scheme enabled, 104 unsatisfiable formulas as well as 51
satisfiable formulas were solved, e.g. exactly the same number as before without dependencies.
However, the usage of dependency schemes reduced the over all runtime by more than 1000
seconds. Details are available at [1].

6 Conclusion and Future Work

We showed how to translate QBF to EPR resulting in challenging benchmarks for testing and
evaluating EPR solver. The tool qbf2epr is available at [1]. EPR as well as QBF are promising
formalisms for the encoding of a multitude of verification problems [9, 18, 20, 27] for which
probably no succinct encoding in SAT can be found. Although both are closely related to SAT,
QBF and EPR solving approaches differ profoundly. In first-order theorem proving for example,
instantiation-based approaches result quite naturally in a decision procedure for EPR [13] which
might also be interesting for QBF. In our experiments we observed that there exist formulas in
the QBF standard benchmark set which can be solved by the EPR solver iProver but not by
specialized QBF solvers.

This points out that there might be techniques used in EPR solving which might also be
valuable for QBF solvers and confirms observations of [27] where a similar behavior for quantified
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bit vector formulas was experienced. Therefore, more experiments have to be conducted and
the implemented inference techniques have to be compared rigorously. QBF solvers quite
substantially outperform EPR solvers on the considered QBF benchmarks, and thus it would
be interesting to investigate if and how EPR solving can benefit from QBF solving techniques
also on other instances. Besides the additional benchmarks, qbf2epr offers an additional benefit
to the developers of EPR solvers. Now QBF specific development tools like fuzzers and delta-
debuggers [6] can be directly used for the development of EPR solvers.

We further showed, how the presented embedding is extended to take independencies between
variables into account. First, we considered only the order of the variables imposed by the prefix.
In an improved variant of the embedding, we use dependency schemes for reducing the number
of arguments of the Skolem functions.

However, the comparison between the QBF and EPR solvers was not fair in the following
sense. EPR allows for a potentially more succinct encoding of application problems than QBF
due to the richer language. Nevertheless, we provided a direct translation of the QBF encoding
to the EPR solver, which does not benefit from EPR language features. In future work, it would
be therefore interesting to investigate if more sophisicated translations of the QBFs are possible.
For a fair evaluation, application problems shall be directly encoded in QBF and EPR allowing
a direct comparison of the solvers.

Acknowledgements. The authors would like to thank Robert Aistleitner and Gregor Dorfbauer
for implementing the original version of the presented tool as part of a student project.
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Abstract

This paper introduces MetTeL2, a tableau prover generator producing Java code from
the specification of a logical syntax and a tableau calculus. It is intended to provide an
easy to use system for non-technical users and allow technical users to extend the generated
implementations.

1 Introduction

Building a platform for automatically generating provers from the definition of a logic is a
challenging task. As the problem of generating a deduction calculus from the definition of a
logic is highly undecidable, the best that we can hope for is technology for solving the problem
for certain restricted cases. The tableau method was introduced in the 1950s by Beth and
Hintikka [8, 16]. With origins in the work of Gentzen in the 1930s [13] and thoroughly studied
by Smullyan in the 1960s [29], it has become one of the most popular deduction approaches in
automated reasoning. Tableau methods in numerous forms exist for various logics and many
implementations of tableau provers are available.

Based on the collective experience in the area our recent research has been concerned with
trying to develop a framework for synthesising tableau calculi from the specification of a logic.
The tableau synthesis framework introduced in [27] effectively describes a class of logics for
which tableau calculus synthesis can be done automatically. This class includes many modal,
description, intuitionistic and hybrid logics. Our long-term goal is to synthesise not only tableau
calculi, but also implementations of the tableau calculi as tableau provers.

As a step towards this goal we have implemented a tool, called MetTeL2, for automatically
generating code of a tableau prover from user-defined specifications of a syntax and a set
of tableau rules for a logical theory. The syntax and tableau rule specification languages of
MetTeL2 are designed to be as simple as possible for the user and to be as close as possible
to the traditional notation used in logic and automated reasoning textbooks. At the moment
the syntax specification language is limited to multi-sorted propositional languages with finitary
connectives. The tableau calculus specification language covers different types of tableau calculi
that fit the traditional representation of tableau rules of the form X0/X1 | · · · | Xm, where the
Xi denote finite sets of expressions of the given logical theory. X0 is a set of premises and
{X1, . . . , Xm} is a finite set of branches of the rule. Many labelled semantic tableau calculi for
modal, description, hybrid and superintuitionistic logics belong to this paradigm.

MetTeL2 is complementary to the mentioned tableau synthesis framework [27]. The frame-
work provides a theoretical foundation for sound, complete and terminating implementations
of tableau procedures for a wide class of logics with first-order representable semantics and,
in particular, for many logics which can be specified in MetTeL2. The scope of MetTeL2

extends however that of tableau calculi derived in the framework and is not limited to semantic
or labelled tableau calculi.
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MetTeL2 is the successor of the MetTeL system [31, 1]. MetTeL is a tableau prover
for a large class of propositional modal-type logics, including various traditional modal logics,
dynamic modal logics, description logics, hybrid logics, intuitionistic logic and logics of metrics
and topology. It does already allow users to specify their own tableau calculi and then use
MetTeL as a prover for the specified calculus. Though flexible, the specification language of
MetTeL is based on a fixed set of logical operators common to the mentioned logics. This
means there is no facility in the specification language to allow the user to define their own set
of logical operators unrelated to operators of modal-type logics.

The functionality of MetTeL2 considerably extends that of the MetTeL prover. MetTeL2

generates Java code for a tableau prover to parse problems in the user-defined syntax to solve
satisfiability problems. In order to come closer to the vision of a powerful prover generation
tool, MetTeL2 is equipped with a flexible specification language for users to define their logic or
logical theory with syntactic constructs as they see fit. Thus no logical operators are predefined
in MetTeL2.

Compared with the previous MetTeL system, the tableau reasoning core of MetTeL2 has
been completely reimplemented and several new features have been added, the most impor-
tant being: dynamic backtracking [14] and conflict-directed backjumping [11, 25], and ordered
forward and backward rewriting for operators declared to be equality and equivalence opera-
tors. There is support for different search strategies. The tableau rule specification language
in MetTeL2 now allows the specification of rule application priorities thus providing a flexible
and simple tool for defining rule selection strategies. To our knowledge, MetTeL2 is the first
system with full support of these techniques for arbitrary logical syntax.

The aim of the current implementation is to provide an easy to use prover generator with ba-
sic specification languages without sophisticated meta-programming features that might over-
whelm non-technical users. For technical users, the generated code consists of a thoroughly
designed hierarchy of public Java classes and interfaces that can be extended and integrated
with other systems.

The paper is structured as follows. We introduce the syntax and tableau specification
languages of MetTeL2 in Sections 2 and 3. Section 4 describes a common scenario of using
MetTeL2 as a prover generator. Details on implementation, prover generation, integrated
optimisations, and features for controlling derivations are given in Sections 5, 6, and 7. We
show how generated provers can be run and discuss their output in Section 8. The scope of
MetTeL2 and further features are illustrated in Section 9. In Section 10 we discuss possible
applications of MetTeL2 and our experience of using the system. Sections 11 and 12 give an
overview of related work and further directions for development of the system.

2 Language specification

The language of MetTeL2 for specifying the syntax of a logical theory, is in line with the
many-sorted object specification language of the tableau synthesis framework defined in [27].
We give a simple ‘non-logical’ example for describing and comparing lists to illustrate how the
language of a logical theory can be defined in MetTeL2.

specification lists;
syntax lists{

sort formula, element, list;
list empty = ’<>’ | composite = ’<’ element list ’>’;
formula elementInequality = ’[’ element ’!=’ element ’]’;
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formula listInequality = ’{’ list ’!=’ list ’}’;
}

The first line starting with the keyword specification defines lists to be the name of the user-
defined logical language. The syntax lists{...} block consists of the declaration of the sorts and
definitions of logical operators in simplified BNF notation. Here, the specification is declared
to have three sorts. For the sort element no operators are defined. This means that all element
expressions are atomic. The second line defines two operators for the sort list: a nullary operator
<> (to be used for the empty list) and a binary operator <..> (used to inductively define non-
empty lists). composite is the name of the operator <..>, which could have been omitted. The
next two lines define how expressions of sort formula can be formed. For example, the line
formula listInequality = ’{’list ’!=’list ’}’; defines an inequality operator on lists, while the previous
line defines an inequality operator on elements (note the difference in notation via the brackets).
This means formulae can be two types of inequality expressions. The first mentioned sort in a
declaration, in our case formula, is the main sort of the defined language. Several declarations
of connectives for the same sort are equivalent to a joint statement which is composed from
these declarations by means of the operator |. For example, the two statements for formula are
equivalent to the following statement:

formula elementInequality = ’[’ element ’!=’ element ’]’ | listInequality = ’{’ list ’!=’ list ’}’;

Another example we consider is three-valued  Lukasiewicz logic  L3. The syntax of the logic
includes the standard connectives ⊥, >, ¬, ∨, ∧, and→. Truth values are considered over three-
element  Lukasiewicz algebra over the set {0, 12 , 1}. The elements of the algebra are naturally
ordered. The algebra operations correspond to the connectives of the logic and are defined for
any elements a and b from the algebra as follows [20, 17, 30].

⊥ def
= 0 a ∧ b def

= min{a, b} ¬a def
= 1− a

> def
= 1 a ∨ b def

= max{a, b} a→ b
def
= min{1, 1− a+ b}

The syntax specification for the logic  L3 with respect to the three-valued  Lukasiewicz algebra
is the following:

specification Lukasiewicz3;
syntax Lukasiewicz3{

sort valuation, formula;
valuation true = ’T’ formula | unknown = ’U’ formula | false = ’F’ formula;
formula true = ’true’ | false = ’false’;
formula negation = ’~’ formula;
formula conjunction = formula ’&’ formula;
formula disjunction = formula ’|’ formula;
formula implication = formula ’->’ formula;

}
Thus, in the specification we denote truth value 0 as F (‘false’), truth value 1

2 as U (‘unknown’),
and truth value 1 as T (‘true’). In order to indicate that a formula φ has truth value a in
the  Lukasiewicz algebra we prepend φ with a, that is U (p −> q) means that the formula
p −> q has ‘unknown’ truth value.

3 Tableau calculus specification

The tableau rule specification language of MetTeL2 is loosely based on the tableau rule speci-
fication language of MetTeL, but extends it in significant ways. The premises and conclusions
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of a rule are separated by / and each rule is terminated by $;. Branching rules can have more
than two sets of conclusions and are separated by $| symbols. Premises and conclusions are
expressions in the user-defined logical language. Additionally, the user can annotate a rule with
a priority value. The default priority value of any rule with unspecified priority is 0. Roughly
speaking (see Section 7), smaller priority values imply a rule is applied earlier.

Turning back to the examples of the previous section, tableau rules for list comparison might
be defined as follows.

[a != a] / priority 0$;
{L != L} / priority 0$;
{<a L0> != <b L1>} / [a != b] $| {L0 != L1} priority 2$;

The first two rules are closure rules since the right hand sides of / are empty. They reflect that
inequality is irreflexive. The last rule is a branching rule. As the parsing of rule specifications
is context-sensitive the various identifiers (a, L, L0, etc) are recognised as symbols of the appro-
priate sorts. Thus sorts of identifiers are distinguished by their contextual position within the
rule and not their symbolic representation.

A tableau calculus for the three-valued  Lukasiewicz logic is given in [17]. The following is
its specification in MetTeL2 syntax.

T false / priority 0$; U false / priority 0$;
U true / priority 0$; F true / priority 0$;
T P F P / priority 0$; T P U P / priority 0$;
U P F P / priority 0$; U P F P / priority 0$;
T ~P / F P priority 1$; U ~P / U P priority 1$; F ~P / T P priority 1$;
T (P & Q) / T P T Q priority 2$; F (P & Q) / F P $| F Q priority 1$;
U (P & Q) / T P U Q $| U P T Q $| U P U Q priority 3$;
T (P | Q) / T P $| T Q priority 2$; F (P | Q) / F P F Q priority 1$;
U (P | Q) / F P U Q $| U P F Q $| U P U Q priority 3$;
F (P −> Q) / T P F Q priority 1$; U (P −> Q) / U P F Q $| T P U Q priority 2$;
T (P −> Q) / T Q $| F P $| U P U Q priority 3$;

The first eight rules are closure rules which detect contradictions between truth values of for-
mulae. All of them have the highest priority (priority value 0). The rest of the rules reflect the
truth tables for the connectives of the logic (in the  Lukasiewicz algebra) and are given priorities
proportional to their branching factors. This means that the higher the branching factor of a
rule, the less often the rule is applied in tableau derivations.

4 Using MetTeL2

The binary version of MetTeL2 is distributed as a jar-file and requires Java Runtime Envi-
ronment, Version 1.6.0 or later. MetTeL2 can be called from the command line as follows.

>java −jar mettel2.jar [−i <sf>] [−t <tf>] [−d <od>] [−p <pf>]

A file with the syntax specification can be given using the −i option. A file with the
specification of the tableau rules can be given with the −t option. If the −t option is specified
MetTeL2 attempts to do everything for the user by generating Java source code, compiling it
and producing a final executable jar-file of the prover. In this case, Java Development Kit,
Version 1.6.0 or later is required. The directory where the generated Java source code is placed
can be given using the −d option.

With the −p option the user can specify the name of a standard Java property file where
currently a small number of properties can be configured. Figure 1 lists the properties currently
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tableau.rule.delimiter Terminator of tableau rules. Default: $;
tableau.rule.branch.delimiter Separator between branches in branching rules. Default:

$|
tableau.rule.premise.delimiter Separator of premises and conclusions in rules. Default:

/
branch.bound An expression for computing an apriori bound on the

maximal number of expressions in a branch. Default:
empty, this means the feature is disabled

Figure 1: Properties accepted by MetTeL2.

supported by MetTeL2. In order to be able to handle logics with eventualities a non-standard
feature to realise the ‘avoid huge branch strategy’ (cf., [10, 28]) is the branch.bound property.
For example, this line in the Java property file

branch.bound = ((int)(java.lang.Math.pow(2,%l)))

configures the generated prover so that any branch is discarded once it contains more than 2%l

expressions, where %l is the parameter for the length of the input expression. %l is the only
pattern variable available in the current MetTeL2 implementation but we plan to introduce
several other patterns, e.g., pattern variables that reflect the number of atomic expressions of
each sort in the input. The property file is also reserved for other non-standard features, flag
settings, and definitions that may be required for advanced tuning of the prover generation
process.

All the options are optional. In the case that the −i option is omitted, MetTeL2 waits
for a language specification from standard input. If the −t option is not given, MetTeL2 will
not generate a jar-file of the prover. In this case only Java code for the prover is generated.
This is useful, for example, if the user is going to amend the code with the aim of tailoring the
prover for performance or defining a non-standard feature, or simply wishes to compile the code
by a Java compiler provided by a different vendor. Whenever −d is not specified the default
directory for output of Java code is the subdirectory output of the current directory. If the
−p option is omitted the default values are used.

5 Prover generation

The parser for the specification of the user-defined logical language is implemented using the
ANTLR parser generator. The specification is parsed and internally represented as an abstract
syntax tree (AST). The internal ANTLR format for the AST is avoided for performance pur-
poses. The created AST is passed to the generator class which processes the AST and produces
the following files: (i) a hierarchy of Java classes representing the user-defined logical language,
(ii) an object factory class managing the creation of the language classes, (iii) classes repre-
senting substitution and replacement, (iv) an ANTLR grammar file for generating a parser of
the user-specified language and the tableau language, (v) a main class for the prover parsing
command line options and initiating the tableau derivation process, and (vi) JUnit test classes
for testing the parsers and testing the correctness of tableau derivations. In the current version,
for testing purposes, most of the classes related to the derivation process are combined in a
separate library. In future versions, more and more classes from this library and their extensions
will migrate to the generated parts. This will allow the production of faster provers tailored for
particular application areas.
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The generated Java classes for syntax representation and algorithms for rule application
follow the same paradigm as in the previous MetTeL system [31]. All generated Java classes
for the syntax representation are specialisations of the basic MettelExpression interface. For
efficiency reasons, each kind of expression is represented as a separate Java class, which is
not parameterised by operators. At runtime, the creation of expression objects is managed by
means of a factory pattern generated as a specialisation of the base interface MettelObjectFactory
and ensures that each expression is represented by a single object. Each generated expression
class implements several methods. The two most important are: (i) a method for matching
the current object with the expression object supplied as a parameter. This method returns
the substitution unifying the current expression with the parameter. (ii) The second method
returns an instance of the current expression with respect to a given substitution.

Every node of the tableau is represented as a tableau state object comprising of a set of
formulae associated with the node and methods for manipulating the formulae and realising
rule applications.

The application of rules is implemented as follows. Every rule is applied within a tableau
state. A tuple of formulae from the set of active formulae associated with the tableau state is
selected and the formulae in the tuple are matched with the premises of the chosen rule. Since
matching is computationally expensive, it is performed only once for any given formula and each
premise of a rule. This is achieved by maintaining sets of all the substitutions obtained from
matching the selected formula with the rule premises. All the selected formulae are discarded
from the set of active formulae associated with the rule. If the tuple of the selected formulae
match the premises of the rule, the resulting substitution object is passed to the conclusions of
the rule. The final result of a rule application is a set of branches, which are sets of formulae
obtained by applying the substitution to the conclusions of the rule.

6 Built-in optimisations

MetTeL2 implements two general techniques for reducing the search space in tableau deriva-
tions: dynamic backtracking [14] and conflict directed backjumping [11, 25]. Dynamic back-
tracking avoids repeating the same rule applications in parallel branches by keeping track of
rule applications common to the branches. Conflict-directed backjumping derives conflict sets of
expressions from a derivation. This causes branches with the same conflict sets to be discarded.
Since MetTeL2 is a prover generator, dynamic backtracking and backjumping needed to be
represented and implemented in a generic way completely independent of any specific logical
language and tableau rules. Although dynamic backtracking and backjumping are known for
some time and have been used in many tableau provers they are usually defined for a partic-
ular tableau procedure which is based on some fixed syntax and fixed tableau calculus. The
implementation in MetTeL2 is especially involved for the case of backjumping where calcula-
tions of conflicting sets are closely tied to the rules of the tableau calculus. To the best of our
knowledge, MetTeL2 is the first system which implements these techniques in a generic way for
any logical syntax and any calculus. The performance achieved by these optimisations has not
been specially tested, but, due to these optimisations, the total execution time of the generated
provers on examples developed for testing the MetTeL2 generator and the generated provers
decreased more than 100-fold.

The provers generated by MetTeL2 come with support for ordered backward and forward
rewriting with respect to equalities appearing in the current branch. In the language specifica-
tion, equality expressions can be identified with one of the built-in keywords equality, equivalence
or congruence. For example, the declaration formula equivalence = formula ’<->’formula; in the
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logic specification defines the binary operator <->. The keyword equivalence signals that rea-
soning with this operator should be realised by rewriting.

Each Java class representing a tableau node keeps a rewrite relation completed with respect
to all equality expressions appearing in a branch. Since only ground expressions are allowed in
a branch, the rewrite relation operates only on ground expressions. Every equality expression is
oriented by a lexicographic path ordering ≺ based on the order of creation of atomic expressions
in the branch. Hence, any (ground) rewrite system based on any such ordering ≺ is terminating.
Thus, if an equality expression α ↔ β appears on the branch one of the rewrite rules α

R→β or
β

R→α is added to the rewrite relation depending on whether β ≺ α or vice versa.
Once an equality expression is added within a tableau node, backward rewriting is applied.

This means the rewrite relation is rebuilt with respect to the newly added equality, and all
expressions of the node are rewritten with respect to the rewrite relation. Forward rewriting
(with respect to the current rewrite relation) is applied to all new expressions added to the
branch during the derivation.

In future we plan to provide an implementation of a completion procedure for added equali-
ties which takes a care about dependencies of derived rewrite rules for more efficient backtrack-
ing.

7 Controlling derivations and blocking

The core tableau engine of MetTeL2 provides various ways for controlling derivations.
The default search strategy is depth-first left-to-right search which is implemented as a
MettelSimpleLIFOBranchSelectionStrategy request to the MettelSimpleTableauManager. Breadth-first
search is implemented as a MettelSimpleFIFOBranchSelectionStrategy request and can be used af-
ter a small modification in the generated Java code. A user can also implement their own
search strategy and pass it to MettelSimpleTableauManager. In future more search strategies will
be implemented (e.g., strategies with iterative deepening) and the choice of strategy will be
configurable at the generation stage.

The rule selection strategy can be controlled by specifying priority values for the rules in
the tableau calculus specification. The rule selection algorithm checks the applicability of rules
and returns a rule that can be applied to some expressions on the current branch according to
the rule priority values.

First, the algorithm selects a group of rules with the same priority value. Selection of a group
with higher priority value is made only if no rules with smaller priority values are applicable.
That is, if several rules are applicable preference is given to rules from groups with smaller
priority values.

Second, rules with the same priority values are checked for applicability sequentially. Usu-
ally, fair application of rules is a necessary condition to achieve completeness of a tableau
derivation. An application of rules during derivation is fair if every rule which is applicable
to some expressions in a branch is eventually applied to these expressions or a contradiction is
detected beforehand. To ensure fairness for rules within the same priority group all rules within
the group are checked for applicability an equal number of times. For example, given a single
closure rule, to achieve that the closure rule is applied immediately after any new information
is added to a branch the user can assign to the closure rule the priority value 0 and to all other
rule values higher than 0, e.g., 1. If, however, several rules are assigned the same priority value
as the closure rule it can happen that several tableau expansion rules are applied before the
branch is checked for contradictions via the closure rule. Furthermore, if the closure rule has a
priority value strictly greater than other rules, then the branch is checked for contradiction via
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the closure rule only after it has been fully expanded, i.e., no expansion rule is applicable to it.
More subtle control for application of the closure rules can be also achieved, e.g., to ensure that
the closure rules are applied only after particular expansion rules. On the side we remark that
it is not necessarily a good idea to give closure rules highest priority in a group by themselves
as then performance may degrade because contradiction testing dominates the search.

Again the user could implement their own rule selection strategy and modify the generated
code.

To achieve termination for semantic tableau approaches some form of blocking is usually
necessary. To generate a prover with blocking the user can specify a blocking rule similar to the
unrestricted blocking rule from [28] as one of the rules of the tableau calculus. If the definition
of the rule involves equality operators then rewriting is triggered (see above), and, based on
the results in [27, 28], the blocking rule can be used to achieve termination for logics with the
finite model property.

Consider, for example, the following declarations which might be part of the language spec-
ification for a description (or hybrid) logic.

sort concept, individual;
concept at = ’@’ individual concept | negation = ’~’ concept;
concept equality = ’[’ individual ’=’ individual ’]’;

This defines respectively the sorts concept and individual and two operators @ and ~. The last line
defines an equality operator = on individuals which is handled by rewriting. The unrestricted
blocking rule can now be defined by the following tableau rule.

@i p @j q / [i = j] $| ~[i = j] $;

The purpose of the two premises here is domain predication so that, on application of the rule,
the variables i and j are instantiated by individuals which are present in the current tableau
node (cf. [27]), because symbols that do not occur in premise positions are not instantiated. In
essence the rule causes individuals occurring in expressions of the form @i p to be systematically
set to be equal. If this does not lead to a model in the left subtableau, then the right branch
is explored.

The idea of unrestricted blocking rule is to ensure termination of sound and complete tableau
calculus in case the specified logic has the finite model property (cf. [27, 28]) and find finite
models. The first of the two termination conditions in [27, 28] is automatically true because
the generated provers are equipped with ordered rewriting. The second termination condition
can be satisfied by using appropriate priority values for tableau rules of the tableau calculus.
Currently, it is not yet possible to emulate standard blocking techniques such as subset and
equality blocking but by varying the specification of the blocking rule it is possible to perform
blocking more selectively [4, 18].

8 Using the generated provers

The generated prover jar-file can be run via the command line as follows.

>java −jar <prover_name>.jar [−i <if>] [−o <of>] [−t <tf>]

<prover_name> is the name of the syntax specification. An input file <if> can be specified
via the −i option. If the option is not specified then input is expected from the standard input.
The input file must contain a list of expressions of the main sort (the first specified sort in the
syntax specification) separated by space characters. The prover will output the result to the
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file <of>, if the option −o is given, or to the standard output stream, otherwise. With the
−t option the user can specify a file with an alternative definition of a tableau calculus. If the
option is omitted then the calculus specified at generation is used. If no tableau calculus was
specified at generation then a tableau calculus definition must be provided now, which can be
done with the −t option.

The generated provers return the answers Satisfiable or Unsatisfiable. If the an-
swer is Unsatisfiable and the prover is able to extract the input expressions needed for
deriving the contradiction they are printed. If the answer is Satisfiable then all the ex-
pressions within the completed open branch are output as a Model.

Considering our list example, the user can run the prover generated from the syntax and
tableau specifications in Sections 2 and 3 as follows.

>java −jar lists.jar

Since the −i option is not specified the prover will wait for input from the terminal. Suppose
{<a (<b L>)> != <a (<b L>)>} is typed (and finished by pressing <Ctrl−D>). The
output is

Unsatisfiable.
Contradiction: [({(<a (<b L>)>) != (<a (<b L>)>)})]

For the input {<a (<b L0>)> != <a (<b L1>)>} the output is

Satisfiable.
Model: [({(<a (<b L0>)>) != (<a (<b L1>)>)}), ({(<b L0>) !=
(<b L1>)}), ({L0 != L1})]

In order to test validity of a formula in the three-valued  Lukasiewicz logic  L3 we have to run
the prover two times with truth values U and F for the formula (cf. [17]). For example, to show
that p −> (q −> p) is a theorem in  L3 we run the prover two times for each expression
U p −> (q −> p) and F p −> (q −> p) using the following command.

>java −jar Lukasiewicz3.jar

In the case if the input is U p −> (q −> p) we get the following output from the prover:

Unsatisfiable.
Contradiction: [( U ( p −> ( q −> p ) ) )]

For the input F p −> (q −> p) we also obtain a contradiction:

Unsatisfiable.
Contradiction: [( T p ), ( F p ), ( F ( p −> ( q −> p ) ) ),
( F ( q −> p ) )]

Thus, there is no interpretation of variables p and q in the three element  Lukasiewicz alge-
bra that makes the truth value of the formula p −> (q −> p) different from T. That is,
p −> (q −> p) is a theorem of  L3.

9 Illustration of scope and further features

MetTeL2 is designed for propositional logics and not supposed to deal with first-order lan-
guages. Nevertheless, the syntax specification language of MetTeL2 has enough expressive
power to represent languages of first-order theories with a finite number of predicate and func-
tional symbols. Predicate and functional symbols of such a theory can be defined as connectives
of formula sort and term sort respectively. For example, the following is a specification of a
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language of a first-order theory which contains a constant c, a unary function symbol f, a bi-
nary function symbol g, a unary constant predicate symbol P, and a binary constant predicate
symbol Q.

specification fotheory;
syntax SomeFOTheory{

sort formula,term,var;
term var = ’!’ var;
term c = ’c’;
term f = ’f’ ’(’ term ’)’;
term g = ’g’ ’(’ term ’,’ term ’)’;
formula true = ’true’ | false = ’false’;
formula P = ’P’ ’(’ term ’)’;
formula Q = ’Q’ ’(’ term ’,’ term ’)’;
formula negation = ’~’ formula;
formula conjunction = formula ’&’ formula;
formula disjunction = formula ’|’ formula;
formula implication = formula ’->’ formula;
formula equivalence = formula ’<->’ formula;
formula universalQuantifier = ’forall’ var formula;
formula existentialQuantifier = ’exists’ var formula;

}
The additional connective ! is required to embed sort of variables var into the sort of terms term.
The following expression is an example of a well-formed formula in the specified syntax.

forall x (forall y (~ P(g(f(!x),!y))) | (exists y Q(f(!y),!x)))

Notice that predicate symbols P and Q are constant predicate symbols. In fact, under the
above approach to syntax specification, every predicate symbol of a given theory is a constant
symbol. The effect of this becomes apparent in interpretation tableau rules where substitutions
for these symbols will be forbidden. While the rules for Boolean connectives do not pose a
problem and remain the same as for Boolean logic, the standard rules for quantifiers must
be appropriately instantiated for every predicate symbol. Correct specification of a complete
tableau calculus in such cases is tedious and even an impossible task for some theories.

A more promising approach to deal with first-order theories in MetTeL2 is to represent the
given finitely defined first-order theory as a deductive system of formula schemes [32]. Since
every deductive system in the sense of [32] is a propositional multi-modal logic, it can be
naturally specified in MetTeL2.

For the curious reader we also give an example of how to specify in MetTeL2 a rule for the
3 operator of standard modal logics. The syntax specification has to include a definition of an
additional connective which corresponds to a Skolem function. For example, the syntax of a
(hybrid) modal logic can include the following lines.

sort formula, individual;
formula singleton = ’{’ individual ’}’;
formula at = ’@’ individual formula;
formula diamond = ’<>’ formula;
individual SkolemTerm = ’f’ ’(’ individual ’,’ formula ’)’;

Thus, the symbolic representation of the 3 operator is <> and f(.,.) is a new binary connective
such that f(i,p) is an individual for any individual i and formula p. In this syntax, the standard
3 rule is as follows.
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@i(<> p) / @i(<> f(i,p)) @f(i,p) p $;

That is, for every instance of the formula @i(<>p) in current tableau branch, a new individual
term f(i,p) is created (where i and p are appropriately instantiated) and two formulae @i(<> f(i,p))
and @f(i,p) p are added to the branch. The formula @i(<> f(i,p)) states that the individual f(i,p) is
accessible from i.

Using Skolem terms instead of newly generated individual constants avoids the need to per-
form again some inference steps on the same branch and in combination with ordered rewriting
can considerably reduce the search space. Furthermore, Skolem terms add flexibility to tableau
specification language because Skolem functions are legal not only in conclusions of tableau
rules but also in their premises.

10 Application areas and experiences so far

Software to generate code for provers is useful anywhere where automated reasoning is needed.
The provers generated by MetTeL2 also output models for for satisfiable problems on termi-
nation, so can be used for model generation purposes.

With MetTeL2 a quick implementation of a tableau prover can be obtained and changes can
be made without programming a single line of code. Prover generation is useful for obtaining
provers for newly defined logics or new combinations of logics. This is particularly pertinent to
an area such as multi-agent systems where the logics are staggering complex. In ongoing work we
are using MetTeL2 in combination with the tableau synthesis framework to develop provers for
multi-agent interrogative epistemic logics [21]. For these logics and related dynamic epistemic
logics there are almost no implemented reasoning tools. Therefore being able to generate tableau
provers is very useful especially to researchers without the resources or expertise to implement
automated reasoning tools themselves.

We have found MetTeL2 useful for analysing tableau calculi under development whose
properties are not known yet. For example, in research conducted for [19] we used MetTeL2

to determine the refinability or unrefinability of tableau rules for a modal logic with global
counting quantifiers operators. MetTeL2 can also be used to compare the effectiveness of
different sets of tableau rules for the same logic. For example, with minimal effort it is possible
to compare the effectiveness of standard tableau calculi with calculi following the KE approach
where disjunction is handled by an analytic cut rule and a unit propagation rule.

Concrete case studies we have undertaken with MetTeL2 include implementing unlabelled
tableau calculi for Boolean logic and three-valued  Lukasiewicz logic, labelled tableau calculi for
standard modal logics K, KT, S4, description logic ALCO, a hybrid logic K(En) with global
counting operators [19], a multi-agent interrogative epistemic logic [21], and internalised tableau
calculi for hybrid and description logics. We used MetTeL2 to implement a tableau decision
procedure for ALBOid, a description logic with the same expressive power as the two-variable
fragment of first-order logic. Some of these test cases, including the Lukasiewicz3 example and
the lists example from this paper (as well as an extended version of the lists example with a
concatenation operator) are available at the MetTeL website [1].

11 Related work

A fast and robust method to obtain a prover for a given logic is to translate the logic into a
more expressive target logic for which an automated reasoning tool is available. For instance,
translation of modal and description logics into first-order logic has been extensively researched,
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and specialised translation approaches have been developed which use first-order resolution
theorem provers [9, 22, 26] or provers for higher-order logic such as LEO II [6] (see [5] for the
approach). Translation approaches require however the user is familiar with the target logic.
In addition it requires knowledge of the deduction approach and prover for the target logic so
that the user can appropriately use the prover and understand its output. Experience shows it
is unrealistic to expect users to learn a new language, a new theory, and capabilities and flag
settings of the prover being used.

Several dedicated systems exist for developing and prototyping tableau provers for modal-
type logics. The Logics Workbench [15] implements a suite of generic decision procedures
for propositional logic and numerous non-classical logics and includes a full programming lan-
guage. In the eighties, work on developing languages for programming in non-classical logics
has evolved into the generic tableau prover development platform LoTREC [12]. The Tableau
Workbench (TWB) [2] provides a generic prover development platform for modal logics. Both
LoTREC and the TWB give users the possibility to program their own tableau prover for
modal-type logics using meta-programming languages for building and manipulating formulae,
and controlling the tableau derivation process. The Logics Workbench, LoTREC, the TWB
and also MetTeL differ in various ways, for example, in the kind of tableau approach used,
the specification language provided, the way blocking is performed and configured, and the
possibilities to control the way the search performed. Although they have notable features
compared to MetTeL2 none of them have the facility for the user to define their own set of
logical operators unrelated to the built-in operators.

Support for user-definable languages and rule sets can be found in logical frameworks such
as PVS [23], Isabelle/HOL [24] and Coq [7]. These are based on higher-order logic and
can be used for prototyping calculi and deductive systems. There are also formal software
development tools such as the KeY system [3] which allow the specification of logical theories
via a taclet mechanism containing not only rule declarations, but also usage pragmatics.

All these systems are however not designed to produce executable code for a prover but
rather act as virtual machines that perform derivations (in some cases interactively but often
fully automatically). Even though some incorporate various support tools and are extensible,
within a virtual machine it is not possible to accommodate all imaginable requirements for new
provers without giving the user appropriate flexibility in the specification language. On the
other hand, any specification language necessarily restricts the user. This is actually useful,
since it also reduces the potential number of specification errors. MetTeL2 addresses this
inescapable dilemma by generating prover code that is ready for possible modifications by an
experienced user who may wish to incorporate, for example, specialised simplification routines
and optimisation techniques for better performance, or who may want to incorporate the prover
into a larger systems requiring automated reasoning, or add other features not supported by
the prover generator, the prover engineering platform or the logical framework being used.

12 Conclusion

MetTeL2 is a prototypical system intended for experimenting with tableau calculi and prover
generation for various logics. It is a small but essential step to the very ambitious goal to create a
reliable and easy to use prover generation platform which implements the automated synthesis
framework [27]. In line with this goal we intend to expand the system in various ways. In
particular, we will give the user more flexibility in controlling derivations by specifying various
search heuristics as well as reduction orderings for the ordered rewriting at the generation
stage. This will allow the user to contribute to the improvement of the generated provers. We
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are going to implement a selection of standard blocking mechanisms and also various generic
blocking mechanisms based on specialisations of the unrestricted blocking rule. These will help
to improve the performance of the generated provers, especially for non-compact logics such
as temporal and dynamic logics. Finally, a comparison with other provers and the design of
benchmarking suites is necessary in order to estimate the performance of generated provers and
to indicate directions for further development of the prover generator.

MetTeL2 can be downloaded from [1]. A web-interface for MetTeL2 is also provided, where
a user can input their specifications in syntax aware textareas and generate provers. The user
can either download the generated prover as a jar-file or directly run the generated prover in
the interface.
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Abstract

In this paper we develop a sound, complete and terminating superposition calculus
plus a query answering calculus for the BSH-Y2 fragment of the Bernays – Schönfinkel
Horn class of first-order logic. BSH-Y2 can be used to represent expressive ontologies. In
addition to checking consistency, our calculus supports query answering for queries with
arbitrary quantifier alternations. Experiments on BSH-Y2 (fragments) of several large
ontologies show that our approach advances the state of the art.

1 Introduction

In addition to research in description logics [1], reasoning in ontologies has recently drawn a lot
of attention in automated theorem proving [4, 19, 16, 7] as well as database theory [9, 3]. The
approaches differ in the expressiveness of the considered logics, the supported reasoning tasks
as well as the quality of the reasoning procedures. A focus in description logics is on the sound
and complete computation of the concept hierarchy, whereas theorem proving and data base
approaches typically consider existentially quantified queries. Concerning the theorem proving
approaches we can distinguish complete methods from incomplete ones. Whereas the former
guarantee completeness and consistency of the ontology [19], the latter consider very expressive
ontologies [4, 16, 7] and aim at providing useful query answering.

The approach of this paper is to keep completeness plus consistency checking, but to push
the border of expressivity. Previously [19] we have shown effective satisfiability testing for the
language BSH-Y1 consisting of clauses of the form

→ P (a1, . . . , an) Ground Fact R(x, y), R(y, z)→ R(x, z) Transitivity

S(x)→ T (x) Subsort Relation R(x, y), R(x, z)→ y ≈ z Functionality

where all function symbols are constants enjoying the unique name assumption. The language
covers the YAGO ontology. We have shown that we can decide satisfiability of the YAGO
ontology consisting of 10m clauses over 2m constants of the above form in about one hour by
superposition based saturation. Existentially quantified queries with respect to the saturated
YAGO ontology can then typically be answered in the range of seconds.

In this paper we consider an extended language, called BSH-Y2, where in addition to the
above clauses we consider clauses of the form

P1(t11, . . . , t1n1), . . . , Pk(tk1, . . . , tknk
)→ Negative Clauses

P1(t11, . . . , t1n1
), . . . , Pk(tk1, . . . , tknk

)→ P (s1, . . . , sm) Defined Relations
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where the tij , sj are either constants or variables and all variables of the sj show up in some
tij (range restriction). Due to a further developed superposition calculus (Section 3) and its
implementation, the extended BSH-Y2 language is still suitable to decide large ontologies. We
tested our implementation on three large ontologies: the extension YAGO++ of the YAGO
ontology fully covered by BSH-Y2 (10m clauses), the BSH-Y2 fragment of the SUMO ontology
as it appears in the TPTP library [12], serving about 90% of the TPTP SUMO version (82k
clauses, SUMO-Y2), and on the CYC ontology as it appears in the TPTP library [13], serv-
ing about 30% of the TPTP CYC version (1m clauses, CYC-Y2). We considered the SUMO
ontology and the CYC ontology from the CASC–23 competetion [20]. Spass-Y2 can check con-
sistency for the YAGO++ and SUMO-Y2 ontologies, where we found 2 logical inconsistencies
in SUMO-Y2. So far we have not been able to check consistency of CYC-Y2. We stopped after
finding and debugging 35 logical inconsistencies. For further details, see Section 5.

Furthermore, we provide complete reasoning support for queries with arbitrary quantifier
alternations, introduced in Section 4. Again queries are typically answered in the range of sec-
onds with respect to the minimal model of a saturated ontology via a special query answering
calculus. Note that then, completeness turns into soundness for queries with quantifier alter-
nations. For example, answering a query of the form ∃x ∀y Φ requires complete reasoning for
the universal quantifier in order to obtain a sound result for the overall query. In Section 5,
we provide experimental data for query answering with respect to YAGO++ and SUMO-Y2.
The paper ends with a short summary and further discussion of related work. The proofs of
the theorems are available in a technical report [23].

2 Preliminaries

In this paper we follow the notations from [21]. We assume a first-order language over a
signature Σ as usual. We use x, y, z to denote variables, a, b and c to denote constants, s, t, l,
r to denote terms P , Q, S to denote predicate symbols, A, B to denote atoms C, D to denote
clauses and N to denote a set of clauses. Let vars be the function returning all variables of a
term, an atom, and a clause, respectively. We write σ for a substitution.

We only consider Horn clauses which we write in implication form Γ → ∆ with Γ is a
multiset of literals and ∆ is either the empty set or a singleton set containing one atom. We
call a positive ground unit clause (→ A) a fact and a negative ground unit clause (A →) a
negative fact. For the empty clause we write 2.

An inference is a rule of the form

C1 . . . Cn

D

where the clause D can be derived from the premises C1, . . . , Cn. We say an inference is ground
iff all clauses C1, . . . , Cn and D are ground. An inference system is a collection of inference
rules. As usual for the superposition calculus, inferences will be restricted to maximal positive
literals and negative literals that are either maximal or selected.

We say that a ground clause C is redundant with respect to a set of clauses N if there exists
a set {C1, . . . , Ck} of ground instances of clauses from N such that C is true in every model of
{C1, . . . , Ck} and C � Cj , for all j with 1 ≤ j ≤ k. A non-ground clause is called redundant if
all its ground instances are.

A ground inference π is redundant with respect to N if either one of its premises is redundant
in N , or else there exists a set {C1, . . . , Ck} of ground instances of clauses from N such that
the conclusion of π is true in every model of {C1, . . . , Ck} and C � Cj , for all j with 1 ≤ j ≤ k,
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where C is the maximal premise of π. A non-ground inference is called redundant if all its
ground instances are redundant.

We say that a set of clauses N is saturated up to redundancy with respect to some inference
system, if all inferences from N are redundant.

A reduction rule reduces the search space by deleting clauses or by reducing clauses to
simpler ones. A reduction is denoted as

R C1 . . . Cn

D1

...
Dm

where the clause above the bar C1, . . . , Cn are replaced by the clauses below the bar D1, . . . , Dm.
A reduction rule implements a special redundancy criteria.

A Herbrand interpretation I is a set of ground atoms. Each ground atom A is called true in
I if A ∈ I. It is called false in I if A 6∈ I. A negated atom ¬A is true in I if A 6∈ I. A ground
clause C is called true in I if one of its literals is true in I. We write I |= C in this case.

2.1 Admissible Term Ordering

For reasoning in large domain problems efficiently handling transitivity is important due to the
fact that the standard superposition approach is too prolific in this context; it computes the
whole transitive closure. The chaining calculus [2] has been designed for efficiently dealing
with transitivity in general by avoiding the computation of the transitive closure in many cases.
We have integrated the chaining calculus into our new reasoning calculus.

The chaining calculus is defined in terms of an extension of the usual reduction ordering on
terms. This extension is called admissible and defined as follows.

An ordering � on ground terms and literals is called admissible if

• it is well-founded and total on ground terms and literals,

• it is compatible with reduction on maximal subterms, i.e. L � L′ whenever L and L′ contain
the same transitive predicate symbol Q, and the maximal subterm of L′ is strictly smaller
than the maximal subterm of L,

• it is compatible with goal reduction, i.e.

– ¬A � A for all ground atoms A,

– ¬A � B whenever A is an atom Q(s, t) and B is an atom Q(s′, t′), such that Q is a
transitive predicate and max (s, t) � max (s′, t′),

– ¬A � ¬B whenever A is an atom Q(s, s) and B atom Q(s, t) or Q(t, s), where Q is
a transitive predicate and s � t.

An ordering on ground clauses is called admissible if it is the multiset extension of an
admissible ordering on literals.

For implementing an actual admissible ordering a triple (maxL, pL,minL) is associated with
each literal L. Two literals are compared by lexicographically comparing their associated triples.
For the comparison of the first and last component of the triples the superposition term ordering
� is used and for comparing the middle component the ordering 1 > 0 is used. The individual
members of the triples are defined as follows: If L is of the form Q(s, t) for a transitive predicate
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Q we set maxL to the maximum of s and t, and minL to the minimum of the two terms (with
respect to �). If L is of the form A or ¬A for some atom A the top symbol of which is not a
transitive predicate, we set maxL = A and minL = >, where > is special symbol minimal in
the term ordering �. We set pL = 1, if L is negative, and 0 otherwise.

2.2 Minimal Model

The chaining calculus assumes a given clause set N which does not contain any transitivity
axioms. Instead, it assumes that the respective predicates are marked as transitive. These
predicates are treated specially by the chaining rules. The candidate model for a set of Horn
clauses that entails the transitive closure is defined in terms of rewrite proofs. The rewrite
proof from the term l to r via the transitive predicate Q, is denoted as l ⇓RC

Q r. A detailed
introduction to transitive rewrite proofs can be found in [2].

The following defines a minimal candidate model for a set N of Horn clauses which is also a
model of the transitive closure of N . Assume that N does not contain any transitivity axioms
and assume that the respective transitive predicates are marked as transitive.

Definition (Candidate Interpretation). Let N be a set of clauses from the BSH-Y2 without
transitivity axioms such that the transitive predicates of N are in the set Tr. Further, let �
be an admissible ordering. The following defines a candidate interpretation for N and Tr. Let
C = Γ→ A be a ground instance of a clause from N . Suppose EC′ and RC′ have been defined
for all ground clause C ′ with C � C ′. Then

RC =
⋃

C � C′

EC′

if (i) A � Γ, (ii) A 6∈ R∗C , (iii) Γ ⊆ R∗C , and (iv) no literal is selected in C then

EC = {A}

otherwise EC = ∅. If EC 6= ∅, we say that C is productive and produces A.

R∗C = RC ∪ {Q(l, r) : l ⇓RC

Q r ∧Q ∈ Tr}

The interpretation NI of N is defined as NI =
⋃

C R
∗
C .

Note, this definition is also defined for sets containing non-ground Horn clauses via the
lifting lemma which is a standard result of the superposition framework.

3 Superposition for BSH-Y2

In this section we define the BSH-Y2 class and present our new superposition calculus for
BSH-Y2.

3.1 The BSH-Y2 Class

The set BSH-Y2 is a subset of the Bernays–Schönfinkel Horn fragment with equality. It is able
to represent the YAGO ontology as well as large parts of the ontologies SUMO (SUMO-Y2)
and CYC (CYC-Y2). It is defined below.

We call a clause D = Γ → P (t1, . . . , tn) a definition for the predicate P if it is range
restricted, i.e. vars(P (t1, . . . , tn)) ⊆ vars(Γ). We also say that P is defined by D. A predicate
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Q is called P–dependent in a clause set N if Q is defined by a clause D = Γ → Q(t1, . . . , tn)
in N and (i) P (s′1, . . . , s

′
n′) ∈ Γ or (ii) there is a predicate R with R(s′′1 , . . . , s

′′
n′′) ∈ Γ that

is P-dependent. If Q is not P–dependent we call it P–independent. A definition D = Γ →
P (t1, . . . , tn) is acyclic in a clause set N if P is P–independent. A predicate Q is called
transitive dependent in N iff (i) Q is transitive or (ii) there is a definition C ∈ N with C =
Γ → Q(t1, . . . , tn) and there is a transitive dependent predicate P with P (s1, . . . , sn) ∈ Γ.
Otherwise, we call Q transitive independent.

The BSH-Y2 class consists of the following types of BSH clauses:
→ P (a, b) facts
R(x, y), R(x, z)→ y ≈ z functionality axioms
R(x, y), R(y, z)→ R(x, z) transitivity axioms
P1(t11, . . . , t1n1

), . . . , Pk(tk1, . . . , tknk
)→ negative clauses

P1(t11, . . . , t1n1
), . . . , Pk(tk1, . . . , tknk

)→ P (s1, . . . , sm) acyclic definitions
S1(x)→ S2(x) subsort relations

where the subset of subsort relations is acyclic and we further assume the unique name assump-
tion for the BSH-Y2 meaning that different constants represent different domain elements.

3.2 Calculus for BSH-Y2

In general, verifying the satisfiability in the Bernays–Schönfinkel Horn fragment is EXPTIME
complete. Therefore, standard reasoning procedures are too prolific for reasoning in such large
ontologies; the experiments in Section 5 confirm this. In [19], we have developed a sound and
complete calculus which uses hyperresolution together with the chaining calculus. The resulting
reasoning procedure saturates the YAGO ontology in less than one hour. However, this calculus
is not able to saturate clause sets containing defined relations of BSH-Y2 in acceptable time.
The reason for this observation is that a non-ground transitive atom that occurs in a defined
relation causes the chaining calculus to inspect the whole transitive closure of this predicate.
This problem arises already if one only adds the following clause to the YAGO ontology:

bornIn(x, y), locatedIn(y, z)→ bornInTr(x, z) (1)

where locatedIn is transitive.
Therefore, we have developed a new calculus for BSH-Y2 that performs a two layered-

reasoning. It separates reasoning about non-transitive predicates from reasoning about transi-
tive predicates via dedicated inference rules. These rules are depicted in the following.

The calculus is defined with respect to a clause set N containing clauses from BSH-Y2. Let
SN be the sort theory contained in N . We switch from the simple clause notation introduced
in Section 2 to a clause notation Θ ‖Γ → ∆ where Θ contains solely the sort atoms (monadic
atoms) interpreted as negated sort atoms. This notation helps in defining the below rules
as it explicitly separates sort atoms from others. During the saturation the sort atoms are
treated independently from all other atoms via the rules Empty Sort , Sort Simplification, and
Static Soft Typing. Actually, this simulates a particular ordering and selection strategy for
these atoms on the standard calculus [5]. More precisely, T � S for all subsort declarations
S(x) → T (x). This ordering is well-defined because there are no cycles in SN . Whenever a
clause has an unsolved constraint, this constraint is selected.

An unsolved constraint Θ of a clause Θ ‖Γ → ∆ either contains an atom T (x) such that
x 6∈ vars(Γ∪∆) or an atom T (a) for some constant a. Finally, all sort predicates S occurring in
N are smaller than any other predicate occurring in N . The fact that the monadic predicates
are treated separately allows more efficient implementations for their calculus rules.
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The sort theory SN is static [5] meaning that NI |= S(a) iff SN |= S(a) and this property
is invariant on the saturation of N while fixing SN from the beginning. This is due to the
fact that all positive sort atoms in N occur either as facts or as subsort declarations. Hence,
when deriving a clause S(a),Θ ‖Γ → ∆ with SN 6|= S(a), the clause is a tautology and can
be deleted. This is exploited by the implementation of our new calculus. Note also that the
relations SN |= S(a) and SN |= ∃xS1(x) ∧ . . . ∧ Sn(x) can be efficiently decided by specific
algorithms [21].

The chaining calculus [2] assumes that all transitivity axioms are deleted from the clause
set N and the respective atoms are marked as transitive. We assume the set Tr that contains
all transitive predicate symbols of N .

The rule OECut [18] ensures that the minimal model NI respects the unique name assump-
tion, namely NI |= a 6≈ b for two different constants a and b occurring in N . So the disequations
are not explicitly added to the clause set N .

The superposition calculus for the BSH-Y2 is the following set of inference and reduction
rules.

Non-Transitive Reasoning

Ordered Hyperresolution for BSH-Y2 (HyperY2)

(1 ≤ i ≤ n) Θi ‖Γi → Ai Θ ‖T1, . . . , Tm, B1, . . . , Bn → ∆

(Θ,Θ1, . . . ,Θn ‖T1, . . . , Tm,Γ1, . . . ,Γn → ∆)σ
,

where n ≥ 1, T1, . . . , Tm are transitive atoms, Θ1, . . . ,Θn,Θ are solved, Γ1, . . . ,Γn contain
only transitive atoms, B1, . . . , Bn are non-transitive atoms, σ is the simultaneous most general
unifier of Ai and Bi for all i ∈ {1, . . . n}, respectively, and Aiσ are strictly maximal in (Θi ‖Γi →
Ai)σ.

Object Equality Cutting (OECut)

‖ → a ≈ b
2

,

where a and b are two different constants.

Transitive Reasoning

Ordered Chaining for BSH-Y2 (OChainY2)

Θ1 ‖ → Q(l, s) Θ2 ‖ → Q(t, r)

(Θ1,Θ2 ‖ → Q(l, r))σ

where Q ∈ Tr is a transitive predicate, σ is the most general unifier of s and t, Θ1 and Θ2

are solved, Q(t, r)σ is strictly maximal in (Θ ‖Γ → Q(t, r))σ, lσ 6� sσ, rσ 6� tσ, and there are
only transitive literals in Γ.
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Negative Chaining for BSH-Y2 (NChainY2)

Θ1 ‖ → Q(l, s) Θ2 ‖Γ, Q(t, r)→
(Θ1Θ2 ‖Γ, Q(s, r)→)σ

where Q ∈ Tr is a transitive predicate, σ is the most general unifier of l and t, Θ1 and Θ2

are solved, sσ 6� lσ, rσ 6� tσ, Q(t, r)σ is maximal with respect to (Θ ‖Γ, Q(t, r)→)σ, and there
are only transitive literals in Γ.

Θ1 ‖ → Q(l, s) Θ2 ‖Γ, Q(t, r)→
(Θ1,Θ2 ‖Γ, Q(t, l)→)σ

where Q ∈ Tr is a transitive predicate, σ is the most general unifier of s and r, Θ1 and Θ2

are solved, lσ 6� sσ, tσ 6� rσ, Q(t, r)σ is maximal with respect to (Θ ‖Γ, Q(t, r)→)σ, and there
are only transitive literals in Γ.

Ordered Resolution for BSH-Y2 (OReY2)

Θ1 ‖ → Q(t1, t2) Θ2 ‖Γ, Q(s1, s2)→
(Θ1,Θ2 ‖Γ→)σ

,

where Q ∈ Tr is a transitive predicate, σ is the most general unifier of Q(t1, t2) and Q(s1, s2),
Θ1 and Θ2 are solved, Q(s1, s2)σ is strictly maximal in (Θ ‖Γ, Q(s1, s2) →)σ, and there are
only transitive literals in Γ.

Sort Reasoning

Empty Sort
S(x),Θ ‖Γ→ ∆

(Θ ‖Γ→ ∆)σ
,

if σ is a substitution with S(xσ) is ground, x 6∈ vars(Γ ∪∆), and SN |= S(xσ).

Sort Simplification

R S(a),Θ ‖Γ→ ∆

Θ ‖Γ→ ∆
,

if SN |= S(a). In the sort theory of a clause set from the BSH-Y2 sort simplification coincides
with sort resolution.

Static Soft Typing

R S(x),Θ ‖Γ→ ∆
,

if SN 6|= ∃x S(x).

Theorem (Decison Procedure for BSH-Y2). The BSH-Y2 calculus is sound, complete and
terminating for BSH-Y2.
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3.3 Implementation

For successfully saturating a clause set from BSH-Y2, an efficient implementation of the new
calculus rules is essential. In our implementation we avoid to generate clauses that are redundant
and can, therefore, immediately be removed from the search space.

In particular, every time an application of hyperresolution derives a clause Θ, S(a) ‖Γ→ A
an application of sort simplification becomes possible on the ground sort instance S(a). If
S |= S(a) the clause is reduced to Θ ‖Γ → A. If S 6|= S(a) then the clause is a tautology
and can be deleted. Therefore, we have integrated this sort reasoning in the implementation of
hyperresolution. This means that the clause Θ ‖Γ→ A where Θ does not contain any further
ground sort instances is derived.

Additionally, our implementation of the calculus relies on the efficient term indexing data
structure Filtered context trees that we have introduced in [19]. We have integrated the im-
plementation of our new calculus together with the data structures in the theorem prover
Spass [22]. We call the resulting version Spass-Y2.

4 Query Answering

In this section we present a query language with arbitrarily many quantifier alternations and
the corresponding sound and complete query answering procedure. This procedure answers
queries with respect to the minimal model of a clause set from BSH-Y2.

4.1 Query Language

Consider the language Φ defined in terms of the below syntax

Φ := Γ | ∀x(Γ→ Φ) | ∃x(Γ ∧ Φ) | >

where Γ is a conjunction of atoms.

In order to guarantee completeness of our new query answering procedure, we require further
restrictions on the query language. We call a formula of the language Φ variable shielded iff it is
either ground or it is of the form ∃x(Γ∧Φ′) or ∀x(Γ→ Φ′) and all variables occurring under a
transitive dependent predicate in Γ or occurring freely in Φ′, also occur under a non-transitive
dependent predicate or a sort predicate in Γ.

We call a formula ϕ a query if it is a variable shielded sentence from the language Φ. Further,
we assume that a variable is bound by at most one quantifier in a query.

Note, that shielding of the variables is not a real restriction because it can always be achieved
via a special predicate entity, s.t. for every constant c of the signature entity(c) is entailed by
the minimal model of the respective ontology.

4.2 Query Answering Calculus

Let N be the saturation of a set of clauses from BSH-Y2 with respect to the superposition
calculus of Section 3 and 2 6∈ N . Further, let SN be the sort theory contained in N . Our query
answering calculus is composed of deterministic rule system with respect to N and SN and
consists of three calculus rules; one for each type of query: existential query, universal query
and ground query. The efficiency of our rule system is based on the following observation.
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Lemma. Let N be the saturation of a clause set from the BSH-Y2 with 2 6∈ N and let A be
a transitive independent ground atom. Then NI |= A iff there is a ground substitution σ and a
clause Θ ‖ → B ∈ N with Bσ = A and SN |= Θσ.

Note, all transitive independent definitions are ground instantiated during the saturation.
For all rules, we assume that Ai are transitive independent atoms, Ti are transitive dependent
atoms and Si are sort atoms. Note, each subquery Φ′σ derived from our calculus, is again a
query because all variables of Φ are shielded. Likewise, for all transitive dependent atoms Ti of
a query Φ and a substitution σ, it holds that Tiσ is ground if σ is grounding for all transitive
independent atoms and all sort atoms of Φ. Because of the previous lemma, it is sufficient to
consider only clauses of the form Θ ‖ → A from N as the right premisses.

Verifying the side-conditions of the query answering calculus rules requires to perform en-
tailment operations. The sort entailment of condition 1 and condition 3 is a well-sorted check
which is quasi-linear [15]. The entailment check in condition 4 is performed by exhaustively
applying the saturation calculus of Section 3 with a set of support strategy. Note, our new cal-
culus is a decision procedure for this minimal model reasoning problem because of Theorem 3.2
and [8].

Existential query

Φ = ∃x(S1 ∧ · · · ∧ Sn1 ∧A1 ∧ · · · ∧An2 ∧ T1, . . . , Tn3 ∧ Φ′) Θi ‖ → A′i
Φ′σ

if there is a grounding substitution σ such that

1. SN |= Siσ for all i ∈ {1, . . . , n1}

2. Aiσ = A′iσ for all i ∈ {1, . . . , n2}

3. SN |= Θiσ for all i ∈ {1, . . . , n2}

4. NI |= Tiσ for all i ∈ {1, . . . , n3}

Universal query

Φ = ∀x(S1 ∧ · · · ∧ Sn1
∧A1 ∧ · · · ∧An2

∧ T1 ∧ · · · ∧ Tn3
→ Φ′) Θi ‖ → A′i

Φ′σ

if there is a grounding substitution σ such that

1. SN |= Siσ for all i ∈ {1, . . . , n1}

2. Aiσ = A′iσ for all i ∈ {1, . . . , n2}

3. SN |= Θiσ for all i ∈ {1, . . . , n2}

4. NI |= Tiσ for all i ∈ {1, . . . , n3}
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Ground query

Φ = S1 ∧ · · · ∧ Sn1 ∧A1 ∧ · · · ∧An2 ∧ T1 ∧ · · · ∧ Tn3 Θi ‖ → A′i
true

if there is a grounding substitution σ such that

1. SN |= Si for all i ∈ {(1, . . . , n1}

2. Ai = A′iσ for all i ∈ {1, . . . , n2}

3. SN |= Θi for all i ∈ {1, . . . , n2}

4. NI |= Tiσ for all i ∈ {1, . . . , n3}

4.3 Query Answering Procedure

If N is the saturation of a clause set from BSH-Y2 in terms of the calculus of Section 3 then
Algorithm 1 implements the query answering procedure which is sound and complete with
respect to the minimal model NI . The strategy corresponds to a quantifier elimination over
finite domains.

Algorithm 1: AnswerQuery
Input: Query Φ, saturated clause set N
if Φ = > then return true1

else if Φ = ∃x.Γ ∧ Φ′ then2

foreach Φ′σ ∈ ext(Φ,N) do3

if AnswerQuery(Φ′σ,N) then return true;4

end5

return false;6

else if Φ = ∀x.Γ→ Φ′ then7

foreach Φ′σ ∈ unv(Φ, N) do8

if ¬AnswerQuery(Φ′σ,N) then return false;9

end10

return true;11

else if gnd(Φ, N) = true then return true12

else return false13

The algorithm expects as its input a query Φ and the clause set N . First, the algorithm
checks whether the given query Φ is an existential quantified, a universally quantified or a
ground query. Then it computes the set of all subqueries obtained by applying the respective
calculus rule. The set ext(Φ, N) is the set of all subqueries from applying the rule Existential
query to Φ and N . Likewise, the set unv(Φ, N) is the set of all subqueries from applying the rule
Universal query to Φ and N . Finally, gnd(Φ, N) is the result of the application of Ground query.
If gnd(Φ, N) is true then the algorithm returns true otherwise it returns false. Our algorithm
processes a query from the outer query to the inner subquery. Checking if NI |= ∀x(Γ → Φ′)
requires to check if each ground instance of Γ is also contained in the set of instances of Φ′.
Since, we have to compute the ground instances of Γ anyway, we process the queries from the
outer to the inner query.
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Our implementation of the query answering calculus follows exactly Algorithm 1. The rules
are implemented following the implementation of hyperresolution style rules. One exception
to the straight forward implementation is the condition 4 that checks if a transitive dependent
atom A is entailed by NI . We do not use the whole reasoning engine of Spass-Y2 for this
purpose. Instead, we have implemented a procedure that simulates several derivation steps in
hyperresolution style macro steps while keeping an efficient implicit representation of the query
clause.

Theorem. Let Φ be a query, N the saturation of a clause set from the BSH-Y2 with respect
to the saturation calculus of Section 3. If NI is the minimal model of N , then

NI |= Φ⇔ AnswerQuery(Φ, N) = true

5 Experiments

We have extended the automated theorem prover Spass 3.8 [22] with the saturation and query
answering calculus presented in this paper. We call this new version Spass-Y2. Spass-Y2
is sound, complete and terminating for BSH-Y2 and additionally provides a query answering
engine for queries with quantifier alternations.

For our experiments we used the SUMO and CYC ontologies from the CASC–23 [20] com-
petition. In order to obtain the clause set SUMO-Y2, we extracted all clauses belonging to
the BSH-Y2 language from the SUMO ontology file CSR003+2.ax of the TPTP. The clause set
SUMO-Y2 contains 82, 064 which is about 90% of CSR003+2.ax. The remaining 10% cannot
be expressed in the BSH-Y2 fragment. In particular, the relations s instance and s subclass
can be expressed in BSH-Y2. Likewise, for CYC-Y2 we extracted the BSH-Y2 clauses from
the base knowledge of the CYC TPTP file CSR002+5.ax. The clause set CYC-Y2 contains
about 1, 033, 447 clauses out of 3, 341, 996. We consider only the BSH-Y2 fragment of the base
knowledge of CYC in CYC-Y2 because this has already a high level of inconsistency. In other
words, we do not consider the microtheories of CYC for our experiments. The YAGO++ on-
tology that we used for our experiments includes the first-order representation of the YAGO
ontology plus further axioms. For example, we added the following definition which is an refine-
ment of the relation locatedIn: locatedIn(x, y) → locatedInTr(x, y), removed the transitivity
axiom for locatedIn and added a transitivity axiom for locatedInTr. This allows us to check the
relation locatedIn for additional properties like functionality and antisymmetry. The relation
locatedInTr together with the respective transitivity axioms represents the transitive closure of
the original locatedIn relation. The resulting clause set YAGO++ contains 9, 918, 724 clauses
over 2m constants.

We ran our experiments on a 2 x Intel Xeon Processor X5660 (12 MB Cache, 2.80 GHz)
Debian Linux machine with 96 GB RAM with Spass-Y2 compiled as 64 bit binary. We require
a 64 bit architecture for our experiments because Spass-Y2 needs to address around 20 GB
RAM for the saturation of the YAGO++ ontology.

5.1 Saturation Procedure

In our experiments we compare clasp 2.0.4 with the grounder gringo [6], DLV [11], Vam-
pire 1.8 [14], E 1.4 [17], iProver 0.8.1 [10] and Spass 3.8 [22] with Spass-Y2. Spass 3.8 contains
already some of our data structure from our previous work [19] but not an implementation of
the calculi presented here. All provers were called using the recommended default settings with
a time limit of 100 min. We ran each of these tools with YAGO++, SUMO-Y2 and CYC-Y2.
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YAGO++ SUMO-Y2 CYC-Y2

Tool Derived Result Time Derived Result Time Derived Result Time

clasp 1, 118, 858, 572 kbs 70 min 1, 322, 070 sat 20 sec unsat 1 min

DLV t.o. 100 min sat 30 sec t.o. 100 min

Vampire kbs 1 min kbs 25 min unsat 26 sec

E kbs 6 min t.o. 100 min kbs 3 min

iProver kbs 1 min 967, 678 t.o. 100 min kbs 8 sec

Spass3.8 49, 848, 842 sat 60 min 1, 530, 025 t.o. 100 min 18, 907, 803 t.o. 100 min

Spass-Y2 2, 722, 246 sat 16min 790, 691 sat 45min 328,904 unsat 1 min

Figure 1: Evaluation of Spass-Y2

The results are depicted in Figure 1. The first column shows the tool and the second the results
for the respective ontology. The column derived shows the number of newly generated formulas
during problem processing. This column contains empty entries because this information was
not always available when the prover timed out (t.o.) after 100 min or was killed by operating
system/self killed (kbs), depicted in the result column. We have also tested the model finders
FIMO 0.2, E-Darwin 1.4, and Paradox 0.4, but none of these tools could find a model for any
of the three ontologies within 100 minutes. Except for Spass-Y2, none of these tools could
saturate all three ontologies and find inconsistencies. clasp performed nicely on SUMO-Y2 and
CYC-Y2, but it could not find a model of YAGO++ because it run out of main memory (96
GB).

5.2 Query Answering Procedure

We have tested the query answering abilities of Spass-Y2 in the standard first-order semantics
as well as in minimal model semantics. For the evaluation in terms of the standard first-order
semantics, we have tested the 20 queries of the SUMO category of the CASC-23 competition.
Before answering the queries we have saturated the SUMO-Y2 ontology and removed the logical
inconsistencies. We have identified two logical inconsistencies of the SUMO ontology as used
in CASC-23. Then we applied the saturation procedure of Spass-Y2 with a, in this case,
complete set of support strategy in order to find a proof for the respective query. This approach
terminates on 13 problems with a proof and on further five with a consistent saturated set. The
latter result is due to the fact that SUMO-Y2 does not contain all SUMO clauses. All results
were obtained within one second. The conjectures of the remaining two problems cannot be
formulated in the BSH-Y2 language. Spass-Y2 could have answered all of these questions
in terms of the inconsistent SUMO ontology (principle of explosion). After identifying and
fixing 35 inconsistencies in the base knowledge of CYC, we did not consider CYC for further
experiments because it is questionable what an answer in terms of an inconsistent ontology
means.

We have tested the query answering procedure of Section 4 of Spass-Y2 by running the
procedure on the following queries with respect to the saturated clause set of the YAGO++
ontology.
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Each of the following queries regard a particular feature of our query language or the BSH-Y2
language. This includes quantifier alternations, transitive dependent and transitive independent
definitions.

Q1 = ∃x(politician(x) ∧ physicist(x))

Q2 = ∃x, y, z(hasSuccessor(x,GeorgeWBush) ∧ graduatedFrom(x, z)∧
graduatedFrom(y, z) ∧ isMarriedTo(x, y))

Q3 = ∃x, y(bornIn(Angela Merkel, y) ∧ locatedIn(x, y) ∧ country(y))

Q4 = ∃x, y(bornIn(x, y) ∧ ∀z.hasChild(x, z)→ bornIn(z, y))

Q5 = ∃x(bornIn(x, y) ∧ politician(x) ∧ locatedIn(x,Europe) ∧ physicist(x))

Q6 = ∃x(bornIn(x,Hamburg) ∧ politician(x) ∧ physicist(x)∧
hasSuccessor(Helmut Schmidt, x))

Q7 = ∀x(politicianOf(x,Germany)→ ∃y, z. hasSuccessor(y, x) ∧ bornIn(y, z)∧
locatedIn(z,Germany))

Q8 = ∃x(politician(x) ∧ bornInCountry(x,Germany))

The time that Spass-Y2 needed to answer this queries are depicted in the below table.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

0:00.79 0:01.13 1:10.28 0:00.33 0:09.20 0:00.00 0:03.36 0:29.95

The automated theorem proving systems that participated in the CASC-23 LTB division are
not suitable in order to answer these queries. They are incomplete because of their axiom
selection strategy. In the case of a quantifier alternation, completeness is required for soundness.
Furthermore, these systems do not provide a minimal model query answering procedure.

Spass-Y2 answers most of the queries in a few seconds with respect to minimal model
semantics. Our implementation returns ”Yes” or a counter example for universal queries and
”No” or a complete set of answers for existential queries. For example the queryQ6 returns {x 7→
AngelaMerkel}. Spass-Y2 together with YAGO++, SUMO-Y2, CYC-Y2, and the queries are
available from the Spass homepage http://www.spass-prover.org/ in section prototypes and
experiments. There is also a prototype of a web frontend accessible from http://spassyago.

spass-prover.org/.

6 Conclusion

We have presented a sound and complete superposition calculus for BSH-Y2 covering YAGO++
and large portions of SUMO and CYC. The implementation Spass-Y2 can effectively decide
satisfiability for all three ontologies, where all other systems we have tested fail on at least one
input set. clasp performed nicely on SUMO-Y2 and CYC-Y2 but failed on YAGO++ due to the
2m constants and transitive relations preventing efficient grounding. Our results on SUMO-Y2
show that winning the respective CASC competition category can be easily done by focusing
on one of the logical inconsistencies. Our results on CYC show, where we stopped after finding
and debugging 35 inconsistencies, that it is highly inconsistent. So keeping completeness, but
further developing theory and implementation in order to be able to effectively check consistency
for large problems can lead to useful insights.
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In addition, we provide a new calculus for query processing supporting queries with arbitrary
quantifier alternations with respect to consistent and saturated clause sets of YAGO++ and
SUMO-Y2. Typical query response times for complex queries are in the range of seconds. There
is currently no other implementation of an automated reasoning procedure that supports queries
with quantifier alternations with respect to large ontologies out of the BSH-Y2 fragment.
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