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Preface

This volumes contains the papers selected for presentation at the 11th International Workshop
on the Implementations of Logic, at the Laucla Bay Campus of the University of the South
Pacific in Suva, Fiji.

The first Workshop on Implementations of Logic was held in November 2000 on Reunion
Island as an invitation-only event, associated with the 7th International Conference on Logic
for Programming and Automated Reasoning. This successful event sparked the creation of a
new workshop series, the International Workshop on the Implementation of Logics (IWIL), into
which it retroactively was adopted. Since 2001, the IWIL workshop has followed LPAR around
the world, thus boldly going where no workshop has gone before. This year’s IWIL is the 11th
instance of the workshop, and is associated with the 20th International Conference on Logic
for Programming, Artificial Intelligence, and Reasoning. To prevent hasty generalization: not
all instances of the workshop were held on tropical islands.

The program committee received 12 submissions, each of which was submitted to three
reviewers for peer review. As always, using EasyChair has made organisation of the review-
process a largely pain-free experience. We were able to accept 11 of the submissions, dealing
with topics as diverse as applications of automated reasoning to mathematics and logistics,
improvements in propositional logic solvers, and new algorithms for and extensions to first-
order and equational logics.

November 2015 Boris Konev
Stephan Schulz
Laurent Simon
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Abstract

The TPTP library is one of the leading problem libraries in the automated theorem
proving community. Over time, support was added for problems beyond those in first-order
clausal form. TPTP has also been augmented with support for various proof formats output
by theorem provers. Such proofs can also be maintained in the TSTP proof library. In this
paper we propose an extension of this framework to support the semantic specification of
the inference rules used in proofs.

1 Introduction

A key element in optimizing the performance of systems is the ability to compare them on
common benchmarks. In the automated theorem proving community, such benchmarks are
available via the “Thousands of Problems for Theorem Provers” (TPTP) library [31]. A part
of the library’s success lies in its syntactic conventions, which are both intuitive to read and
rich enough to encode many kinds of problems. Another advantage of its syntax is its simple
structure that allows one to easily write parsers and other utilities for it. As part of the evolution
of the library and its syntax, a support for proofs was added. In order to support the proof
library, called “Thousands of Solutions from Theorem Provers” (TSTP), the syntax needed to
be extended to support different types of proofs, in particular, directed acyclic graph proofs.
This syntax allows for the description of proofs as a series of steps which are themselves encoded
collections of inference rules and some additional annotations. One shortcoming of this format
is its emphasis on syntax and its inability to describe precisely the semantics of the inferences
used.

The increased complexity of today’s automated theorem provers has brought with it a need
for proof certification. Errors in proofs can result from several sources ranging from bugs in the
code to inconsistencies in the object theory. In order to improve this situation, several tools
for proof certification have been implemented that can improve our confidence in the proofs
output from theorem provers. These tools can be classified into two groups. First it is possible to
actually prove that a theorem prover is formally correct (see, for example, Ridge and Margetson
[24]). The second group consists of tools for verifying, not the theorem provers themselves, but
their output. This group can be further divided into two groups. The first group consist of
systems for replaying proofs using external theorem provers for verifying specific steps. Among
these, one can count the general tools Sledgehammer [22, 3], PRocH [13] and GDV [29] as well
as more specific efforts such as the verification of E prover [27] proofs using Metis [22]. The
second group contains tools having an encoding or a translation of the semantics of theorem
provers, which is then used in the replaying process. This last group can be divided again into
specific tools, such as Ivy [17] and the encodings of MESON [15] and Metis [12] in HOL Light
and Isabelle, respectively, and general tools such as Dedukti [2] and ProofCert [19].

These various classes of tools represent different approaches to proof certification. While
we can have a high level of trust in the correctness of the provers in the first group, their
performance cannot be compared to that of the leading theorem provers like E [27] and Vampire
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[23]. The remaining groups do not pose restrictions on the provers themselves but the generality
and automation of those in the second group come with the cost of using an external theorem
prover and translations, which might result in reduced confidence. The last two groups require
an understanding of a theorem prover’s semantics so that one can guarantee the soundness
of proofs by their reconstruction in a low level formal logic. Working with an actual proof
has several advantages as one can apply proof transformations and other procedures. The last
group has additional advantages over the previous one: a single certifier can be written that
should be able to check proofs from a range of different systems and the existence of a common
language for proofs allows for the creation of proof libraries and marketplaces [19].

Those tools in the last group have, so far, only limited success in the general community.
One reason for this is that understanding and specifying the semantics of proofs requires so-
phistication in the interplay between deduction and computation (whether via function-style
rewriting or proof-search).

The difficulty in understanding the semantics of the object calculi lies in the gap between
the implementers of theorem provers and the implementers of the proof certifiers. Currently,
the normal process for certifying the output of a certain theorem prover is for a dedicated team
on the certifier side to try to understand the semantics of each inference rule of the object
calculus. This approach suffers many times from missing documentation, different names and
versions of actual software, and insufficient information in the proofs themselves [5]. This gap
is enlarged by the fact that teams of implementers and certifiers can reside in different locations
or even work in different periods, thus making the communication between them difficult or
even impossible.

One way to overcome this gap is to supply the implementers of theorem provers with an
easy to use and well-known format in which to describe the semantics of their inference rules.
This format should be general enough to allow specifications to range from precise (functional)
definitions—translating a proof in the object calculus into a proof in another, trusted and well-
known calculus—and informal definitions, with hints on the right way to understand the object
calculus without needing to specify how to actually reconstruct a formal proof.

In this paper we aim at helping to reduce the gap mentioned above between those who
produce proofs and those who must certify them. We propose to use a format which is well-
known to the implementers of theorem provers—the TPTP format itself—for the purpose of
describing not only problems and proofs but also the semantics of proofs. This will make a
TPTP file an independent unit of information which can be used for certification as well.

An additional advantage of using the TPTP format to specify semantics is the same one
mentioned above for building tools for the TPTP library. The predicate logic form of the
problems, their solutions, and now, also their semantics, will allow proof certifiers to easily
access the semantics and will further diminish the gap between the theorem provers and their
certifiers. For example, the checkers proof certifier [5] (written using logic programming), will
only require minor computations to be applied to the input files, if any. Such simplicity helps
to improve the trust of the certification process.

The paper is organized as follows. In the next section we present and describe both the
TPTP syntax and the notion of using predicates in order to define the semantics of logics.
In section 3 we present and discuss the minor augmentations needed in the TPTP format in
order to support the ability to use this format to denote semantics. Section 4 is devoted to the
full description of four examples from four different theorem provers. The concluding section
suggests some additional advantages of using this approach.
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2 Preliminaries

2.1 Syntax in TPTP

A beneficial side effect of the TPTP library as a standard test suite for automated theorem
provers is the standardization of a language to express logic problems and their solutions. It is
no coincidence that this standardization on the language is credited as one of the keys to the
success of the TPTP project [31].

The TPTP syntax is built upon a core language called THF0 [1]. This core can be re-
stricted to support a number of interface languages: untyped first-order logic as first-order
form (fof) and clause normal form (cnf), typed first-order form (tff), and typed higher-order
(thf). Furthermore, all of these can be used in combination with a process instruction language
(tpi) for the manipulation of formulas. The concrete syntax revolves around the concept of
annotated formulas and is expressive enough to structure proofs and embed arbitrarily complex
information as annotations.

Among the stated design goals of the format, both extensibility and readability (by machines
and logicians) figure prominently. In addition, care has been taken to ensure that the grammar
remains compatible with the logic programming paradigm, and TPTP documents are, in fact,
valid Prolog programs.

For defining a formula using the TPTP format, one uses the following templates:

Language(Name , Role , Formula ).

Language(Name , Role , Formula , Annotations ).

where Language ∈ {cnf,fof,tff,thf,tpi} (see above for the list of interface languages),
Role describes the role of the formula —i.e. ‘axiom’ or ‘type’—, Formula is the encoding of the
formula in the specified language and Annotations contains optional additional information.

A template for defining structural derivations is the following:

Language(Name , Role , Formula , inference(Rule , Info , Parents )).

Here Rule denotes the name of the inference rules used, Info optionally specifies additional
information, like the SZS output value of the inference and Parents also optionally refers to
the names of the formulas which were used in the application of this rule. Formula, as before, is
an encoding of the derived formula in the respective language. The SZS ontology [30] referred
to above supplies a set of inference properties, such as theoremhood, satisfiability, etc., which
give some semantical information. It should be noted that this information might suffice for
proof replaying using an external prover [22, 13, 29], but does not fully help in understanding
the semantics of the inference rules themselves.

Another useful feature of TPTP is the include directive, which performs a syntactical
inclusion of one file into another. This directive may help reduce redundancies.

2.2 Denoting semantics as logic programs

As already mentioned, one way to formally describe the semantics of an inference rule is by
translating an instance of this rule into a derivation in another, well-known, calculus. This
translation can be determinate or nondeterminate: in the latter case, a logic programming
implementation of the translation could allow for that nondeterminism to be explored using
backtracking search. Nondeterminism in the specification of proof semantics has been consid-
ered in other systems as well. In particular, nondeterminism is allowed in the Foundational Proof
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Certificates (FPC) framework [7, 19] where client-side inference rules (i.e., rules implemented
in theorem provers) are translated into low-level rules of sequent calculus. The checkers proof
certifier [5], based on the FPC framework, used the λProlog logic programming language [20]
to provide for a backtracking search approach to exploring any nondeterminism in such trans-
lations. The basic idea is to program a set of predicates which will guide the search in the
target calculus. By guiding the search for a derivation of an instance of an inference rule in a
well-known calculus, this set of predicates can be considered as denoting the semantics of this
inference.

Before describing how we plan to use the TPTP framework to specify the translation of
inference rules, we need to present the underlying principles behind the idea.

First, and critically, semantic descriptions are not “one size fits all”: there is an underlying
trade-off between space (for storing a proof) and time (for checking a proof). More detailed
semantic translations, insofar as the information provided is useful, produce more efficient
verifications; conversely, high-level, conceptual descriptions may serve as guidance but cannot
be used to generate a constructive decision procedure without additional information or search.
At one extreme are fully determinate translations of inference rules and at the other extreme
are minimal but sufficient hints to allow a possible reconstruction of a proof in an independent
checker. In contrast, here we consider the full spectrum of implicit vs. explicit reconstruction.

For example, suppose we wish to obtain a proof of a formula A ∧B ∧ C. It may simply be
stated that to do this, separate proofs for A, B, and C are needed:

A B C
A ∧B ∧ C

To understand the meaning of this inference rule, one can try to infer the conclusion from the
hypotheses using a well-known calculus, the sequent calculus for example, which tells us that in
order to derive the original goal, two proofs are needed, one for A and a second one for B ∧C,
and then divide in turn this second composite proof into sub-proofs of B and C:

A
B C
B ∧ C

A ∧B ∧ C

The question of whether we can trust the first inference relies on the fact that its semantics
is defined by the second, in the sense that it constitutes a formal derivation of the intended
meaning, namely, that one can obtain a proof of the conjunction of three goals from proofs of
each of those goals. Trust in the calculus of choice extends to trust in the inference rules that
it can justify. Contrariwise, consider an alternative candidate for an inference rule:

A B C
A ∨B ∨ C

It can be proved that a reasonable calculus will be unable to derive an inference of this shape.
In the absence of a trustworthy proof reconstruction of the postulated inference rule, its validity
cannot be accepted.

Consider now the more realistic case of paramodulation [25], a concrete instance of which
we study in section 4.1. In this case, an explicit functional translation of the formal definition
is far from being trivial. Conversely, it may be stated, more informally, that paramodulation
handles equality modulo reflexivity: that is to say, the transitivity and symmetry axioms can be
used to simulate this rule in a logic without explicit handling of equality (note that reflexivity
axioms must be given externally for the equality procedure to be complete).
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By applying some additional effort, this approach was implemented successfully in checkers

and is capable of guiding the proof search for arbitrary instances of the paramodulation rule.
This implies, therefore, that supplying the two axioms provides enough information to assist
the automatic certification of this inference rule.

3 Thousands of Semantically Annotated Solutions for The-
orem Provers (TATP)

In order to have the cleanest and most declarative treatment of one logic (i.e, the logic of the
client prover) within a second logic encoding inference rules and their associated proof search,
we shall make use of the notion of order of THF0. In this setting, defining the semantics of
logical formulas of order n employs a meta-level logic of order n+ 1. For example, if our client
proofs are only propositional formulas (order 0) then the first-order fragment of THF0 suffices.
However, if our client proofs are first-order formulas, then we employ directly the second-order
subset of THF0. As seen in section 2, TPTP is equipped with the necessary syntax necessary
to define formulas of an arbitrary finite order. It is largely for this reason that we will employ
λProlog [20] to automate1 the translation of inference rules, since the logic underlying λProlog
is close to that underlying THF0 (both are closely related to Church’s Simple Theory of Types
[8]). For example, in order to define the provability (via the predicate pr) of a classical first-order
quantifier, one can use the following λProlog clause:

pr(∀x.Bx) :- Πx. pr(Bx).

where ∀ is the object-logic universal quantifier and Π is the meta-level universal quantifier. The
implementation of λProlog deals directly with the many issues related to binding, substitutions,
eigenvariables, and unification [10].

TPTP proofs are already annotated by the inference rules that are used in order to derive
the formula. These annotations, however, lack a formal semantics and they cannot normally
be understood by a person not familiar with the details of the system that outputs those
annotations. We propose to use the TPTP thf syntax in order to allow the implementer of a
theorem prover to include semantical information about their inference rules, thereby replacing
imprecise and specialized annotations with more formal annotations. Note that by using the
TPTP include directive, one does not need to include these definitions in every proof generated
but just define them once.

In order to allow such a use, we can first define a new role for formula definitions. We
therefore add the following directive to the TPTP syntax:

<formula_role > :== semantics

A TPTP semantics definition will have the following form:

thf(Name , semantics , Formula , Annotations ).

where Name, by convention, should consist of the prover name, underscore and then the inference
name which was used in the proof, for example “e pm”. Formula can contain an arbitrary higher-
order typed formula denoting the semantics definitions. In the rest of the paper, though, we
ignore typing information in order to focus on clarity. Note that the logical programming

1Both Teyjus [21] and ELPI [9] are implementations of λProlog.
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language λProlog requires formulas to be in fragment of higher-order logic called hereditary-
Harrop formulas [20]. As has been shown elsewhere (for example, [10] and [20, Chapter 9]),
this fragment of logic is able to elegantly specify a variety of inference rules. Thus, if one
can define the semantics of inference rules using these formulas, one could use, with minimal
intervention, proof checking software like checkers to verify proofs. Lastly, Annotations can
contain additional (informal) information which can help understanding the semantics. These
annotations may include the name of a target logic which can be used for proof reconstruction
or a reference to a paper which defines the target or object logics.

A question we still need to answer is how one can define the semantics of an inference rule
and how we can make that task as simple as possible. The decision taken here is to allow the
implementer of a theorem prover to use, in order to define the semantics of their own rules, the
inference rules and the theory of any other calculus. In general, they can decide to specify the
semantics using the inference rules of another theorem prover. However, it would be preferable
to specify the semantics using the inference rules of a well known calculus, like the original
resolution calculus by Robinson [26], for example. The approach we are discussing here (with
examples in the next section) stands in contrast to what is being done in the ProofCert project
[18]. In that project, the meanings of all inference rules are “compiled” into a low-level proof
system (representing an “assembly language” for inference). We do not insist on employing
that framework, opting instead for a less tedious and more high-level approach to providing
some useful information about the inference rules used in a specific theorem prover.

It should be noted that according to the above conventions, one has full control over the
amount of detail and choice of the target calculus. A large amount of detail might enable a
precise proof reconstruction in a fine grained calculus, for example, in the sequent calculus
(the ProofCert project does exactl1y this, for example). We want to stress here that since
the aim of these definitions is to communicate information about the semantics, such detailed
information is not necessary. There can be benefits for both the certification team and the
implementers in specifying information about the semantics of their own rules using the highest
level calculus known to the community. This will make the definition simpler and will also
contribute to the modularity of a certification tool since the certifiers will only need to implement
the semantics of the high level calculus, the semantics of which being widely known. For
example, all superposition provers are using variants of the paramodulation inference rule [25].
Defining the semantics of these variants can be done by a number of individualized, detailed
descriptions or be based on the known notion of paramodulation. It seems more intuitive and
simple for implementers to choose the second option and let the certification team implement
the general semantics of paramodulation. This is the approach taken in checkers and described
below in the examples. A fine grained description of the semantics of paramodulation can be
found, for example, in [6].

When defining proofs in the TPTP format, the information of which inference rule to use
is supplied using the annotation directive. We will do the same and use this directive in order
to supply the information of what calculus is being used to define the semantics. To this end,
we will add the following directives to the TPTP syntax:

<source > ::= <calculus_info >

<calculus_info > ::= calculus(<calculus_name ><optional_info >)

<calculus_name > ::= <atomic_word >

Using these directives, the user can specify the name of the calculus used and supply addi-
tional information, such as the name of a paper where this calculus is defined.

The last remaining task is to be able to bind the instances of the inference rules in the
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proofs to their semantics definitions. We suggest the following convention: in order to specify
an inference call in DAG form, i.e. the ones used in proofs, the user will employ the following
predicate:

<inference rule>(f, f1, . . . , fn)

where f is the derived formula and the remaining formulas are the inputs used in the derivation.
Examples of this convention are given next.

4 Examples

We demonstrate the use of THF0-style annotations on four examples taken from inference rules
used by four different theorem provers.

4.1 Paramodulation in E

The E prover [27] was among the first provers to output proofs using the TPTP format. A
staple on the podium at the annual CASC competitions [32], E is used by many other first-
and higher-order theorem provers. E is a superposition-based, saturating, automated theorem
prover based on a purely equational paradigm. As such, it implements several variants of the
paramodulation rule.

Definition 1 (Paramodulation [25]). Given clauses A and α′ = β′∨B (or β′ = α′∨B) having
no variables in common and such that A contains a term δ, with δ and α′ having a most general
common instance α identical to α′[si/ui] and to δ[tj/wj ], form A′ by replacing in A[tj/wj ] some
single occurrence of α (resulting from an occurrence of δ) by β′[si/ui], and infer A′ ∨B[si/ui].

One concrete variant, for example, is given in the pm rule of E. This rule is applied in TPTP
syntax using the following form:

cnf(ClauseId , Role , Formula , inference(pm , [status(thm)],

[SourceId1 , SourceId2 , theory(equality )])).

where SourceId1 and SourceId2 are the two clauses to which the paramodulation rule is applied
to obtain ClauseId, corresponding to the formula given by Formula and with role Role. The
semantics of this rule is similar to the semantics of the paramodulation rule (from [25] and
our definition), with the peculiarity that the tactic presents symmetry for both ClauseId1 and
ClauseId2.

To produce the full definition we proceed in two steps. First we present a TPTP formula
that denotes the semantics of the pm rule.

thf(eprover_pm , semantics , Formula , calculus(paramodulation ,

[p.5 in [25] ])).

where the semantics is documented by a suitable bibliographic reference. Second, we define
Formula as the mapping between the specific variation of paramodulation defined by the E
prover (namely, the pm tactic) and the canonical semantics derived from the definition:

∀ SourceId1 , SourceId2 , ClauseId:

pm(SourceId1 , SourceId2 , ClauseId)

⇐ paramodulation(ClauseId , SourceId1 , SourceId2)

∨ paramodulation(ClauseId , SourceId2 , SourceId1)
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where, as usual, free variables are universally quantified; we have made this quantification
explicit in the present formulation.

4.2 Binary resolution in Vampire

Vampire [23] is a theorem prover that implements the superposition calculus and is the regular
winner of the first-order division in the CASC competition over the last decade [32]. Proofs
proceed by saturation and rely on redundancy elimination and a wide range of advanced tech-
niques to maximize performance, one of its original design goals. It features a rich collection of
inference rules and supports the TPTP syntax, including various extensions. Here we inspect
TSTP entries produced by Vampire 4.0 to infer program semantics.

Definition 2 (Binary resolution [26]). Given two clauses A = a1∨ . . .∨am and B = b1∨ . . .∨bn
and a pair of complementary literals, one from each clause, i.e., ai = ¬bj or ¬ai = bj, the
resolution rule derives a new clause with all the literals except the complementary pair: C =
a1 ∨ . . . ∨ ai−1 ∨ ai+1 ∨ . . . ∨ am ∨ b1 ∨ . . . ∨ bj−1 ∨ bj+1 ∨ . . . ∨ bn.

The binary resolution rule includes the possibility of applying a unification procedure to a
pair of unifiable literals, and substituting the most general unifier in the resolvent C. Some
categories of binary resolution can be defined. These are not necessarily mutually exclusive:

• Positive resolution, if one of the parent clauses is a positive clause, i.e., all its literals are
positive.

• Negative resolution, if one of the parent clauses is a negative clause, i.e., all its literals
are negative.

• Unit resolution, if one of the parent clauses is a unit clause, i.e., formed by exactly one
literal.

Vampire outputs natively to TPTP in addition to its own internal format, closer to that of
Prover9 that we treat in the next subsection. Now, we consider the TPTP output of the basic
resolution rule.

fof(ClauseId , plain , Formula ,

inference(resolution , [], [SourceId1 , SourceId2 ])).

The translation takes this to the higher-order formula and adjusts the annotation infor-
mation in the inference name to point to the name of the logic program that implements the
procedure.

thf(vampire_resolution , semantics , Formula , calculus(hol)).

where Formula is defined to be

∀ S1 , S2 , R1 , R2:

resolution(S1, S2, R1 ∨ R2)

⇐ ∃ L: select(S1 , L, R1) ∧ select(S2 , ¬L, R2)

∨ select(S1 , ¬L, R1) ∧ select(S2 , L, R2).

Here the standard list selection predicate is used to pick a literal from a list-like clause and
yield a copy of the clause without the chosen literal. We are still free to use concatenate clauses
by way of a disjunction.
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A clause produced by binary resolution is specified by the two premise clauses and (con-
sidering each of these in CNF form, and in turn a CNF form as an indexed list of disjuncts)
by the disjunct from each clause that is involved. We also assume a predicate specifying, and
therefore declaratively implementing, binary resolution, that acts on formulas and can check
whether the specified application of resolution yields the target formula.

4.3 Hyperresolution in Prover9

Prover9 [16] is a theorem prover based around the techniques of resolution and paramodulation,
and the successor of the Otter theorem prover. The last available version is 2009-11A, dated
November 2009. While development has since ceased, the tool remains in use. Prover9 does
not produce output in TPTP format, and therefore TSTP contains unparsed execution traces.
However, the input and output formats of the prover are simple and well documented, and
their semantics can be easily formalized. Interestingly, such a translation procedure offers the
possibility of generating the native TSTP output that is missing from the problem library,
together with its semantics.

In this subsection we consider hyperresolution [11], one of the primary tactics used by
Prover9. An informal definition of the inference rule follows.

Definition 3 (Hyperresolution [11]). Assume a nucleus clause A, nonpositive, with a number
k of negative literals ¬ai1 , . . . ,¬aik , and as many satellite clauses B1, . . . , Bk, each of which
resolves on of those negative literals, i.e., Bj = . . .∨ aij ∨ . . .. The hyperresolution rule resolves
all the negative literals in the nucleus, each with its satellite, producing a positive clause C.

Hyperresolution can be seen as a sequence of applications of binary resolution. It is likewise
possible to reverse polarities and speak of negative hyperresolution. A related concept is that of
unit-resulting resolution, where the satellites are unit clauses and the nucleus is reduced down
to a single literal, i.e., another unit clause.

Prover9 implements this as the hyper tactic. The output language divides files in several
sections, one of which contains proofs presented as justifications: a sequence of clauses, each
derived from the starting clauses or by previous derivations in the chain. Inferences in each
step of the justification are themselves lists of tactics: exactly one primary tactic, possibly
followed by a number of secondary tactics. Hyperresolution is one of the primary tactics, and
for simplicity we will consider its treatment in isolation. It will become clear that sequences of
secondary steps follow an analogous compositional pattern.

An example of hyperresolution step is hyper(59, b, 47, a, c, 38, a) where clauses are
referenced by Arabic numerals and literals within a clause by letters: a, b, c. . . Though rep-
resented by a plain list, it is to be interpreted as the nucleus clause followed by a sequence
of triples, each specifying a satellite clause and the literals that are involved to produce the
next clause in the hyperresolution chain. Thus, in the example, 59 is the nucleus; applying
binary resolution to its second literal and the first literal of clause 47 produces a new clause;
and applying binary resolution again, this time between the third literal of the new clause and
the first literal of 38, produces the final result.

Ignoring labels and secondary steps in Prover9 syntax, an instance of the hyperresolution
rule is expressed as follows.

Clause Formula. [hyper(Nucleus ,

First1 ,Satellite1 ,Second1 ,

. . .,
FirstN ,SatelliteN ,SecondN )]
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For the translation to our extension of TPTP, we provide the logic program that implements
the procedure and define the mapping.

thf(prover9_hyperresolution , semantics , Formula , calculus(hol)).

Here Formula defines the logical semantics of hyperresolution recursively, in terms of the same
generic (binary) resolution procedure that was used to model the tactic in Vampire.

∀ S1 , S2 , R:

hyperresolution ([S1, S2], R)

⇐ resolution(S1, S2, R).

∀ S1 , S2 , Ss , R:

hyperresolution ([S1, S2 | Ss], R)

⇐ ∃ R’: resolution(S1 , S2 , R’)

∧ hyperresolution ([R’ | Ss], R).

Insofar as the sequence of clauses and the expected final formula are known, we can ignore
the triples passed as additional info and entrust the backtracking search mechanism to find an
appropriate application of hyperresolution (assuming one exists). Consequently, the encoding
drops the conjunct selection guidance given by Prover9 and represents a more general problem,
solvable directly by the definition given here.

4.4 Object- to meta-level lifting of disjunction in LEO-II

As a final example, we consider a two-level logic tactic in the theorem prover LEO-II. In
particular, we consider the extcnf or pos tactic, which is responsible for lifting a disjunction
from the object level to the meta level of the logic [28]. The rule has the following definition:

C ∨ [A ∨B]
tt

C ∨ [A]
tt ∨ [B]

tt

The tool expresses the application of this rule natively in TPTP syntax as follows.

thf(ClauseId , plain , Formula ,

inference(extcnf_or_pos , [status(thm)], [SourceId ])).

It should be noted that atoms in LEO-II are labeled with either true or false using the
TPTP notation F = $true. Once a substitution is applied, atoms can become more complex
formulas. Concretely, this inference rule is used to translate the object-level disjunction into
the clause-level one.

To provide the semantics of this rule, we use a higher-order logic formulation:

thf(leo2_extcnf_or_pos , semantics , Formula , calculus(hol)).

Here Formula supplies the following definition for the underlying semantics (using explicit
quantifiers).

∀ ClauseId , SourceId:

extcnf_or_pos(ClauseId , SourceId)

⇐ (((∀ C: C ⇔ C = >) ∧ SourceId) ⇒ ClauseId)

It is easily seen that using the additional axiom one can easily use any calculus for higher-order
logic to prove this normalization rule.
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5 Discussion and conclusion

Even when we restrict our attention to the community of resolution theorem provers, there
are several different approaches to proof certification. Sutcliffe [29] proposed using the proof
derivations in the TSTP library as a skeleton, which one can use to reconstruct a proof (possibly
with the help of theorem provers). The Dedukti proof certifier [4] is a universal proof certifier
which was successfully used to certify proofs of the iProver resolution theorem prover [14]. The
proof certifier closest to the approach presented in this paper is that of the system checkers [5],
which uses logic programming in order to encode inference rule semantics and to reconstruct
proofs. checkers has been used to partially certify E’s [27] proofs. While the first method is
based on using theorem provers for filling in the missing semantics in TPTP proofs, the latter
two systems are stem from a concrete effort to denote the semantics of different theorem provers
using deterministic and non-deterministic approaches, respectively. This effort is normally made
by a different team from that which implemented the theorem prover and which has the deepest
knowledge about the actual semantics of its calculus.

The approach which was taken in this paper tries to make this effort easier and more
accessible to the implementers of theorem provers. First, the language used to denote the
semantics is well known to the implementers as it is already used to input problems and to
output proofs. Second, unlike the last two systems mentioned, the implementers have a high
degree of flexibility to define the semantics and are not restricted by external notions such
as efficient or effective translations. This indeed put at risk the ability to mechanize these
definitions into an actual certifier for the system but as mentioned in the paper, the parts
which cannot be mechanized as given can, at least, be used to bring mechanization closer with
some further help, for example, by the certification team.

The aim of this proposal is to convince the implementers of theorem provers that even
semi-formal semantics, which can easily be defined using the approach presented, are useful for
the purpose of full certification of their provers. The implementers can thus control the effort
required of them in order to generate the semantics. The examples given in this paper range
from the minimal effort of specifying a simple set of axioms to the greater effort of defining a
full translation. While the second can be used efficiently by any of the two systems described at
the beginning of this section, the first method requires only minimal additional effort in order
to be used for proof reconstruction by a system like checkers.

In conclusion, TPTP can serve as a format for specifying the semantics of proofs for various
degrees of concreteness. By using the same format for both problems, proofs and semantics,
implementers are encouraged to consider the semantics as part of the implementation effort.
This effort can both serve as documentation of the internal calculus and as an implementation
of the semantics which can be later used for proof checking.
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Abstract

We present a method to simplify expressions in the context of a formal, axiomatically defined, the-

ory. In this paper, equality axioms are typically used but the method is more generally applicable. The

key idea of the method is to represent large, even infinite, sets of expressions1 by means of a special data

structure that allows us to apply axioms to the sets as a whole, not to single individual expressions. We

then propose a bottom-up algorithm to finitely compute theories with a finite number of equivalence

classes of equal terms. In that case, expressions can be simplified (i.e., minimized) in linear time by

“folding” them on the computed representation of the theory. We demonstrate the method for boolean

expressions with a small number of variables. Finally, we propose a “goal oriented” algorithm that

computes only small parts of the underlying theory, in order to simplify a given particular expression.

We show that the algorithm is able to simplify boolean expressions with many more variables but

optimality cannot be certified anymore.

1 Introduction

Algorithms to simplify expressions often start by simplifying sub-expressions. Then they at-
tempt to apply a number of simplification rules to the whole already partly simplified ex-
pression. Very often the simplification rules are restricted to rules that are guaranteed to
produce a simpler (shorter) expression. This ensures that the simplification process is fast.
However, in many situations it is necessary to first compute a more complicated expression
in order to get a satisfactorily simplified one. For example, let us consider the boolean ex-
pression a + ba. Its sub-expressions are already simplified. To complete the simplification
using basic axioms of the boolean calculus, we must write a sequence of equalities such as:
a+ ba = 1a+ ba = (1 + b)a = 1a = a. At least the expression 1a+ ba is more complicated than
the initial one. And it is the key for the simplification.

In this paper, we propose an approach to simplification where we basically compute all
expressions that are equivalent (i.e., equal with respect to a given theory) to an expression to
be simplified. And we pick the simplest one (or possibly all simplest ones) at the end. The key
idea for making that possible is to apply rules (i.e., axioms) to (large) sets of expressions instead
of single ones. To do so we introduce a data structure that allows us to compactly represent such
sets of terms and we show how it can be used to compute (representations of) some theories in
such a way that a given expression can be mapped to its equivalence class in linear time. So
simplifiying the expression amounts to pick a simplest expression in the equivalence class. The
approach is not applicable to all theories but it can be adapted to theories that are not finitely

1We use the words “term” and “expression” as synonymous.
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representable to derive a simplification algorithm that gives good results in some interesting
situations.

The rest of this paper is organised as follows. In Section 2, we introduce the data structure
that is used to represent sets of equal terms. This data structure can be related to the congruence
closure method used in [8, 1] but it allows us to represent sets of terms in a much more compact
way. In Section 3, we describe a bottom-up algorithm that computes (a representation of) the
equivalence classes of terms that can be built from a set of equality axioms and a set of initially
given terms. The algorithm (theoretically) terminates if and only if the number of these sets
is finite. But the sets themselves can of course be infinite. We illustrate the functioning of
the algorithm on a simple theory. In Section 4, we use the bottom-up algorithm together with
a set of axioms for the boolean calculus to compute a complete representation of all boolean
expressions using at most three variables. Based on this representation we show that any
boolean expression can be simplified in linear time. It is also possible to use this representation
to write down all minimal boolean expressions using three variables, according to various size
notions. In Section 5, we propose a different but related algorithm to simplify expressions in
the context of larger theories. Minimization cannot be guaranteed anymore. We show that the
algorithm is able to simplify boolean expressions with many variables. In Section 6, we relate
our work to the literature. Finally, Section 7 provides the conclusion and a list of extensions
and improvements that we plan to make in the future.

All program runs presented in this paper are executed on a MacBook Pro 2.4GHz (Intel
Core i5, 4Gb RAM) using Mac OS X 10.6.8. The programs are written in Java, and compiled
and executed using the basic javac and java commands without any option. Timings are
measured using the method System.nanoTime().

2 Structures and Sets of Structures

To represent terms and sets of terms, we use “objects” that we simply call structures. A
structure is of the form f(i1, i2) : i where f is a function symbol, and i1, i2 and i are so-called
set of structures identifiers. It is convenient to use natural numbers as identifiers and it is done
so in the following and in our implementation but, from a “theoretical” standpoint, identifiers
could be chosen from any infinite set I. We call f(i1, i2), the key of the structure. The identifier
i, is the identifier of the set of structures to which the structure belongs. Thus, at a given time,
we consider a finite “collection” of structures that is partitioned in a finite number of sets of
structures. For convenience, we only use binary keys and we “simulate” constant and unary
function symbols by binary ones that are applied to the special identifier inull which is the
identifier of a conventional “dummy” set of structures. This can be related to the Currying
and flattening method of [9] and to the transformation to directed graph of out-degree 2 of [4].
When we display structures, however, we use a simplified notation with constant and unary
symbols.

The meaning of structures and sets of structures is defined as follows. Given n sets of
structures E1, . . . , En, those sets denote together the smallest sets of terms T1, . . . , Tn such
that a term f(t1, t2) belongs to Ti whenever Ei contains the structure f(i1, i2) : i and t1, t2
belong to Ti1 and Ti2 , respectively.

As a simple example, let us consider the case of three structures partitioned into two sets
of structures:

E1 = {f(1, 2) : 1, a : 1} E2 = {b : 2}
These two sets of structures denote the sets of terms:

T1 = {a, f(a, b), f(f(a, b), b), . . . , f(. . . f(a, b) . . . , b), . . .} T2 = {b}

2
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We observe that the set T1 is infinite. The sets of structures E1 and E2 constitue what is
computed by our method when it is given the equality a = f(a, b) or, maybe more intriguingly,
the two equalities f(f(f(a, b), b), b) = a and f(f(f(f(f(a, b), b), b), b), b) = a.

2.1 Operations over Sets of Structures

There are two main operations over sets of structures: toSet and unify.
The operation toSet takes as input a term f(t1, t2) and returns the identifier i of a set of

structures to which the term belongs.2 (More exactly the term belongs to the set of terms Ti

denoted by Ei.) The operation first recursively computes the identifiers i1 and i2 corresponding
to t1 and t2. Then there are two cases. Either a structure f(i1, i2) : i already exists for some
i. Then the identifier i is returned. Otherwise, a new set identifier i is chosen and a new set
Ei = {f(i1, i2) : i} is created. Finally, the identifier i is returned.

The operation unify puts two sets of structures together, assuming that the terms denoted
by the two sets are all equal, and taking into account the fact that two terms that have equal cor-
responding subterms are equal as well (function congruence [8, 1]). It uses two sub-operations:
substitute and normalize.

• The operation substitute takes as input two set of structures identifiers i and j. It removes,
from all sets of structures, all structures that involve j (i.e., structures of one of the three
forms f(i1, i2) : j or f(j, i2) : i′ or f(i1, j) : i′, for some i1, i2, i

′) and it substitutes to them
possibly new structures obtained by replacing j by i in the removed ones. The set Ej is
then discarded.

• The operation normalize takes into account the fact that different structures with the same
key can result from the operation substitute. Since these structures denote the same non
empty set of terms, the sets of structures to which they belong must be recursively unified.
Thus, the operation normalize collects all pairs of distinct structures with identical keys
and apply the operation unify to the identifiers of the sets of structures to which they
belong.

• The operation unify simply consists of executing substitute followed by normalize.

It is important to say that both operation toSet and unify can be implemented efficiently
by means of adequate data structures: mainly, a hash table for keys and three doubly linked
lists for the identifiers i1, i2, and i used by the structures. (In fact, there are three such lists
for each set identifier.) However, we do not give the details of the implementation here.

Another important fact to note is that the operation unify always reduces the number of
structures and the number of sets of structures that are “currently living”, while, at the same
time, it increases the set of all terms that are represented by the sets of structures. The more
the sets of structures are reduced the more the sets of represented terms are increased. This is
a key observation to understand the power of our method.

3 Bottom-up Algorithm

We now describe, mainly by showing how it works on examples, a bottom-up algorithm that
aims at computing a set of sets of structures that describes exactly the equivalence classes of
terms that can be built from a set of equality axioms and a set of initially given terms. Thus,
the algorithm, at the same time, builds a representation of all terms that can be constructed
from the initially given terms and the function symbols used by the axioms, and classifies them
into the equivalence classes determined by the axioms. The algorithm terminates if and only

2This way of representing terms can be related to the term banks of [10].
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if there are only finitely many such equivalence classes. (Of course, in practice, it may fail to
terminate because of lack of memory or it may take too much time.)

To fix ideas, we present first an example of an execution of the algorithm. Consider the
following simple set of axioms:

x.x = x ; x.y = y.x ; (x.y).z = x.(y.z) ;

This set of axioms states that the binary operation . is idempotent, commutative and associa-
tive. The letters x, y, z are thus universally quantified variables. We simply use the last letters
of the alphabet as variables. Others characters such as a, b, f, 0, !, +, . . . stand for constant
and function symbols. Assuming that these axioms are put in a file called Simple.txt, let us
consider the following run of the algorithm.

java BottomUpV3 Simple ’(ab)’

===============================================

Number of sets of structures : 3

Total number of structures : 11

Intermediate time : 9.32E-4 sec

Number of created sets of structures : 12

===============================================

Total time : 0.001659 sec

Number of created sets of structures : 12

===============================================

?t

---------------------------------------------------------------

Set of structures no 1 [id = 1] [size = 1] [tcS = 2]

---------------------------------------------------------------

Minimal term : a

---------------------------------------------------------------

.(1, 1):1 [size = 3] [key = 433592]

a:1 [size = 1] [key = 65]

Number of structures : 2

---------------------------------------------------------------

Set of structures no 2 [id = 2] [size = 1] [tcS = 3]

---------------------------------------------------------------

Minimal term : b

---------------------------------------------------------------

.(2, 2):2 [size = 3] [key = 867170]

b:2 [size = 1] [key = 66]

Number of structures : 2

---------------------------------------------------------------

Set of structures no 3 [id = 3] [size = 3] [tcS = 4]

---------------------------------------------------------------

Minimal term : ba

---------------------------------------------------------------

.(3, 2):3 [size = 5] [key = 300630]

.(2, 3):3 [size = 5] [key = 867297]

.(1, 3):3 [size = 5] [key = 433846]

.(3, 3):3 [size = 7] [key = 300757]

.(3, 1):3 [size = 5] [key = 300503]

.(2, 1):3 [size = 3] [key = 867043]

.(1, 2):3 [size = 3] [key = 433719]

Number of structures : 7
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===============================================

Number of sets of structures : 3

Total number of structures : 11

?s

>aaaaaaaaabababababbbbbbbbabababbbbbbbbbbbbbbbbbab

Simplified expression : ab

Simplification time : 1.01E-4 sec

===============================================

• The first line launches the algorithm with the file of axioms Simple.txt and the initial
term a.b. The program stops after 0.001659 seconds and displays that 12 sets of structures
have been created during the whole execution.

• Then, the command t allows us to display the sets of structures that are obtained as the
final result of the bottom-up algorithm. We see that there are only three different sets of
structures representing the terms that are respectively equals to a, b, and a.b. The first
set contains the two structures .(1, 1) : 1 and a : 1 because a term t is equal to a if and
only if it is just a itself or if it is of the form t1.t2 where both t1 and t2 are equal to a.
The third set contains seven different structures describing all possible forms of the terms
that are equals to a.b. For instance, the structure .(2, 3) : 3 stands for all terms t1.t2 such
that t1 is equal to b and t2 is equal to a.b.

• Finally, the command s allows us to enter expressions to be simplified. We see that a
rather long expression quickly simplifies to a.b. Note that the operation . is denoted
by simple juxtaposition here. Moreover, we do not use parentheses since we assume that
the operation associates to the left. The simplification is obtained by first applying the
operation toSet to the introduced expression and by afterwards displaying a minimal term
chosen among all those that are represented by the set of structures (whose identifier is)
returned by toSet.

Let us now explain how the bottom-up algorithm works. Basically, it applies all axioms
to all sets of structures by replacing variables by sets identifiers and unifying the sets corre-
sponding to the left-hand and right-hand sides of the axioms. Axiom application uses a variant
(generalization) of the toSet operation that takes as an additional argument a mapping from
axiom variables to set of structures identifiers. To apply all axioms to all sets of structures, we
simply generate all sequences of identifiers whose length is at most the maximum number of
variables in an axiom, and, for each such sequence, we apply all axioms using the correspond-
ing number of variables. Let us show how it works on the previous example. We display all
generated sequences as well as all axiom applications.

java BottomUpV3 Simple ’(a.b)’ lx

1

[x<1>x<1>: 4 = x<1>: 1] ==>

aa = a [BU: 1[a]]

1 1

[x<1>y<1>: 1 = y<1>x<1>: 1] ==>

aa = aa [BU: 1[a]]

1 1 1

[x<1>y<1>z<1>: 1 = x<1>(y<1>z<1>): 1] ==>

aaa = a(aa) [BU: 1[a]]

2

[x<2>x<2>: 4 = x<2>: 2] ==>

bb = b [BU: 2[b]]

5



A Method to Simplify Expressions Le Charlier, Atindehou

2 1

[x<2>y<1>: 4 = y<1>x<2>: 3] ==>

ba = ab [BU: 3[ba]]

2 1 1

[x<2>y<1>z<1>: 4 = x<2>(y<1>z<1>): 3] ==>

baa = b(aa) [BU: 3[ba]]

2 1 2

[x<2>y<1>z<2>: 4 = x<2>(y<1>z<2>): 5] ==>

bab = b(ab) [BU: 4[bab]]

2 2

[x<2>y<2>: 2 = y<2>x<2>: 2] ==>

bb = bb [BU: 2[b]]

2 2 2

[x<2>y<2>z<2>: 2 = x<2>(y<2>z<2>): 2] ==>

bbb = b(bb) [BU: 2[b]]

3

[x<3>x<3>: 5 = x<3>: 3] ==>

(ba)(ba) = (ba) [BU: 3[ba]]

3 1

[x<3>y<1>: 3 = y<1>x<3>: 5] ==>

(ba)a = a(ba) [BU: 3[ba]]

3 1 1

[x<3>y<1>z<1>: 3 = x<3>(y<1>z<1>): 3] ==>

(ba)aa = (ba)(aa) [BU: 3[ba]]

3 1 2

[x<3>y<1>z<2>: 4 = x<3>(y<1>z<2>): 3] ==>

(ba)ab = (ba)(ab) [BU: 3[ba]]

3 1 3

[x<3>y<1>z<3>: 3 = x<3>(y<1>z<3>): 3] ==>

(ba)a(ba) = (ba)(a(ba)) [BU: 3[ba]]

3 2

[x<3>y<2>: 3 = y<2>x<3>: 3] ==>

(ba)b = b(ba) [BU: 3[ba]]

3 2 2

[x<3>y<2>z<2>: 3 = x<3>(y<2>z<2>): 3] ==>

(ba)bb = (ba)(bb) [BU: 3[ba]]

3 2 3

[x<3>y<2>z<3>: 3 = x<3>(y<2>z<3>): 3] ==>

(ba)b(ba) = (ba)(b(ba)) [BU: 3[ba]]

3 3

[x<3>y<3>: 3 = y<3>x<3>: 3] ==>

(ba)(ba) = (ba)(ba) [BU: 3[ba]]

3 3 3

[x<3>y<3>z<3>: 3 = x<3>(y<3>z<3>): 3] ==>

(ba)(ba)(ba) = (ba)((ba)(ba)) [BU: 3[ba]]

===============================================

Number of sets of structures : 3

Total number of structures : 11

Total time : 0.010333 sec

Number of created sets of structures : 12

===============================================

We see that the first generated sequence simply is 1. The axiom x.x = x is then applied to it.
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The axiom is depicted as [x<1>x<1>: 4 = x<1>: 1] to indicate that the set of structures
identifier 1 is substituted to x: the operation toSet is applied to the term x.x where x is
replaced by 1. It creates a new set of structures E4 = {.(1, 1) : 4}, which is then unified with
E1 = {a : 1}. After unification the set E4 is discarded and we get E1 = {.(1, 1) : 1, a : 1}. The
next line aa = a [BU: 1[a]] provides additional information on the effect of the axiom: the
terms a.a and a are now considered equal and they belong to the set T1 of all terms represented
by E1. A minimal term of T1 is a.

The following lines show that the commutativity and associativity axioms are now trivially
satisfied by the terms in T1: no modification is made to the current sets of structure. The next
three lines are similar but afterwards various axioms involving both a and b are applied. Their
application progressively fills the set E3 with the six new structures depicted in the previous
execution trace of the program. We encourage the reader to find out at which axiom application
each final structure is exactly created. Finally, we observe that not all sequences of numbers
involving 1, 2, and 3 have been generated. This is because they are not all necessary due to
the commutativity and associativity of the . operation.

This first example is particularly simple because no new set of structures created by appli-
cation of the axioms remains after considering the three initial sets of structures. The program
stops because the current sets of structures definitely verify the axioms. Applying them again
would not create any new structure. Of course this is not true in general. Here is another run
of the program in the slightly more complicated case of three constants a, b, c. We display a
different kind of information and we show only a small part of the trace.

java BottomUpV3 Simple ’(a.b.c)’ fi

===============================================

Number of sets of structures : 15

Total number of structures : 50

Number of created sets of structures : 51

===============================================

Normalize .(5, 4): [5 |--> 15] [size = 7] : we have

bac = bacc

because

bac = (b(ac))c [in 5]

and

bacc = (b(ac))c [in 15]

Normalize .(5, 5): [5 |--> 16] [size = 11] : we have

bac = bacbac

because

bac = (b(ac))(b(ac)) [in 5]

and

bacbac = (b(ac))(b(ac)) [in 16]

This sequence is no longer valid : 11 2 5

===============================================

Number of sets of structures : 9

Total number of structures : 61

Number of created sets of structures : 80

===============================================

This sequence is no longer valid : 12 2 4

===============================================

Number of sets of structures : 7

Total number of structures : 52

Total time : 0.009743 sec
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Number of created sets of structures : 83

===============================================

Looking at this trace we can make the following observations.

• This time, the algorithm does not stop after applying the axioms to all initial sets of
structures. It iterates three times. The first iteration creates 10 new sets of structures
to which –roughly speaking– the axioms are applied at the second iteration. The second
iteration reduces the number of sets but it increases the number of structures and even
creates a few new sets. The last iteration finishes the work.

• The trace shows two cases where the operation normalize is needed: at some point of
the execution two structures with the same key exist, namely .(5, 4) : 5 and .(5, 4) : 15.
Therefore, the sets E5 and E15 are unified. An example of a term represented by the
structure is added as a “comment”: (b(ac)).c. Since this term is equal to (ba).c in T5

and to ((ba)c).c in T15, the unification of the two sets proves –in particular– that (ba).c
= ((ba)c).c.

• The fact that sets of structures are removed by the operation unify (and thus also by
normalize) complicates the generation of all sequences of set of structures identifiers: an
identifier may “disappear” while we are generating sequences using it. Two examples of
this situation are shown in the trace. In such a case, we must be careful to continue with
the appropriate “next” sequence. But we omit the details here.

A last important remark is the following. When we unify two sets of structures Ei and Ej ,
we must choose to keep one identifier and to remove the other one. Experiments show that
it is of utmost importance to keep the older one. Consider the previous example. It takes
0.01 seconds to be executed and it creates 83 sets of structures (of which most are discarded
afterwards by the operation unify, of course). If we choose to “put the older set into the more
recent one”, the execution takes 0.25 seconds and it creates 627 sets of structure. (Of course,
the final sets of structures are equivalent.) In less simple situations such as those of the next
section, the wrong choice is simply not usable and the program runs out of memory. We explain
the difference as follows: when a recent set of structures is unified with an old one, it is often
the case that the old set has already been involved in many –if not all– axiom applications using
its identifier; thus, removing the recent set of structures makes it disappear without using it in
any axiom application. With the opposite policy however there is a high probability that all
axioms will be applied later on to the more recent set of structures, which is useless since this
has been implicitly already done by unifying it with the older one.

4 Simplifying Boolean Expressions

In this section, we show how the bottom-up algorithm of the previous section behaves for
simplifying boolean expressions. We use the following set of axioms for the “boolean calculus”.

x 0 = 0 ; !!x = x ; x + y = y + x ;

x + 0 = x ; xy = yx ; (x + y) + z = x + (y + z) ;

x + 1 = 1 ; xyz = x(yz) ; x + yz = (x + y)(x + z) ;

x !x = 0 ; !(xy) = !x + !y ;

Assuming that the file Boole.txt contains exactly this set of axioms, let us consider the fol-
lowing run of our program.

java BottomUpV3 Boole ’(abc)’
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===============================================

Number of sets of structures : 144

Total number of structures : 307

Intermediate time : 0.00691 sec

Number of created sets of structures : 308

===============================================

Number of sets of structures : 859

Total number of structures : 4642

Intermediate time : 0.207848 sec

Number of created sets of structures : 6804

===============================================

Number of sets of structures : 783

Total number of structures : 110052

Intermediate time : 1.776162 sec

Number of created sets of structures : 216105

===============================================

Number of sets of structures : 281

Total number of structures : 134053

Intermediate time : 3.732329 sec

Number of created sets of structures : 338710

===============================================

Number of sets of structures : 256

Total number of structures : 131333

Total time : 3.73564 sec

Number of created sets of structures : 338728

===============================================

?s

>abc + ab!c + a!bc + a!b!c + !abc + !ab!c + !a!bc + !a!b!c

Simplified expression : 1

Simplification time : 5.8E-5 sec

===============================================

>abc + a!b!c + !abc + !a!bc + !a!b!c + !a!b!c

Simplified expression : !(ac + b) + bc

Simplification time : 5.1E-5 sec

===============================================

>!((b+!b)!b!(c!(cc!a!a+!b))+(!b+a)(!c+c+bca)+b+c+!((cc+!b)!(a+!b)(a+!!b)+!b+a+a))+!ccb+

(a!c(c+a!!b+c)a+(b+!a)a!(cb!bb)((b+c)!!b(c+a)+c!b+a)(ca+c!c))!b(a+c)+(a!c+c+!b+!acbc)c+

(ba+cc+!c+!a+!(c+c))(!!(c+b+b+a)+c+!b)!(a(a+!a)!(!a+!!(aa)))(c+(a+b+bc+a+!b+ca+c)!a(!c+

!c+a)(!a+a)+!!((!c+ba(!c+b))!c)+!b+b+!c)(b+b)(b+c+c+c+c(b+c)+b+!((a+a)a+!b)+!c+!b+!(c+a

+!a)+(!(ba+!a!c)+ca+!c+(ac+c)!(a!a)+!bc(a+!c))!(!c+!!b)(a+!a+b+c+b+!c))+!(!(bb(b+a)(ac+

a!ba)b(!c+!(!(cb)bb))!c(a+!!(bc)))+!(!((!a!c+!((b+!c)b)(bb+bb+c))b!(b!c)(!a+c+ba)c(b+a+

(b+c)cb)b+(b+b+b+b+c+c+a+c+!c+b+(a+a)!c+b)(b+aba(baa+a!a!c((c+a)!b+c+b)+(!c+ca(b+c))cb)

)+!(!(a!b((!b+a!c)a+a))(!!b+b!(b(!(babb)+(ca+c+!b+!(cc))cc)(!c+a+a)(c!a+!c)(b+!a!c))+!(

a!ab)+b+!c)+(!(b!a+!!a)+a+c)bab(!c+!a)(a+bb+!b!b)!a(c+c!b)+c+!(!a+ac+!b)))+(bc(a+b)(b+c

)!ab(!b+aa)c+!!b+b)!a!((!c+c!a+a+c!a)b)(ca(b+!b)+b)ac(a!c+a)))

Simplified expression : b + c

Simplification time : 4.77E-4 sec

===============================================

We observe the following facts.

• The program stops after less than 4 seconds. Only five “iterations” are needed to get the
final sets of structures.
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• We get 256 sets of structures and 131333 structures in the end. This is what should be
expected. Indeed, there are exactly 22

3

= 256 boolean functions with three arguments.
Hence, the number of equivalence classes of boolean expressions with three letters a, b, c
is 256. Moreover, any boolean expression of the form t1 + t2 must be represented by a
structure +(i1, i2) : i. Since there are 256 possible values for i1 and i2, there must exist
256 × 256 = 65536 such structures. Similarly, there must exist 65536 structures of the
form .(i1, i2) : i and 256 structures of the form !(i1) : i. Finally, there must be 5 structures
corresponding to the five constants a, b, c, 0, 1. It gives us a total of 65536+65536+256+5 =
133133 structures.

• Having computed a complete representation of all boolean expressions not containing other
letters than a, b, and c, we can use it to simplify any such expression. Three examples
are shown in the trace. The simplified expressions are chosen by minimizing the size of
a tree representation of the expression (or, equivalently, the number of characters of the
expression written in polish notation). The timings show that the simplification is fast.
They are also consistent with our claim that it is done in linear time.

5 Goal Oriented Algorithm

The bottom-up algorithm described in Section 3 is not applicable to “large theories” with many
equivalent classes of equal terms. We now propose a different algorithm, which is not optimal
anymore but which allows us to simplify expressions with more symbols. This algorithm is
“goal-oriented” because it is “driven” by an initial expression to be simplified and, afterwards,
by the intermediate simplifications of this initial one. Let us show a first run of this algorithm
(for simplifying a boolean expression).

java GoalOriented

Enter an expression to be simplified : :

(b(e+f)+ca+!b+b+b+!b)(!a+d+!a)(dd+c)c!df

------------------------------------------------------------------

Current reduced term : (b(e + f) + ac + !b + b + b + !b)(!a + d + !a)(c + d)c!df

------------------------------------------------------------------

Current reduced term : 1(!a + d + !a)(c + d)c!df [size = 20]

------------------------------------------------------------------

Current reduced term : (!ac + d)c!df [size = 13]

------------------------------------------------------------------

Current reduced term : !d(!ac + d)f [size = 11]

------------------------------------------------------------------

Current reduced term : f!(d + a)(c + d) [size = 10]

------------------------------------------------------------------

Current reduced term : !(d + a)cf [size = 8]

==================================================================

Number of sets of structures : 10

Total number of structures : 156

Number of created sets of structures : 69808

Intermediate time : 2.298233 sec

==================================================================

The algorithm simplifies an expression of size 40 to an expression of size 8 in 2.3 seconds. The
initial expression uses 6 different letters but the simplified one uses only four of them. Since it
uses each letter and the operator ! only once, we can guess that it is minimal.
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The algorithm works as follows. It basically proceeds like the bottom-up algorithm by
generating sequences of set of structures identifiers but it performs an axiom application only
when the left hand-side of the axiom returns an identifier of a sub-expression of the current
expression to be simplified. So it only keeps sets of structures that are “relevant” for simplifying
the expression “at hand”. It also maintains the minimal size of all expressions represented by the
set of structures “containing” the current expression to be simplified. As soon as this minimal
size decreases, all sets containing a structure corresponding to an expression of minimal size are
marked. Then the execution of the algorithm resumes only considering identifiers of the marked
sets. Using this strategy, the algorithm really concentrates on the current smallest expressions.
The less interesting (non minimal) sets of structures are not immediately removed. They can
become minimal later. But, of course, it may quickly happen that too much memory is used.
In that case, the structures of the non minimal sets are freed first.

Here is another, more difficult example, with an expression of size 800 using 15 letters. We
only show a small part of the trace.

java GoalOriented

Enter an expression to be simplified : :

(ei!b!!(a+!m)+lf+!!ialm+l)(!!(!((!k(l+c)!d+!a)(e+m!h)(!g+!j)(l+b)!hj)+k!i+!(fo)j(j+o+l)

(o+!i)+!(h+e!d)+!((!e(k+jj)+e+!i+!e+d(j+l))nh)e+((!g+h)o+(e+o!n+f+!e)!l((b+k)(!!g+!n)+

!h)(o+!d!a)+m+(l+!b)k+!l)g!n!km!!((a+b)(eg+f))+(!l!j+!(!jk+!h+!e))!(!bb(m+!b))(!b(!k+m

+b+!f)+!a))+!(!i!((f+eg)!!di+!d))!g(a!j+n)(!b+a+!d)!(!(!o+(!d+!f)(!!fk!a+h))+o)o(e!nbj

+f+fl)(!(ch+!f+g+!k!i)+!!n+b)(e+i)a!e(!(((!oi(!!h+k)+!!o)(hd+o+l+f)+n!l)!(!d+m+o)(!((a

h+(!l+!h)(g+n!f))dk)+f+!jd+!(k+a)+(h+!f)fe+i+!b))+(!i!b(n+i)+(d+i+ad)(g+(a+j)(c+c)))!(

(!m+!c+a+n!h(!c(j+o+h)+do(i+l)!!g!j!djj(j+e)))je(!(hbd)+!a!k+og)))+!ol!!nj(!(!c+ei(a!j

!k+!i+j))(!!!d+!l)i+!((b+hd)j))(!f+!!o(m+!l+!f)+a(o+g+o)+jc!m)+cl!d(!i+he+!(ja))(e+k)+

!((!(ejnk)+m+f)i!f!lgm(f+a+m)(!oeme+!k)!l(f(m+d)o+lh))+!(!a(f(!d+c!l)+(!b+ch)(f+m))+((

n+!f)!b+!!l+e+!c)d!k+n!j+a+!(!l+c)+!!e+(h+l)e!f)+k!f(!k+j+(h+!m)!l))

------------------------------------------------------------------

Current reduced term : (ei!b!!(a + !m) + lf + !!ialm + l)(!!(!((!k(l + c)!d + !a)(e + m

!h)(!g + !j)(l + b)!hj) + k!i + !(fo)j(j + o + l)(o + !i) + !(h + e!d) + !((!e(k + jj)

+ e + !i + !e + d(j + l))nh)e + ((!g + h)o + (e + o!n + f + !e)!l((b + k)(!!g + !n) + !

h)(o + !d!a) + m + (l + !b)k + !l)g!n!km!!((b + a)(eg + f)) + (!l!j + !(!jk + !h + !e))

!(0(m + !b))(!b(!k + m + b + !f) + !a)) + !(!i!((f + eg)!!di + !d))!g(a!j + n)(!b + a +

!d)!(!(!o + (!d + !f)(!!fk!a + h)) + o)o(e!nbj + f + fl)(!(ch + !f + g + !k!i) + !!n +

b)(e + i)a!e(!(((!oi(!!h + k) + !!o)(hd + o + l + f) + n!l)!(!d + m + o)(!((ah + (!l +

!h)(g + n!f))dk) + f + !jd + !(k + a) + (h + !f)fe + i + !b)) + (!i!b(n + i) + (d + i

+ ad)(g + (a + j)(c + c)))!((!m + !c + a + n!h(!c(j + o + h) + do(i + l)!!g!j!djj(j + e

)))je(!(hbd) + !a!k + og))) + !ol!!nj(!(!c + ei(a!j!k + !i + j))(!!!d + !l)i + !((b + h

d)j))(!f + !!o(m + !l + !f) + a(o + g + o) + jc!m) + cl!d(!i + he + !(ja))(e + k) + !((

!(ejnk) + m + f)i!f!lgm(f + a + m)(!oeme + !k)!l(f(m + d)o + lh)) + !(!a(f(!d + c!l) +

(!b + ch)(f + m)) + ((n + !f)!b + !!l + e + !c)d!k + n!j + a + !(!l + c) + !!e + (h + l

)e!f) + k!f(!k + j + (h + !m)!l)) [size = 797]

...

?st no

?run

...

size = 633 idList.size() = 318

size = 629 idList.size() = 316

==================================================================

Number of sets of structures : 315

Total number of structures : 6387

Number of created sets of structures : 2970747
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Intermediate time : 37.291304 sec

==================================================================

size = 605 idList.size() = 305

size = 604 idList.size() = 305

...

size = 346 idList.size() = 185

size = 21 idList.size() = 794

size = 13 idList.size() = 165

==================================================================

Number of sets of structures : 260

Total number of structures : 6731

Number of created sets of structures : 10792179

Intermediate time : 85.492769 sec

==================================================================

Iteration no : 2

?st nice

Current reduced term : l + (a + !m)i!be [size = 13]

?q

We see that the execution is not “fully automatic”. The user may enter commands to guide it.
The command st no tells the program not to display each intermediate simplified expression.
The command run tells the program to apply the axioms without asking the user until all
marked sets have been considered. At this time, a new iteration starts because some axioms
that were not applicable at the first iteration may then become applicable. The algorithm may
iterate many times and it may not terminate because, due to the finite amount of memory,
some sets of structures can be removed and afterwards replaced by different ones so that some
axioms remain applicable indefinitely. Hence, the more practical choice is to let the user decide
whether the expression is simplified or not. In this example, the expression looks simple enough.
Thus, we have stopped the program with the command q. Some other commands are available,
notably to monitor memory usage, but we do not give more details here. Notice finally that
the size of the expression has suddenly “jumped” from 346 to 13. Probably because a large
sub-expression was found equal to 0 or to 1.

6 Related Work

The work presented in this paper can be related to the method of G .Nelson and D. C. Oppen
proposed in [8] (see also [1], Chapter 9). They build upon the well-kown algorithm of M. J. Fis-
cher and B. A. Galler [6] (see also [7], pages 353, 360–361, and [12]) to compute congruence
classes of terms, as a tool to determine the satisfiability of a conjunction of literals. Our method,
which has been designed independently, allows us to represent sets of terms in a much compact
way because their method represents sets of equivalent terms by directed acyclic graphs (DAGs)
while our sets of structures can be viewed as cyclic graphs. In particular, their method only
permits them to handle finite sets of terms. Therefore, it is not possible, for example, to use
their method to implement the bottom-up algorithm that we have presented in Section 3. On
the contrary, our method can be used to solve the decision problem described in [8], and, in fact,
more efficiently than they do. To support our claim, we have implemented an algorithm that
“solves” an arbitrary number of equations between uninterpreted ground terms. The algorithm
amounts to apply the operation unify to the list of pairs i1 = j1, . . . , in = jn where the ik
and jk are identifiers of sets of structures representing the terms in the equations. Since the
operation unify does not maintain the initially given terms, we have to use an additional data
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structure to map the initial terms to their corresponding sets of structures. This can be done
with a simple array as in [6]. The resulting algorithm is similar to the algorithm presented in [4]
and probably even more efficient since it works on more compact structures. It is easy to show
that in the worst case its execution time is bounded by O(m logm) where m is the number of
structures needed to represent the initially given terms. However, it seems to behave better in
practice as shown by some experiments on which we report below.

First, we have “randomly” chosen a large term of 100000 symbols (i.e., 100000 symbols if
the term is written in polish notation).3 Then, we have represented this term as a collection
of structures, using the operation toSet (see Subsection 2.1). This representation uses 36901
structures, each of them belonging to a different set of structures. Using the identifiers of these
sets we have generated a sequence of 36901 pairs of identifiers to which the operation unify

has been applied, one by one. In the first experiment, each identifier is used exactly twice in
the equations and exactly once in the first 18450 equations (except one). The results of this
experiment are depicted in the first table below. Column i provides the number of equations
already “solved” at a given line. Column t provides the amount of time needed to solve these
equations, in seconds. Columns ]Set and ]Struct respectively indicate the number of sets of
structures and the number of structures existing at that stage. Columns U and N contain
the numbers of sets of structures unification already done, and resulting directly from applying
unify to a pair of sets of structures identifiers (U), or indirectly from using normalize (N).
(See again Subsection 2.1.) Column T is just U + N . Column t/i gives the ratio of the time
(measured in microseconds) by the number of equations already solved. Column dt/di is a kind
of “derivative” of the time with respect to the number of already solved equations: we divide the
difference between the current time and the previous one, by the number of equations executed
between the current and the previous stage. Column T/t gives the number of set reductions by
millisecond and dT/dt is the “derivative” of T with respect to t, computed similarly to dt/di.
Finally, dS/dt is the “derivative” of the number of removed structures (36901 − ]Struct) with
respect to the time.

i t ]Set ]Struct U N T t/i dt/di T/t dT/dt dS/dt

0 0.0 36901 36901 0 0 0 0 0 0
2500 0.042 34336 36836 2500 65 2565 16.8 16.8 60 60 1
5000 0.065 31758 36758 5000 143 5143 13.1 9.3 78 109 3
7500 0.079 29166 36666 7500 235 7735 10.6 5.5 97 186 6

10000 0.096 26565 36565 10000 336 10336 9.6 6.7 107 153 5
12500 0.117 23925 36425 12500 476 12976 9.4 8.4 110 125 6
15000 0.13 21301 36301 15000 600 15600 8.6 5.1 119 202 9
17500 0.148 18615 36115 17500 786 18286 8.4 7.2 123 148 10
20000 0.162 15803 35802 19999 1099 21098 8.1 5.3 130 210 23
22500 0.482 5 48 21919 14977 36896 21.4 128.1 76 49 111
25000 0.482 2 30 21921 14978 36899 19.3 0.2 76 5 34
36901 0.483 2 30 21921 14978 36899 13.1 0.0 76 0 0

We can make the following observations: until i = 20000 (i.e. shortly after that set of struc-
tures identifiers have all been used in one call to unify), the algorithm behaves uniformly by
reducing the number of sets while the number of structures remain almost stable. Also, the
time complexity is better than linear. Then, suddenly, between i = 20000 and i = 22500, a lot
of set reductions are made, mainly due to the operation normalize. This happens because most

3More information about these data can be found at
https://www.dropbox.com/sh/3eo2flkb26767u9/AAALb6 msRndFTD7P3wJwFlta?dl=0

13



A Method to Simplify Expressions Le Charlier, Atindehou

sets of structures now contain more structures, increasing the probability of having different
structures with the same key. Unifying the sets containing those structures creates new struc-
tures with the same key, which has a snowball effect. By looking to the third last column, we
can see that the number of set unifications by unit of time is continuously increasing until the
critical interval between i = 20000 and i = 22500 is met. Then, it decreases significantly but it
is because most structures are discarded, (i.e., merged) at this stage. When i > 22500 almost
nothing is left to do, so it is not useful to comment on the two last lines. Hence, our algorithm
is very efficient to solve the satisfiability problem of [8]. We conclude by showing the results of
a second experiment in which the list of equations i1 = j1, . . . , in = jn is generated completely
randomly, allowing every identifier to appear in the list an arbitrary number of times and in
any position. We see that the results are similar but the “critical section” of the algorithm
takes place earlier (which could have been anticipated). Also most set reductions are due to the
operation normalize contrary to the first experiment. More equations are now trivially verified
because the two identifiers involved in them at the beginning are mapped on the same one.

i t ]Set ]Struct U N T t/i dt/di T/t dT/dt dS/dt

0 0.0 36901 36901 0 0 0 0 0 0
2500 0.032 34339 36839 2500 62 2562 13.0 13.0 78 78 1
5000 0.055 31740 36740 5000 161 5161 11.0 9.0 93 115 4
7500 0.074 29122 36622 7500 279 7779 9.9 7.9 103 132 5

10000 0.096 26463 36463 10000 438 10438 9.6 8.6 108 122 7
12500 0.116 23613 36113 12500 788 13288 9.3 7.8 114 144 17
15000 0.314 860 2128 14296 21745 36041 20.9 79.1 114 114 171
17500 0.316 422 1295 14386 22093 36479 18.0 0.8 115 205 391
20000 0.317 296 1041 14432 22173 36605 15.8 0.5 115 97 196
22500 0.319 163 678 14471 22267 36738 14.1 0.5 115 97 265
25000 0.32 73 384 14490 22338 36828 12.8 0.5 114 71 233
36901 0.323 12 140 14510 22379 36889 8.7 0.3 113 16 66

Finally, it can be stressed that the timings reported here are consistent with the timings reported
for our bottom-up and goal oriented algorithms, which create much more structures and solve
many more equations.

A lot of work has been devoted to the problem of simplifying boolean expressions, but most
of the work has been done to simplify expressions written in disjunctive or in conjunctive normal
form (see, e.g., [2]). The algorithms presented in this paper are not intended to compete with
those methods but they are more general since they are applicable to many kinds of simplifi-
cation problems. Basically, we used the boolean expression simplification problem mainly as
a (significant) example of application. Very often, boolean expression simplification is used to
better understand facts represented by the boolean expressions. The use of OBDDs to simplify
boolean expressions is often advocated in that case (see, e.g. [3]). We have applied our method
to analyze the so-called guards of a medical process model constructed by the authors of [3],
with good results; but we have not compared our results with the use of OBDDs, yet.

Finally, parts of our work can be related to other areas such as rewriting systems, constraint
programming or SAT-solving, to name only three, but we have not investigated those relations
in great details yet. We will surely do so in the future, mainly to improve the efficiency and
the applicability of our goal-oriented algorithm.
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7 Conclusion and Future Work

We have presented a method to represent large sets of equivalent terms compactly, and we
have shown how this representation can be used to solve interesting simplification problems.
We have put the focus on boolean expression minimization and simplification but our method
obviously is much more general. Therefore, we plan to use it to investigate other simplification
problems such as the (very difficult) problem of simplifying regular expressions (see, e.g., [11]).

The algorithms that we have presented in Sections 3 and 5 can certainly be significantly
improved, especially the goal oriented algorithm. We plan to improve them by using incre-
mental techniques related to the Rete algorithm [5]. Several other avenues of research can be
considered. Let us consider two of them. We can extend and improve our current syntax for
writing axioms. Our simple language can be augmented with “meta predicates” to write more
specific axioms, and to allow the writing of implications. A second (difficult) topic should be to
specialize our main data structure (sets of structures) to take into account common properties
of operations such as associativity and commutativity.
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Abstract

Modern CDCL SAT solvers generally save the variable value when backtracking. We
present a measure called nbSAT based on the saved assignment to predict the usefulness
of a learnt clause when reducing clause database in Glucose 3.0. Roughly speaking, the
nbSAT value of a learnt clause is equal to the number of literals satisfied by the current
partial assignment plus the number of other literals that would be satisfied by the saved
assignment. The nbSAT measure is similar to a previous measure called psm which is not
implemented in Glucose 3.0. We study the nbSAT measure by empirically showing that
it may be more accurate than the LBD measure originally used in Glucose. Based on this
study, we implement an improvement in Glucose 3.0 to remove half of learnt clauses with
large nbSAT values instead of half of clauses with large LBD values. This improvement,
together with a resolution method to keep the learnt clauses or resolvents produced using
a learnt clause that subsume an original clause, makes Glucose 3.0 more effective for the
application and hard combinatorial instances from the SAT 2014 competition.

1 Introduction

In propositional logic, a variable xi may take values 0 (for false) or 1 (for true). A literal li
is a variable xi or its negation x̄i. A clause is a disjunction of literals, and a CNF formula φ
is a conjunction of clauses. The size of a clause is the number of its literals. An assignment
of truth values to the propositional variables satisfies a literal xi if xi takes the value 1 and
satisfies a literal x̄i if xi takes the value 0, satisfies a clause if it satisfies at least one literal of
the clause, and satisfies a CNF formula if it satisfies all the clauses of the formula. An empty
clause represents a conflict, because it contains no literals and cannot be satisfied. A unit clause
contains only one literal that should be satisfied by assigning the appropriate truth value to
the variable. An assignment for a CNF formula φ is complete if all the variables occurring in
φ have been assigned; otherwise, it is partial. The SAT problem for a CNF formula φ is the
problem of finding an assignment of values to propositional variables that satisfies all clauses
of φ.

Thanks to the progress made in developing CDCL (Conflicting-Driven Clause Learning) SAT
solvers, reducing combinatorial problems to SAT becomes a powerful solving strategy. Roughly
speaking, in order to solve a SAT problem, a CDCL solver repeatedly makes and propagates
a decision, i.e. pick a variable using a heuristic, assign it a truth value and propagate all unit
clauses implied by the decision until an empty clause is produced. Then the empty clause is
analyzed and a new clause is learnt and added into the clause database. The learnt clause allows
the solver to avoid the same conflict in the future and to determine the decision on which the
solver should backtrack [5] [8]. If all variables are assigned a truth value without producing any
empty clause, the problem is satisfiable and the complete assignment is output as a solution.
Otherwise, the solver should learn an empty clause to prove the unsatisfiability of the problem.

So, the learnt clauses are essential for the performance of a CDCL SAT solver. However,
the solver is slowed down when there is a large number of learnt clauses, because the solver
has to check too many clauses to find unit clauses in this case during the propagation of a
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decision. Moreover, these learnt clauses can also overflow the memory. In order to remedy
these drawbacks, a common practice when designing a CDCL solver is to measure the quality
of each learnt clause using a heuristic and to periodically remove half of learnt clauses judged
less useful in the future.

In this paper, we study the policies to reduce the learnt clause database in the well-known
CDCL solver Glucose [3], and present a measure called nbSAT to predict the usefulness of a
learnt clause. The nbSAT measure is similar to a previous measure called psm proposed in [2]
which is not implemented in Glucose. We study the nbSAT measure by empirically showing
that it may be more accurate than the LBD (Literals Blocks Distance) measure originally used
in Glucose. Then we combine nbSAT with LBD in Glucose to reduce the learnt clause database.
Furthermore, we implement a resolution method that detects if a learnt clause or a resolvent
produced using a learnt clause subsumes an original clause, and in this case, the subsuming
learnt clause or resolvent is kept and never removed.

This paper is organized as follows. Section 2 recalls the main features of Glucose 3.0 related
to our work. Section 3 presents the nbSAT measure and studies its properties. Section 4 and
Section 5 present different uses of the nbSAT measure in reducing clause database in Glucose
3.0. Section 6 presents the resolution method to keep the subsuming learnt clauses or resolvents.
Section 7 presents experimental results. Section 8 concludes.

2 Main features of Glucose

Glucose is a very efficient CDCL-based complete SAT solver developed from Minisat [6]. It is
always one of the awarded SAT solvers in SAT competitions since 2009. Our work is based on
the following features of Glucose 3.0, the last sequential release of Glucose1.

2.1 LBD: a measure of the usefulness of a learnt clause

In a CDCL SAT solver, each decision is followed by a unit propagation. The decision and all
literals fixed (i.e. satisfied or falsified) during the unit propagation belong to the same level.
In Glucose, these literals, as well as the decision, are said to form a “Block”. When a clause
C is learnt, all literals in C are falsified under the current partial assignment, and the number
of different blocks in C is called Literals Blocks Distance (LBD) of C. This measure is static
in most cases, i.e., it is recomputed and updated only in special cases. The learnt clauses with
LBD=2 are called “Glue Clauses” and are attached a particular importance, because they only
contain one variable in the last decision level and all other variables belong to another block.
It is expected that these glue clauses are frequently involved in future unit propagations and
conflicts, so the glue clauses are never removed in Glucose.

It is well-known that industrial SAT instances usually exhibit a clear community structure,
i.e., variables in an industrial instance form communities. The variables inside a community
have strong relations, but the relations among the variables in different communities are much
weaker [1]. In [9], it is shown that LBD can be strongly related to the community structure of
the initial formula, which explains why clauses with smaller LBD are more probably used in
unit propagations.

1available at http://www.labri.fr/perso/lsimon/glucose/



2.2 Aggressive learnt clause database reduction

Since Glucose, aggressive clause database reduction policies are essential ingredients of CDCL
solvers. Once the number of clauses learnt since the last database reduction reaches 2000 +
300*n, where n is the number of database reductions performed so far, the reducing process is
fired: the learnt clauses are sorted in the decreasing order of their LBD, and the first half of
learnt clauses are removed except binary clauses, glue clauses, and the clauses that are reasons
of the current partial assignment. One consequence of this aggressive clause database reduction
policy is that more than 93% of learnt clauses can be removed (see the Glucose webpage).
The new measure of learnt clause usefulness we present in this paper is strongly related to the
aggressive reduction policy.

2.3 Fast restart and phase saving

A CDCL based SAT solver usually uses the restart mechanism [7] to prevent heavy-tailed
phenomena, every restart constructing a search tree from scratch. In Glucose 3.0, the restart
policy is very aggressive. It does not depends on the learnt clause database reduction, nor on
the number of conflicts reached since the last restart. It depends on the average LBD of the
learnt clauses [4]. The consequence is that Glucose 3.0 is restarted only after few hundreds of
conflicts in the average.

Together with the aggressive restart policy, Glucose implements phase saving [10] policy:
when backtracking, Glucose saves the value of each fixed variable, and when a variable is picked
up to make a decision, it is assigned the save value. In this way, Glucose stays in the same
search space and benefits from the results of early restarts. The new measure of learnt clause
usefulness we present in this paper is strongly related to the aggressive restart policy and the
phase saving policy.

3 A Measure of Learnt Clause Usefulness: nbSAT

From a theoretical point of view, all learnt clauses are logical consequences of original clauses
of a CNF formula and thus are redundant. From a practical point of view, a learnt clause is
useful only if it is involved in at least one unit propagation and helps to reach a conflict. The
intuition of the LBD measure in Glucose is based on the tight links between the variables in a
block: once a variable is fixed, the other variables in the same block can probably be also fixed
in a unit propagation because of the tight links among them, so that a clause with smaller LBD
has more chance to become unit or empty. Nevertheless, when the links among the variables in
a block are not so tight, other measures of the learnt clause usefulness might be more relevant.

Observe that in a CDCL solver with phase saving, a learnt clause has more chance to
become unit, if all its literals would be falsified by the saved phases. For example, if the save
phase of the three variables x1, x2 and x3 is true, the clause ¬x1∨¬x2∨¬x3 becomes unit after
two of the three variables are picked as decision variables. More generally, in the search space
characterized by the saved phases, a learnt clause has more chance to become unit during search
if it is satisfied by fewer variables with the saved value.

Definition 1. In a CDCL solver with phase saving, the nbSAT (short for number of satisfied
literals) of a learnt clause C is the number of literals of C satisfied by the current partial
assignment plus the number of literals not fixed but would be satisfied by the saved assignment.

Proposition 1. If a CDCL solver with phase saving makes every decision according to the
saved assignment, at least one learnt clause with nbSAT=0 will become unit.



The nbSAT measure is clearly dynamic, contrary to the LBD measure, because the saved
assignment is changing upon backtracking. We have to frequently update the nbSAT value
for each learnt clause. The definition of nbSAT is similar to the psm measure proposed in [2],
except that the psm value of a learnt clause, as is described in [2], does not take the current
partial assignment into account, and is the number of literals that would be satisfied by the
saved assignment, no matter if these literals are actually satisfied or not by the current partial
assignment. Note that the value of the variables in the current partial assignment may be
different from the saved assignment if these variables are fixed by unit propagation instead
of decisions in the current partial assignment. More importantly, the nbSAT measure will be
exploited differently in this paper, as will be presented in Section 4.

We now empirically compare nbSAT and LBD in Glucose 3.0 (the psm measure is not
compared because it is not implemented in Glucose 3.0). Following [3], we run Glucose 3.0
on the set of hard combinatorial and industrial benchmarks of the SAT competition 2014
on a computer with Intel Westmere Xeon E7-8837 of 2.66GHz and 10GB of memory under
Linux with a cutoff time of 5000 seconds as in the competition. Each benchmark contains 300
instances. Before each learnt clause database reduction, the nbSAT value of each learnt clause is
computed. For each nbSAT value k in {0, 1, 2, ..., 9, 10, 11+}, where 11+ represents all values
equal to or bigger than 11, we measure the total number of times in which all learnt clauses with
this nbSAT value are useful in unit propagation #up(k) and in conflict analysis #analyze(k),
respectively. Note that the clauses learnt between the mth and the (m + 1)th clause database
reductions are not counted in #up(k) and #analyze(k) before the (m + 1)th reduction. Also
note that the real nbSAT value of a learnt clause can be changed during search. However, we
use its nbSAT value computed at the mth clause database reduction to compute #up(k) and
#analyze(k) between the mth and the (m + 1)th clause database reductions. In fact, we want
to use this nbSAT value to predict its usefulness between the mth and the (m + 1)th clause
database reductions.

We compute the cumulative distribution functions for the nbSAT values:

fnbSATup(k) =

∑k
i=0 #up(i)∑11+
i=0 #up(i)

and

fnbSATanalyze(k) =

∑k
i=0 #analyze(i)∑11+
i=0 #analyze(i)

Similarly, we compute the cumulative distribution functions for LBD values and clause sizes
in {2, 3, ..., 9, 10, 11+}. Again note that clauses learnt between the mth and the (m+1)th clause
database reductions are not counted in the functions before the (m+ 1)th reduction. Generally
the LBD value of a clause is not changed. It is changed only when the new LBD value is
smaller. In this case, the new LBD value is taken into account when computing the cumulative
distribution functions, favoring the set of learnt clauses with small LBD values. Observe that
the set of learnt clauses with small LBD values is further favored in the cumulative distribution
functions in Glucose 3.0, because the clauses with large LBD values tend to be removed, which
is not the case for the nbSAT measure.

Figure 1 and Figure 2 compare the cumulative distribution functions of the nbSAT and LBD
values and the clause sizes for the industrial benchmark and hard combinatorial benchmark,
respectively. The two figures clearly show that clauses with small nbSAT values are significantly
more frequently used than the clauses with small LBD values in unit propagation and conflict
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Figure 1. Cumulative distribution functions for nbSAT, LBD and clause size in glucose-3.0 on industrial
benchmark of the SAT competition 2014. Names of curves are in the same ordering as the curves. Each
point (x, y) represents the percentage y of learnt clauses used in unit propagation or conflict analyses
with nbSAT, LBD or clause size≤x.
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Figure 2. Cumulative distribution functions for nbSAT, LBD and clause size in glucose-3.0 on hard
combinatorial benchmark of the SAT competition 2014. Names of curves are in the same ordering as
the curves. Each point (x, y) represents the percentage y of learnt clauses used in unit propagation or
conflict analyses with nbSAT, LBD or clause size≤x.

analyses. In particular, more than 95% of learnt clauses used in unit propagation and conflict
analyses have nbSAT≤10, which is especially true for the learnt clauses used in conflict analyses.

Figure 3 and Figure 4 show the cumulative distribution functions of the number of learnt
clauses with each nbSAT, LBD and clause size for the industrial benchmark and hard combi-
natorial benchmark, respectively (at each database reduction, after removing the half of learnt
clauses with bigger LBD, the number of remaining learnt clauses with each nbSAT (LBD, clause
size) value is counted. The total number of learnt clauses with each nbSAT (LBD, clause size)
value is obtained by summing up the numbers for all database reductions). On the industrial
benchmark, about 46% of learnt clauses are of nbSAT ≤2, and these clauses contribute about
71% in conflict analyses (i.e. 71% of the learnt clauses used in conflict analyses are of nbSAT≤2)



0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Measure

C
D

F
 o

f m
ea

su
re

 

 

percentage of clauses nbSAT
percentage of clauses lbd
percentage of clauses size

Figure 3. Cumulative distribution functions for number of learnt clauses with different nbSat, LBD
and clause size in glucose-3.0 on industrial benchmark of the SAT competition 2014. Names of curves
are in the same ordering as the curves. Each point (x, y) represents the percentage y of learnt clauses
with nbSAT, LBD or clause size≤x.
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Figure 4. Cumulative distribution functions for number of learnt clauses with different nbSAT, LBD
and clause size in glucose-3.0 on hard combinatorial benchmark of the SAT competition 2014. Names
of curves are in the same ordering as the curves. Each point (x, y) represents the percentage y of learnt
clauses with nbSAT, LBD or clause size≤x.

and 47% in unit propagation; while about 58% of learnt clauses are of LBD≤3, and these clauses
contribute about 62% in conflict analyses and about 46% in unit propagation. These data mean
that the clauses with small nbSAT are probably more useful for deriving conflicts and for unit
propagation during search than the clauses with small LBD. Considering that Glucose 3.0 can
remove some clauses with nbSAT≤2 that could otherwise contribute in unit propagation and in
conflict analyses, but always keeps the half of learnt clauses with smaller LBD in each database
reduction, the effectiveness of the clauses with small nbSAT for deriving conflicts and for unit
propagation might be still more important than as suggested in Figure 1. Similar observation
can be made by analyzing Figure 2 and Figure 4 on hard combinatorial benchmark.



4 Using nbSAT in Clause Database Reduction

We implement two derived versions of Glucose 3.0 to use the nbSAT measure in the clause
database reduction: Glucose nbSAT+LBD and Glucose LBD+nbSAT, in which everything is
identical to Glucose 3.0, except that nbSAT is used to predict the usefulness of a learnt clause.
Concretely, if the number of learnt clauses becomes bigger or equal to 2000+300*n since the
last database reduction, we will remove half of the learnt clauses in Glucose nbSAT+LBD as
follows.

1. compute the nbSAT value for each learnt clause;

2. Sort all learnt clauses in the decreasing order of their nbSAT value, breaking ties using
the decreasing order of their LBD value. The remaining ties are broken using the clause
activity value as in Glucose 3.0.

3. Remove the first half of learnt clauses (i.e. those with bigger nbSAT values), by keeping
binary clauses, clauses whose LBD is 2, and the locked clauses (i.e. clauses that are
reasons of the current partial assignment).

Glucose LBD+nbSAT is identical to Glucose nbSAT+LBD except that all learnt clauses
are sorted in the decreasing order of their LBD value, breaking ties using the decreasing order
of their nbSAT value.

Note that the saved assignment changes frequently during search. The measurement nb-
SAT works well only when the learnt clause database reduction is fired frequently, because
otherwise, it does not reflect the current search state after many conflicts. This is not a prob-
lem with Glucose nbSAT+LBD and Glucose LBD+nbSAT, because the two solvers reduces
the database frequently as Glucose 3.0, making it relevant to use the nbSAT measure in the
database reduction.

Recall that the definition of nbSAT is similar to the psm measure proposed in [2]. Nonethe-
less, the psm measure is used in a different way to manage learnt clause database. At each
database reduction, if the psm value of a learnt clause is bigger than a dynamically determined
threshold, the clause is frozen (i.e., it is no longer used in unit propagation) but not definitely
removed, otherwise it is activated (i.e., it can be used in unit propagation). A clause is def-
initely removed if it is not activated after k(=7) times, or if it is not involved in search for
more than k times. The motivation of the approach can be stated as follows. The psm value
of a learnt clause can change quickly. Freezing learnt clauses with big psm values instead of
definitely removing them allows to keep those learnt clauses of which the psm values are big
at a database reduction but will become small (thus useful for unit propagation and conflict
analyses) in the near future. See [2] for more details. The utilization of the nbSAT measure
appears simpler in our case: at every database reduction, the half of learnt clauses with bigger
nbSAT values is simply and definitely removed without using any threshold.

5 Reducing Learnt Clause Database in the Root of the
Search Tree

In Glucose, as well as in most CDCL-based solvers, a clause database reducing process can be
fired inside a search tree. Two observations can be made about this strategy: (1) there are
locked clauses, i.e. clauses that are reasons of the current partial assignment, that cannot be



removed, (2) the part of the tree before the reducing and the part of the tree after the reducing
are constructed with very different clause database.

We can reduce the learnt clause database always at the beginning of each restart, i.e., at
the root of the search tree that is going to be constructed, every time the number of learnt
clauses is bigger or equal to 2000 + 300*n since the last database reducing. In this way, clauses
satisfied by variables fixed at the root are simply removed, as well as the literals falsified in the
remaining clauses. Note that no clause is locked at the root of a search tree. Moreover, since
the reduction is not done inside the search tree, the search tree is constructed with the same
incremental clause database.

This reduction policy is implemented in Glucose nbSAT+LBD and Glucose LBD+nbSAT,
giving Glucose nbSAT+LBD root and Glucose LBD+nbSAT root, respectively. Compared
with Glucose 3.0, the database reduction is delayed in Glucose nbSAT+LBD root and Glu-
cose LBD+nbSAT root, because it is not fired as soon as the number of the newly learnt
clauses reaches a limit, but should wait for the next restart. However the delay is not impor-
tant, because the two solvers perform fast restart as Glucose 3.0. This reducing policy was also
used in the parallel version of Glucose. Its effectiveness will be empirically studied in Section
7.

6 Keeping Subsuming Learnt Clauses

When a learnt clause is in the first half after all learnt clauses are sorted in the decreasing order
of their nbSAT value, i.e., when it is going to be removed by the database reduction process,
we check if it subsumes an original clause or if it can be resolved with an original clause to
produce a resolvent that subsumes the original clause.

In the first case, the learnt clause replaces the original clause and will never be removed.

Example. Let x1∨x2∨x3∨x4 be an original clause, and x2∨x3∨x4 be a learnt clause, then
the shorter learnt clause is added as an original clause that is never removed, and the original
clause x1∨x2∨x3∨x4 is removed.

In the second case, the produced resolvent replaces the original clause and will never be
removed.

Example. Let x1∨x2∨x3∨x4 be an original clause, and x̄2∨x3∨x4 be a learnt clause, then
the resolvent x1∨x3∨x4 is added as an original clause that is never removed, and x1∨x2∨x3∨x4
is removed.

Glucose nbSAT+LBD root rsltn and Glucose LBD+nbSAT root rsltn are respectively Glu-
cose nbSAT+LBD root and Glucose LBD+nbSAT root that keep the subsuming learnt clauses.
This policy is similar to subsumption elimination (SE) and self-subsuming resolution (SSR) used
in preprocessing in some SAT solvers. The difference is that in Glucose nbSAT+LBD root rsltn
and Glucose LBD+nbSAT root rsltn, the policy is not limited in the preprocessing, but is dy-
namically applied in every clause database reduction, which requires a highly efficient imple-
mentation, because it is applied for an exponential number of times.



7 Experimental Results

We run experiments on the industrial benchmark and the hard combinatorial (crafted) bench-
mark of the SAT 2014 competition to compare the following solvers:

Glucose nbSAT+LBD root rsltn: It is identical to Glucose 3.0, except that it sorts the learnt
clauses in the decreasing order of their nbSAT value, breaking ties using the LBD values,
when reducing clause database (See Section 4), that clause database reduction is always
performed at the root (see Section 5), and that resolution is used to keep subsuming learnt
clauses (see Section 6)

Glucose LBD+nbSAT root rsltn: It is identical to Glucose nbSAT+LBD root rsltn, except
that the it sorts the learnt clauses in the decreasing order of their LBD value, break-
ing ties using the nbSAT values, when reducing clause database (See Section 4)

Glucose nbSAT+LBD rsltn: It is identical to Glucose nbSAT+LBD root rsltn, except that the
clause database reduction is fired as in Glucose 3.0, i.e., it is not fired in the root of a
search tree, but fired as soon as the number of learnt clauses reaches a limit as in Glucose
3.0 (see Section 5)

Glucose LBD root rsltn: It is identical to Glucose LBD+nbSAT root rsltn, except that nb-
SAT is not used to break ties when sorting learnt clauses

Glucose 3.0: It is available at www.labri.fr/perso/lsimon/glucose/

All solvers are run on a computer with Intel Westmere Xeon E7-8837 of 2.66GHz and 10GB
of memory under Linux. The cutoff time is 5000 seconds as in the competition. Since there
can be other users on the machine, each solver is run three times for each instance and the
best result is taken into account to minimize the possible perturbation. Table 1 compares the
results of each solver.

Application Hard combinatorial
solvers #solved(sat+unsat)(time) #solved(sat+unsat)(time)
Glucose nbSAT+LBD root rsltn 210(103+107)(995.02s) 174(79+95)(1081.07s)
Glucose LBD+nbSAT root rsltn 207(100+107)(960.02s) 166(78+88)(928.08s)
Glucose nbSAT+LBD rsltn 209(97+112)(1002.67s) 176(83+93)(1056.70s)
Glucose LBD root rsltn 201(95+106)(949.60s) 171(79+92)(1064.69s)
Glucose 3.0 206(99+107)(962.35s) 164(77+87)(1087.17s)

Table 1. Number of instances solved within 5000 seconds of each solver, as well as the average runtime
to solve an instance, in the set of 300 industrial or hard combinatorial instances of the 2014 SAT
competition

The first observation that can be made from Table 1 is that the resolution to keep subsum-
ing learnt clauses in Glucose LBD root rsltn is not very effective for the industrial instances,
because Glucose LBD root rsltn solves 5 instances fewer than Glucose 3.0, but it is effective
for the crafted instances, because Glucose LBD root rsltn solves 7 instances more than Glucose
3.0. The explanation of this phenomenon is that the resolution is very costly for the industrial
instances that contain a large number of clauses, even with a highly efficient implementation.
However, The subsuming learnt clauses kept thanks to the resolution becomes effective for
both industrial and hard combinatorial instances when the nbSAT measure is used to predict



the usefulness of a learnt clause. In fact, the three solvers with nbSAT and the resolution
to keep subsuming learnt clauses solve more industrial and hard combinatorial instances, es-
pecially when nbSAT is used as the main measure as in Glucose nbSAT+LBD root rsltn and
Glucose nbSAT+LBD rsltn.

The second observation made from Table 1 is that it does not matter much to re-
duce clause database at the root of a search tree or inside the search tree, since Glu-
cose nbSAT+LBD root rsltn reduces the clause database only at the root of a search tree,
and solves roughly the same number of instances in both industrial and hard combinatorial
categories as Glucose nbSAT+LBD rsltn does.

The most important observation made from Table 1 is that the nbSAT measure appears to be
more accurate than the LBD measure in predicting the usefulness of a learnt clause, especially
for the hard combinatorial instances. In fact, Glucose nbSAT+LBD root rsltn solves 10 hard
combinatorial instances more than Glucose 3.0, and Glucose nbSAT+LBD rsltn solves 12 hard
combinatorial instances more than Glucose 3.0. One possible explanation is that industrial
instances exhibit a community structure that can be captured by LBD, while the community
structure is not so clear in hard combinatorial instances. Therefore, the impact of nbSAT is
more important for the hard combinatorial instances.

The solver Glucose nbSAT+LBD root rsltn participated in the SAT Race’2015 under the
name Glucose nbSatRsltn and solves 4 instances more than Glucose in the set of 300 application
instances (see http://baldur.iti.kit.edu/sat-race-2015/index.php?cat=results).

8 Conclusion

We have presented a measure called nbSAT to predict the usefulness of a learnt clause when
reducing learnt clause database in Glucose 3.0. The nbSAT measure is similar to a previous
measure called psm, but is exploited in a different way. It is closely associated with the aggressive
clause database reduction and fast restart policies in Glucose 3.0. Experimental results on
instances from the SAT 2014 competition suggest that the learnt clauses with small nbSAT
values are more useful than the learnt clauses with small LBD values. We then implemented an
improvement in Glucose 3.0 to remove half of learnt clauses with large nbSAT values, instead of
half of clauses with large LBD clauses, when periodically reducing the learnt clause database.
In addition, we implemented a resolution method in Glucose 3.0 to keep the learnt clauses or
resolvents produced using a learnt clause that subsume an original clause of the instance to solve.
The experimental results on benchmarks from the SAT 2014 competition show that Glucose 3.0
with these two improvements solve significantly more application and crafted instances than
Glucose 3.0, no matter if the clause database reductions are fired at the root of a search tree
or not.

Since the nbSAT value of a learnt clause can be changed frequently during search, one way
to make the nbSAT measure more effective might be to use a yet more aggressive database
reduction policy in Glucose 3.0, so that the nbSAT value can be more frequently re-computed
to reflect its actual usefulness. We will investigate this research line in the future.
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Abstract

The TPTP World is a well established infrastructure that supports research, development, and

deployment of Automated Theorem Proving (ATP) systems for classical logics. The TPTP world

includes the TPTP problem library, the TSTP solution library, standards for writing ATP problems

and reporting ATP solutions, and it provides tools and services for processing ATP problems and

solutions. This work describes a new component of the TPTP world - the Thousands of Models for

Theorem Provers (TMTP) Model Library. This is a library of models for axiomatizations built from

axiom sets in the TPTP problem library, supported by functions for efficiently interpreting ground

terms and closed formulae wrt interpretations, and tools for examining and processing interpretations.

The TMTP supports the development of semantically guided theorem proving ATP systems, provide

examples for developers of model finding ATP systems, and provides insights into the semantics of

axiomatizations.

1 Introduction

Automated Theorem Proving (ATP) is concerned with the development of automatic techniques
and computer programs for checking whether a conjecture is a theorem of some axioms, and
for checking the consistency of a set of formulae. The TPTP World [21] is a well established
infrastructure that supports research, development, and deployment of ATP systems for classical
logics. The TPTP world includes the TPTP problem library [20], the TSTP solution library
[21], standards for writing ATP problems and reporting ATP solutions [24, 19], tools and
services for processing ATP problems and solutions [21], and it supports the CADE ATP
System Competition (CASC) [22]. The TPTP world infrastructure has been deployed in a
range of applications, in both academia and industry. The web page http://www.tptp.org

provides access to all components.
The Thousands of Problems for Theorem Provers (TPTP) problem library is the original

core component of the TPTP world, and is commonly referred to as “the TPTP”. The TPTP
problem library supplies the ATP community with a comprehensive library of the test problems
that are available today, in order to provide an overview and a simple, unambiguous reference
mechanism, to support the testing and evaluation of ATP systems, and to help ensure that
performance results accurately reflect capabilities of the ATP systems being considered. The
Thousands of Solutions from Theorem Provers (TSTP) solution library is the “flip side” of the
TPTP – a corpus of ATP systems’ solutions to TPTP problems. A major use of the TSTP is
for ATP system developers to examine solutions to problems, and thus understand how they
can be solved, leading to improvements to their own systems. The TPTP language is one of the
keys to the success of the TPTP world. The language is used for writing both TPTP problems
and TSTP solutions, which enables convenient communication between different systems and
researchers. In conjunction with the TPTP language, the TPTP world uses the SZS1 ontologies

1SZS is an acronym from the initials of the original authors’ family names [25].
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to record what is known or has been established about a TPTP problem or solution, and to
describe sets of formulae. The TPTP world includes tools, programming libraries, and online
services that are used to support the application and deployment of ATP systems. One of
the most used services is SystemOnTPTP [17], which is an online service that allows an ATP
problem or solution to be easily and quickly submitted in various ways to a range of ATP
systems and tools. An important tool is GDV [18], which verifies TPTP format derivations. A
very useful tool for human users is IDV [26], which provides an interactive interface for viewing
TPTP format derivations.

This work describes a new component of the TPTP world - the Thousands of Models for
Theorem Provers (TMTP) Model Library.2 This is a library of models for axiomatizations built
from axiom sets in the TPTP. The library is supported by functions for efficiently interpreting
ground terms and closed formulae wrt interpretations, and tools for examining and processing
interpretations. The components parallel those already in the TPTP world for ATP problems
and solutions. Details of the TMTP’s components are provided in this paper, but in sum-
mary . . . The TMTP model library is similar to the TPTP problem library and TSTP solution
library. The TPTP language is used for writing the models (they are one type of solution), and
the SZS ontology is used to describe the various kinds of interpretations. The SystemOnTMTP
service allows an interpretation to be submitted to various tools for evaluating formulae wrt the
interpretation, and for examining and processing the interpretation. The IMV tool provides an
interactive interface for viewing interpretations, and the GMV tool verifies that an interpreta-
tion is a model for a given set of formulae. The web page http://www.tptp.org/TMTP provides
access to the TMTP.

The TMTP provides support for the development and execution of semantically guided ATP
systems, in the style of SLM [6], SGLD [16], and SCOTT [15], which use one or more preselected
interpretations to guide their search. (This is in contrast to ATP systems that use models that
are computed or updated during their execution, e.g., iProver [10], Satallax [5], and CVC4 [3].)
An implementation of semantic resolution [14] is planned. It is noteworthy that the dates of
the publications cited here are rather old, and it is the first author’s opinion that the potential
for semantically guided ATP has not been fully exploited. This viewpoint was also expressed
in [7]. The TMTP provides support for semantically guided techniques for axiom selection in
large theories, in the style of SRASS [23]. The TMTP provides a basis for empirical research
into the semantics of axiomatizations, hopefully leading to insights that benefit ATP research
and development in general. Finally, while the TMTP does provide examples of solutions to
satisfiable and countersatisfiable ATP problems3, it is not intended to be a comprehensive
repository of justifications for ATP systems’ claims of satisfiability or countersatisfiability –
that is the purpose of the TSTP solution library, which might provide justifications other than
models, e.g., a claim of countersatisfiability can be justified by a proof showing that a conjecture
is a countertheorem of the axioms.

The remainder of this paper is organized as follows: This section ends with definitions
for the terminology used in this paper. Section 2 explains how the models in the TMTP are
collected, and describes formats for writing various kinds of interpretations using the TPTP
language. Section 3 describes some tools that have been developed for examining and processing
interpretations. Section 4 concludes, and outlines plans for further development of the TMTP.

2Not all of these components have been completely implemented at the time of writing.
3The SZS ontology supplies the definitions of status values such as “theorem”, “countertheorem”, “satisfi-

able”, “countersatisfiable”.
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Terminology: A (logical) language is defined in the usual way [2], with variables, functions,
and predicates. An interpretation for a language L is a structure that has a domain D, and
can interpret all ground terms T in L as elements of D, and all closed formula F in L as either
true or false. A model of a set S of closed formulae is an interpretation that interprets all
the formulae in S as true. An interpretation is complete in the sense that it can interpret all
ground terms and closed formulae in L. A partial interpretation for L can interpret some (not
necessarily all, but possibly all in which case it is complete) ground terms and closed formulae in
L. A strictly partial interpretation for L cannot interpret all ground terms and closed formulae
in L. A strictly partial interpretation can be complete for ground terms or closed formulae,
but not for both. A strictly partial interpretation is complete for a set S of ground terms and
closed formulae if it can interpret all the elements in the set. A strictly partial model of a set S
of closed formulae is a strictly partial interpretation that is complete for S, and interprets all
the formulae in S as true.

2 Collecting Models

TMTP models (both complete and strictly partial) of a language L are expressed using the
TPTP language, as a set of TPTP formulae. Four kinds of interpretations are currently defined
for the TMTP: Herbrand interpretations, finite interpretations, integer interpretations, and real
interpretations. These types have been categorized in the SZS dataform ontology, along with
the notions of complete, partial, and strictly partial interpretations. The relevant section of the
ontology is shown in Figure 1.4 Examples of ontology values and their three-letter acronyms
include “Interpretation (Int)” at the top of the hierarchy, “Herbrand Strictly partial Model
(HSM)” in the right branch, and “Integer Partial Interpretation (IPI)” at bottom middle of
the left branch. Full details of each possible value are given in Appendix A. The lines in the
ontology can be followed up the hierarchy as “isa” links, e.g., an Integer Partial Interpretation
(IPI) isa Domain Partial Interpretation (DPI) isa Partial Interpretation (PIn) isa Interpretation
(Int). The classification of an interpretation into the ontology can be partially automated, e.g.,
if a finite domain is used then the interpretation is somewhere on the lefthand branch. More
precise placement, e.g., specifying that the interpretation is complete, partial, or strictly partial,
normally requires information from the ATP system that produced the interpretation. This
information is important for some uses of interpretations, in particular for using deduction to
interpret formulae wrt an interpretation (see Section 3.1).

2.1 Herbrand Interpretations

Herbrand interpretations are represented by sets of TPTP formulae that define the subset of
the Herbrand base that is true, and a formula is evaluated wrt a Herbrand interpretation by
trying to prove the formula is a theorem of the interpretation’s formulae (see Section 3.1).

Figure 2 provides an example defining Herbrand model for PUZ001-3, produced by the
iProver ATP system [10]. Examples of ATP systems that generate Herbrand models include
iProver and Darwin [4].

Saturations are a special case. The existence of a saturation (with respect to a complete
calculus) guarantees the existence of at least one Herbrand model. However, the model is
not, in general, uniquely defined on the logical level alone. For superposition-based calculi,

4The figure conflates the analogous trees for Interpretations and Models, and similarly the analogous subtrees
for the Partial and Strictly partial cases. It could be expanded into a taxonomic tree. Each path from the
“Interpretation” root to a leaf of this figure is one branch of the taxonomic tree.
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Interpretation
Int

Model
Mod

Domain Int/Mod
DIn/DMo/DPI/DPM/DSI/DSM

Herbrand Int/Mod
HIn/HMo/HPI/HPM/HSI/HSM

Finite Int/Mod
FIn/FMo

FPI/FPM/FSI/FSM

Integer Int/Mod
IIn/IMo

IPI/IPM/ISI/ISM

Real Int/Mod
RIn/RMo

RPI/RPM/RSI/RSM

Formula Int/Mod
TIn/TMo

TPI/TPM/TSI/TSM

Saturation
Sat

StrictlyPartial
SIn/SMo

Partial
PIn/PMo

Figure 1: SZS Ontology for Interpretations

%------ Negative definition of lives

fof(lives_defn,axiom,(

! [X0] : ( ~ lives(X0) <=> $false ) )).

%------ Positive definition of killed

fof(killed_defn,axiom,(

! [X0,X1] :

( killed(X0,X1)

<=> ( X0 = agatha & X1 = agatha ) ) )).

%------ Positive definition of richer

fof(richer_defn,axiom,(

! [X0,X1] :

( richer(X0,X1)

<=> ( X0 = butler & X1 = agatha ) ) )).

%------ Negative definition of hates

fof(hates_defn,axiom,(

! [X0,X1] :

( ~ hates(X0,X1)

<=> ( ( X0 = agatha & X1 = butler )

| ( X0 = butler & X1 = butler )

| X0 = charles

| ( X1 = butler & X0 != butler ) ) ) )).

Figure 2: A Herbrand Model for PUZ001-3
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the saturation defines a unique Herbrand model for a given literal selection strategy and term
ordering. If the term ordering (and the induced ordering on literals and clauses) is not only
terminating, but also has length-bounded descending chains (as in the case of the frequently
used Knuth-Bendix ordering), Bachmair/Ganzinger style bottom-up model construction [1] can
be used to interpret arbitrary ground atoms. However, the process is unlikely to be efficient
in the general case, although it is plausible for, e.g., EPR. Using a saturation to interpret
a formula by trying to prove the formula from the saturation (see Section 3.1) is possible,
but cannot always succeed even in principle, since the model is not always uniquely defined.
Moreover, it is necessary to use an ATP system that implements exactly the same ordering and
redundancy criteria that were used to produce the saturation, i.e., in practice the ATP system
that found the saturation in the first place.

Figure 3 provides an example saturation, for the TPTP problem PUZ001-3, produced by
the E ATP system [13]. It is noteworthy that the saturation is expressed as a set of clauses in
TPTP format, but it does not specify the ordering and redundancy criteria that were used. It
will be necessary to extend the TPTP presentation to include this information. Examples of
ATP systems that generate saturations include E, SPASS [27], and Vampire [11].

cnf(c_0_19,plain, ( hates(butler,butler) | killed(agatha,agatha) )).

cnf(c_0_20,plain, ( hates(butler,charles) | ~ killed(charles,agatha) )).

cnf(c_0_21,plain, ( hates(butler,X1) | richer(X1,agatha) | ~ lives(X1) )).

cnf(c_0_22,plain, ( hates(X1,X2) | ~ killed(X1,X2) )).

cnf(c_0_23,plain, ( ~ hates(butler,butler) | ~ hates(butler,charles) )).

cnf(c_0_24,plain, ( ~ hates(X1,agatha) | ~ hates(X1,butler) |

~ hates(X1,charles) )).

cnf(c_0_25,plain, ( hates(butler,X1) | ~ hates(agatha,X1) )).

cnf(c_0_26,plain, ( ~ richer(X1,X2) | ~ killed(X1,X2) )).

cnf(c_0_27,plain, ( ~ hates(agatha,X1) | ~ hates(charles,X1) )).

cnf(c_0_28,plain, ( ~ hates(agatha,butler) )).

cnf(c_0_29,plain, ( ~ hates(charles,charles) )).

cnf(c_0_30,plain, ( hates(butler,agatha) )).

cnf(c_0_31,plain, ( hates(agatha,charles) )).

cnf(c_0_32,plain, ( hates(agatha,agatha) )).

cnf(c_0_33,plain, ( lives(charles) )).

cnf(c_0_34,plain, ( lives(butler) )).

cnf(c_0_35,plain, ( lives(agatha) )).

Figure 3: A Saturation for PUZ001-3

2.2 Finite Interpretations

Finite interpretations [24] are represented by FOF that specify the domain, define the inter-
pretation of the functions, and define the interpretation of the predicates. The elements of the
domain are specified in a formula of the form:

fof(fi name,fi domain,

! [X] : ( X = e1 | X = e2 | ... | X = en ) ).

where the ei are all "distinct object"s, or all distinct integers, or all distinct constants. The
use of "distinct object"s or integers for a domain is preferred over constants, because they are
predefined to be unequal. If the domain elements are constants then their inequality must be
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explicitly stated in formulae of the form:
fof(ei not ej,fi domain,

ei != ej ).

The interpretation of functors is written in the form:
fof(fi name,fi functors,

( f(e1,...,em) = er
& f(e1,...,ep) = es
... ) ).

specifying that, e.g., f(e1,...,em) is interpreted as the domain element er. The interpretation
of predicates is written in the form:

fof(fi name,fi predicates,

( p(e1,...,em)

& ~ p(e1,...,ep)
... ) ).

specifying that, e.g., p(e1,...,em) is interpreted as true and p(e1,...,ep) is interpreted as
false. Equality is interpreted naturally by the domain, with the understanding that identical
elements are equal. For the interpretation of functors and predicates, universal quantifications
can be used if all domain elements can be used in an argument position, e.g.,

fof(fi name,fi functors,

( ! [X] : ( f(e1,...,X) = er
& f(e1,...,ep) = es
... ) ).

specifies that the last argument position can be any domain element in the functions interpreted
as er.

Figure 4 provides an example set of formulae that has a finite model, and Figure 5 provides
an example finite model for the formulae, produced by the ATP system Paradox [8]. In the
model the interpretation of the predicate p can be specified in two ways, one using a universal
quantifier, and the other explicitly using the domain elements. The difference is relevant when
interpreting formulae wrt an interpretation, as discussed in Section 3.1. Examples of ATP
systems that generate finite models include Paradox, Mace4 [12] and DarwinFM [4].

%----About the constants

fof(a_not_b, axiom, a != b ).

%----About the functions

fof(s_not_X, axiom, ! [X] : s(X) != X ).

fof(f_b_a, axiom, f(b) = a ).

fof(f_ss_X, axiom, ! [X] : f(s(s(X))) = X ).

%----About the predicates

fof(p_a, axiom, p(a) ).

Figure 4: Example Axiomatization that has a Finite Model

2.3 Integer and Real Interpretations

The domain of an integer interpretation is the integers, as defined by the $int type of the
TPTP’s TFF language. The interpretations are then represented by three types of TFF formu-
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%----Model domain

fof(domain,fi_domain, ! [X] : ( X = "d1" | X = "d2" | X = "d3" ) ).

%----Constants

fof(a, fi_functors, a = "d1" ).

fof(b, fi_functors, b = "d2" ).

%----Total functions

fof(f, fi_functors, f("d1") = "d3" & f("d2") = "d1" & f("d3") = "d2" ).

fof(s, fi_functors, s("d1") = "d3" & s("d2") = "d1" & s("d3") = "d2" ).

%----Total predicates - Universal quantification

%---- fof(p, fi_predicates, ! [X1] : p(X1) <=> $true ).

%----Total predicates - Listed

fof(p, fi_predicates, p("d1") & p("d2") & p("d3") ).

Figure 5: A Finite Model for Figure 4

lae: type declarations, formulae to define the interpretation of the functions, and formulae to
define the interpretation of the predicates. The type declarations declare all constants to be of
type $int, all functions to be from tuples of $int to $int, and all predicates to be from tuples
of $int to $o. Thus every constant and function is interpreted as an element of the integer
domain, the formulae that define the interpretation of the functions map tuples of domain el-
ements to a domain element, and the formulae that define the interpretation of the predicates
map tuples of domain elements to true or false.

Figure 6 provides an example set of formulae (modified from those in Figure 4) that does
not have a finite model, and Figure 7 provides an example integer model for the formulae.
Examples of ATP systems that generate integer models include CVC4 [3] and Z3 [9].

%----About the constants

fof(a_not_b, axiom, a != b ).

%----About the functions

fof(bigger_s, axiom, ! [X] : bigger(s(X),X) ).

fof(bigger_t, axiom, ! [X,Y] : ( bigger(X,Y) => bigger(s(X),Y) ) ).

fof(s_not_X, axiom, ! [X,Y] : ( bigger(X,Y) => X != Y ) ).

fof(f_b_a, axiom, f(b) = a ).

fof(f_ss_X, axiom, ! [X] : f(s(s(X))) = X ).

%----About the predicates

fof(p_a, axiom, p(a) ).

Figure 6: Example Axiomatization that does not have a Finite Model

The domain of a real interpretation is the reals, as defined by the $real type of the TPTP’s
TFF language. The interpretations are then represented by three types of TFF formulae,
analogous to integer interpretations, but using the $real type. Figure 8 provides an example
real model for the formulae of Figure 6. Example of ATP systems that generate real models
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%----Model types

tff(a_type, type, a: $int ).

tff(b_type, type, b: $int ).

tff(s_type, type, s: $int > $int ).

tff(f_type, type, f: $int > $int ).

tff(b_type, type, bigger: ( $int * $int ) > $o ).

tff(p_type, type, p: $int > $o ).

%----Constants

tff(a_is_1, axiom, a = 1 ).

tff(b_is_1, axiom, b = 4 ).

%----Total functions

tff(s, axiom, ! [X: $int] : s(X) = $product(X,2) ).

tff(f_s, axiom, ! [X: $int] : f(X) = $quotient_t(X,4) ).

%----Total predicates

tff(bigger, axiom, ! [X: $int,Y: $int] : ( bigger(X,Y) <=> $greater(X,Y) ) ).

tff(p_natural, axiom, ! [X: $int] : ( p(X) <= $greatereq(X,1) )).

tff(not_p_more,axiom, ! [X: $int] : ( ~ p(X) <= $less(X,1) )).

Figure 7: An Integer Model for Figure 6

are CVC4 and Z3.

%----Model types

tff(a_type, type, a: $real ).

tff(b_type, type, b: $real ).

tff(s_type, type, s: $real > $real ).

tff(f_type, type, f: $real > $real ).

tff(b_type, type, bigger: ( $real * $real ) > $o ).

tff(p_type, type, p: $real > $o ).

%----Constants

tff(a_is_1, axiom, a = 1.0 ).

tff(b_is_1_4, axiom, b = 0.25 ).

%----Total functions

tff(s, axiom, ! [X: $real] : s(X) = $quotient(X,2) ).

tff(f_s, axiom, ! [X: $real] : f(X) = $product(X,4) ).

%----Total predicates

tff(bigger, axiom, ! [X: $real,Y: $real] : ( bigger(X,Y) <=> $greater(X,Y) ) ).

tff(p_natural, axiom, ! [X: $real] : ( p(X) <= $greatereq(X,1) )).

tff(not_p_more,axiom, ! [X: $real] : ( ~ p(X) <= $less(X,1) )).

Figure 8: A Real Model for Figure 6
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2.4 Building the TMTP

The TPTP problem library includes satisfiable axiomatization problems that consist of only
include directives for TPTP axiom files (no problem-specific formulae), so that the axioms
constitute an axiomatization of some recognized theory. For example, PHI001^1 consists of

%----Axioms for Quantified Modal Logic KB.

include(’Axioms/LCL016^0.ax’).

include(’Axioms/LCL016^1.ax’).

%----Axioms about God

include(’Axioms/PHI001^0.ax’).

The TMTP is built by collecting solutions to axiomatization problems, i.e., their models
from the TSTP solution library. As new (versions of) ATP systems are added to the TPTP
world, they are run over all the problems in the TPTP, and their solutions are added to the
TSTP. In the case of a new version of an ATP system, the old version’s solutions are replaced by
the new version’s solutions in the TSTP. The new systems’ models for axiomatization problems
are new candidates for addition to the TMTP. Each such new model is checked against existing
models in the TMTP, and if it is not a syntactic variant of an existing model it is copied into
the TMTP. In this way multiple models of the TPTP axiomatization are collected. At the time
of writing, many more potential axiomatization problems have been identified for addition to
the TPTP, and subsequently their models will be added to the TMTP.

It is important to ensure that non-trivial models are produced and included in the TMTP.
For example, the axiomatization of the natural numbers {int(zero),∀X(int(X)⇒ int(succ(X)))}
has a trivial interpretation with a single domain element d1, with zero and succ(d1) both map-
ping to d1, and int(d1) mapping to true. The intended integer interpretation that should (also)
be in the TMTP would have the normal interpretation of succ as the successor function.

The TMTP has a naming scheme similar to that used for problems in the TPTP. The model
naming scheme is DDDNNNFV.MMM-SZS. DDD is the TPTP domain acronym (ALG, PUZ,
SET, etc.), NNN is the abstract problem number, F is the logical form (^ for THF, = for TFF
with arithmetic, for TFF without arithmetic, + for FOF, and - for CNF), and V is the problem
version number, so that DDDNNNFV is the name of a TPTP axiomatization problem. MMM
is the model number for that axiomatization, and SZS is the SZS dataform (FMo, Sat, etc.).
Thus an example TMTP model name is KRS176+1.005-FMo. An extension of .m is added to
create the model file name.

Each model file consists of a header containing information about the ATP system that built
the model, the computing resources used to build the model, statistics about the model, and
user comments. The formulae that define the model follow below the header. Figure 9 shows
an example TMTP model file (with the bulk for the defining formulae omitted).

3 Examining and Processing the TMTP Models

3.1 Interpreting Closed Formulae wrt an Interpretation

A key capability required for using interpretations (and thus also the TMTP models) is effi-
ciently interpreting closed formulae wrt the interpretations. Direct interpreting formulae ac-
cording to the semantic rules of the logic often provides this, but the feasibility depends on
the nature of the interpretation. For finite interpretations directly interpreting formulae is
relatively easy, by instantiating quantified variables with domain elements, using the function
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%------------------------------------------------------------------------------

% File : Paradox---4.0

% Problem : KRS176+1 : TPTP v6.2.0. Released v4.0.0.

% Transform : none

% Format : tptp:short

% Command : paradox --no-progress --time %d --tstp --model %s

% Computer : n189.star.cs.uiowa.edu

% Model : x86_64 x86_64

% CPU : Intel(R) Xeon(R) CPU E5-2609 0 2.40GHz

% Memory : 32286.75MB

% OS : Linux 2.6.32-573.1.1.el6.x86_64

% CPULimit : 300s

% DateTime : Wed Aug 5 05:31:13 EDT 2015

% Result : Satisfiable 0.01s

% Output : FiniteModel 0.01s

% Verified :

% Statistics : Number of formulae : 63 ( 63 expanded)

% Number of leaves : 63 ( 63 expanded)

% Depth : 0

% Number of atoms : 149 ( 149 expanded)

% Number of equality atoms : 125 ( 125 expanded)

% Maximal formula depth : 9 ( 2 average)

% Maximal term depth : 2 ( 1 average)

% Comments :

%------------------------------------------------------------------------------

% domain size is 2

fof(domain,fi_domain,(

! [X] : ( X = "1" | X = "2" ) )).

fof(cax,fi_functors,(

cax = "2" )).

...

fof(model,fi_predicates,

( ( model("1","1") <=> $false )

& ( model("1","2") <=> $false )

& ( model("2","1") <=> $false )

& ( model("2","2") <=> $false ) )).

%------------------------------------------------------------------------------

Figure 9: A TMTP Model File

10



TMTP Sutcliffe, Schulz

definitions to interpret functors applied to domain elements, and using the predicate definitions
to interpret predicates applied to domain elements. If universal quantification is used in the
predicate definitions, e.g., as in the commented out definition in Figure 5, this can be used
to short-circuit the interpretation process. For example, the atom p(a) could be immediately
interpreted as true without having to first interpret a as "d1". For Herbrand, integer, and real
interpretations, direct evaluation of anything other than ground terms and atoms seems tricky
(which makes a nice research problem).

An alternative to directly interpreting formulae is to rely on deduction, using the interpreta-
tion as axioms, and the formula to be interpreted (or its negation) as a conjecture. This works
because, in this setting, logical consequence and directly interpreting formulae coincide in many
cases. If I is a partial interpretation for L, then if F (in L) is a theorem of (the formulae that
define) I then I interprets F as true. If F is a countertheorem of I (or equivalently, ~F is a
theorem of I), then I interprets F as false. Further, if I is an interpretation (i.e., is complete),
and F is countersatisfiable wrt I (or equivalently ~F is satisfiable with I), then F is necessarily
a countertheorem of I, and I interprets F as false. Finally, if I is an interpretation, and F
is satisfiable wrt I (or equivalently ~F is countersatisfiable with I), then ~F is necessarily a
countertheorem of I, and F is interpreted as true. Note that if I is a strictly partial inter-
pretation for L and F is countersatisfiable wrt I, then nothing can be concluded about the
interpretation of F . An example to illustrate this is as follows: Let L = [{a/0, b/0, c/0}, {p/1}],
and let I = {a 6= b, p(c)}. I is a strictly partial interpretation of L, e.g., it does not interpret
the closed formula F ≡ b 6= c. F is countersatisfiable wrt I, but F is not a countertheorem of
I. These observations provide a simple, but possibly inefficient, way of interpreting a formula
wrt a TMTP format interpretation – use an ATP system to determine the status of the formula
wrt the model (theorem, countersatisfiable, countertheorem, satisfiable), and hence determine
the interpretation of the formula wrt the model (true, false, false, true, respectively). An
efficient implementation of this idea would try to prove both F and ~F from the interpretation
in parallel.

3.2 Viewing, Verifying, and Examining Models

The Interactive Model Viewer (IMV) tool provides an interactive interface for viewing interpre-
tations. IMV aims to provide insights into the structures and features of models, and hence the
semantics of axiomatizations. For example, it might be observed that certain domain elements
are more or less often the range value of certain functions, or that some argument of a function
or predicate does not affect the interpretation.

At the time of writing IMV was still in the design phase, considering different possible
visualizations of the different types of interpretations. For finite interpretations for untyped
first-order languages, one possible visualization is to provide a term tree for each function and
predicate, for each resultant domain value and true/false. For example, for the function f/2
and the predicate p/3, and the finite domain D = {d1, d2, d3}, Figure 10 shows the term tree for
f resulting in d1, and the term tree for p resulting in true. Thus one can see that, e.g., ∀D ∈
D f(d1, D) and f(d2, d3) map to d1. Similarly, p(d1, d1, d1), p(d1, d2, d2), ∀D ∈ D p(d3, D, d1),
and ∀D ∈ D p(d3, D, d3) map to true. A possible insight is that the second argument of f does
not affect the interpretation when the first argument is interpreted as d1. Extensions of this
visualization are being considered for other types of interpretations (Herbrand, integer domains,
etc.), and more expressive languages (typed, higher-order, etc.).

The GMV5 tool verifies that an interpretation is a model for a given set of formulae. This

5That’s “Geoff’s Model Verifier”.
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p/3 - true

d1 d3

d1

d1,d3d1

*d2

d2

f/2 - d1

d1 d2

* d3

Figure 10: Example Term Trees

is done by checking that each formula in the set is interpreted as true in the model, using the
techniques discussed in Section 3.1. If an ATP system is used to interpret the formulae wrt the
model, it must be a trusted ATP system, and not the one that produced the model. A second
approach, used for detecting that an interpretation is not a model of a set of formulae, is to
conjoin the model with the set and check for unsatisfiability. If the conjoined set is unsatisfiable,
then the interpretation is not a model of the set.

Another tool planned for examining interpretations is a relationship tester. This tool will
check if two interpretations are syntactic variants of each other (as used when building the
TMTP - see Section 2.4), compare the sizes of interpretations in terms of the number of
true/false Herbrand base elements, and check whether or not an interpretation makes a super-
set of Herbrand base elements true/false compared to another interpretation (interpretation
subsumption). Note that the syntactic-variant test is not the same as an equivalence test –
two syntactically distinct interpretations can make the same Herbrand base elements true, e.g.,
they might be different types of interpretations, or might be the same type of interpretation
but defined by different sets of formulae.

3.3 The TMTP Online

The TMTP has an online presence, starting at http://www.tptp.org/TMTP. The home page
provides a linked hierarchy for browsing the TMTP models, and links to other relevant com-
ponents, including the SystemOnTMTP web interface. SystemOnTMTP allows a model to be
submitted to various tools, including parsers for models, evaluation of formulae wrt a model,
and GMV. More tools, e.g., IMV, will be added as time goes by. Figure 11 shows the home
page and the SystemOnTMTP page.

4 Conclusion

This paper has described the beginnings of the TMTP Model Library, a new component of the
TPTP world. The TMTP includes standards for writing interpretations, a library of TPTP
format models for TPTP axiomatization problems, and tools for examining and using interpre-
tations.

Future work on the TMTP includes adding more axiomatization problems to the TPTP
problem library so that their models are added to the TMTP, researching ways to efficiently
interpret formulae wrt an interpretation, implementing the IMV model viewer, extending the
GMV verifier, and implementing an interpretation relationship tester.
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Figure 11: The TMTP and SystemOnTMTP Web pages

When the TMTP and associated tools are in place, they will be available as the basis for
the development of semantically guided ATP systems, including the planned implementation
of semantic resolution.
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A SZS Ontology for Interpretations

The list below provides details for each of the nodes in Figure 1. Each entry gives the full
“OneWord” ontology values, its three-letter acronym, and a brief description.

• Interpretation (Int): An interpretation.

• Model (Mod): A model.

• PartialInterpretation (Pin): A partial interpretation.

• PartialModel (PMo): A partial model.

• StrictlyPartialInterpretation (SIn): A strictly partial interpretation.

• StrictlyPartialModel (SMo): A strictly partial model.

• DomainInterpretation (DIn): An interpretation whose domain is not the Herbrand universe.

• DomainModel (DMo): A model whose domain is not the Herbrand universe.

• DomainPartialInterpretation (DPI): A domain interpretation that is partial.

• DomainPartialModel (DPM): A domain model that is partial.

• DomainStrictlyPartialInterpretation (DSI): A domain interpretation that is strictly partial.

• DomainStrictlyPartialModel (DSM): A domain model that is strictly partial.

• FiniteInterpretation: A domain interpretation with a finite domain.

• FiniteModel (FMo): A domain model with a finite domain.

• FinitePartialInterpretation (FPI): A domain partial interpretation with a finite domain.

• FinitePartialModel (FPM): A domain partial model with a finite domain.

• FiniteStrictlyPartialInterpretation (FSI): A domain strictly partial interpretation with a finite domain.

• FiniteStrictlyPartialModel (FSM): A domain strictly partial model with a finite domain.

• IntegerInterpretation: An integer domain interpretation.

• IntegerModel (FMo): An integer domain model.

• IntegerPartialInterpretation (FPI): An integer domain partial interpretation.

• IntegerPartialModel (FPM): An integer domain partial model.

• IntegerStrictlyPartialInterpretation (FSI): An integer domain strictly partial interpretation.

• IntegerStrictlyPartialModel (FSM): An integer domain strictly partial model.

• RealInterpretation: A real domain interpretation.

• RealModel (FMo): A real domain model.

• RealPartialInterpretation (FPI): A real domain partial interpretation.

• RealPartialModel (FPM): A real domain partial model.

• RealStrictlyPartialInterpretation (FSI): A real domain strictly partial interpretation.

• RealStrictlyPartialModel (FSM): A real domain strictly partial model.

• HerbrandInterpretation (HIn): A Herbrand interpretation.

• HerbrandModel (HMo): A Herbrand model.

• FormulaInterpretation (TIn): A Herbrand interpretation defined by a set of TPTP formulae.

• FormulaModel (TMo): A Herbrand model defined by a set of TPTP formulae.

• FormulaPartialInterpretation (TPI): A Herbrand partial interpretation defined by a set of TPTP formulae.

• FormulaPartialModel (TMo): A Herbrand partial model defined by a set of TPTP formulae.

• FormulaStrictlyPartialInterpretation (TSI): A Herbrand strictly partial interpretation defined by a set of
TPTP formulae.

• FormulaStrictlyPartialModel (TSM): A Herbrand strictly partial model defined by a set of TPTP formulae.

• Saturation (Sat): A Herbrand model expressed as a saturating set of formulae.
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Abstract

Although clausal propositional proofs are significantly smaller compared to resolution proofs, their

size on disk is still too large for several applications. In this paper we present several methods to

compress clausal proofs. These methods are based on a two phase approach. The first phase consists

of a light-weight compression algorithm that can easily be added to satisfiability solvers that support

the emission of clausal proofs. In the second phase, we propose to use a powerful off-the-shelf general-

purpose compression tool, such as bzip2 and 7z. Sorting literals before compression facilitates a delta

encoding, which combined with variable-byte encoding improves the quality of the compression. We

show that clausal proofs can be compressed by one order of magnitude by applying both phases.

1 Introduction

Propositional proofs of unsatisfiability come in two flavors: resolution proofs [12] and clausal
proofs [10]. An important drawback of using such proofs is their size on disk. Since resolution
proofs can be up to two orders of magnitude larger compared to clausal proofs [5], the issue is
much more severe for resolution proofs. Even clausal proofs are still too big for some applica-
tions, such as computing Van der Waerden number W (2, 6) [8] and the optimal sorting network
with ten wires [2]. This paper offers some compression techniques to make them more compact.

The compression techniques presented in this paper are inspired by the binary variant of the
AIGER format [1], the input format of the hardware model checking competition. This binary
format stores the gates of sequential circuits using a binary representation instead of ASCII
characters. Additionally, delta encoding is applied to store the difference between successive
numbers. Sorting literals in a clause does not influences validity of proof, but reduces these
differences between successive literals — making it a useful pre-compression technique.

Proof compression has many applications. For instance, a restriction to 100GB disk space,
the maximal local storage on cluster nodes in the SAT 2014 competition1, prevented the valida-
tion of some proofs of the unsatisfiability tracks. This can be avoided by adding a light-weight
compression algorithm to SAT solvers to reduce the size proof lines written to disk. Notice that
the 100 GB space limit was per benchmark per solver. Storing all unsatisfiability proofs of the
competition is unfeasible even after strong compression.

Clausal proof compression techniques are also useful to store proofs of hard combinatorial
problems, such as the Erdős Discrepancy Conjecture (EDP) [7], for which a clausal proof is
available. The initial proof was 13GB in size. Using symmetry-breaking methods, a proof of
2GB was produced [4]. In this paper, we show this proof can further be compressed to 128MB
(less than 1% of the original proof). For other hard combinatorial problems, such as Van der
Waerden numbers and minimal sorting networks, the expected size of (uncompressed) clausal
proofs is many terabytes. Compression techniques will be crucial to deal with such proofs.

∗This work was supported by the Austrian Science Fund (FWF) through the national research network RiSE
(S11408-N23) and the National Science Foundation under grant number CCF-1526760.

1results of the certified unsatisfiability tracks at http://satcompetition.org/2014
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2 Preliminaries

CNF Satisfiability. For a Boolean variable x, there are two literals, the positive literal x
and the negative literal x̄. A clause is a disjunction of literals and a CNF formula a conjunction
of clauses. A truth assignment is a function τ that maps literals to {f , t} under the assumption
τ(x) = v if and only if τ(x̄) = ¬v. A clause C is satisfied by τ if τ(l) = t for some literal l ∈ C.
An assignment τ satisfies CNF formula F if it satisfies every clause in F .

Resolution and Extended Resolution. The resolution rule states that, given two clauses
C1 = (x∨a1∨ . . .∨an) and C2 = (x̄∨b1∨ . . .∨bm), the clause C = (a1∨ . . .∨an∨b1∨ . . .∨bm),
can be inferred by resolving on variable x. We say C is the resolvent of C1 and C2. For a
given CNF formula F , the extension rule [9] allows one to iteratively add definitions of the
form x := a ∧ b by adding the extended resolution clauses (x ∨ ā ∨ b̄) ∧ (x̄ ∨ a) ∧ (x̄ ∨ b) to F ,
where x is a new variable and a and b are literals in the current formula.

Unit Propagation. The process of unit propagation simplifies a CNF F based on unit clauses.
It repeats the following until fixpoint: if there is a unit clause (l) ∈ F , remove all clauses
containing literal l from set F\{(l)} and remove literal l̄ from all clauses in F . If unit propagation
on formula F produces complementary units (l) and (l̄), we say that unit propagation derives
a conflict and write F `1 ε with ε referring to the (unsatisfiable) empty clause.

Example Consider F = (a)∧ (ā∨ b)∧ (b̄∨ c)∧ (b̄∨ c̄). We have (a) ∈ F , so unit propagation
removes ā, resulting in the new unit clause (b). After removal of b̄, two complementary unit
clauses (c) and (c̄) are created. From these two units the empty clause can be derived: F `1 ε.

Clause Redundancy. A clause C is called redundant with respect to a formula F iff F ∧{C}
is satisfiability equivalent to F . Asymmetric tautologies, also known as reverse unit propagation
clauses, are the most common redundant (learned) clauses in SAT solvers. Let C denote the
conjunction of unit clauses that falsify all literals in C. A clause C is an asymmetric tautology
with respect to a CNF formula F iff F ∧ C `1 ε. Resolution asymmetric tautologies (or RAT
clauses) [6] are a generalization of both asymmetric tautologies and extended resolution clauses.
A clause C has RAT on l ∈ C (referred to as the pivot literal) with respect to a formula F if for
all D ∈ F with l̄ ∈ D, it holds that F ∧C ∧ (D \ {(l)}) `1 ε. Not only can RAT be computed in
polynomial time, but all preprocessing, inprocessing, and solving techniques in state-of-the-art
SAT solvers can be expressed in terms of addition and removal of RAT clauses [6].

Clausal Proofs. A proof of unsatisfiability (also called a refutation) is a sequence of redundant
clauses containing the empty clause. It is important that the redundancy property of clauses
can be checked in polynomial time. A DRAT proof, short for Deletion Resolution Asymmetric
Tautology, is a sequence of addition and deletion steps of RAT clauses. A DRAT refutation is
a DRAT proof that contains the empty clause. Figure 1 shows an example DRAT refutation.

Example Let F = (a∨ b∨ c̄)∧ (ā∨ b̄∨ c)∧ (b∨ c∨ d̄)∧ (b̄∨ c̄∨ d)∧ (a∨ c∨ d)∧ (ā∨ c̄∨ d̄)∧
(ā ∨ b ∨ d) ∧ (a ∨ b̄ ∨ d̄), shown in DIMACS format in Fig. 1 (left), where 1 represents a, 2 is b,
3 is c, 4 is d, and negative numbers represent negation. The first clause in the proof, (ā), is a
RAT clause with respect to F because all possible resolvents are asymmetric tautologies:

F ∧ (a) ∧ (b̄) ∧ (c) `1 ε using (a ∨ b ∨ c̄)
F ∧ (a) ∧ (c̄) ∧ (d̄) `1 ε using (a ∨ c ∨ d)

F ∧ (a) ∧ (b) ∧ (d) `1 ε using (a ∨ b̄ ∨ d̄)
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CNF formula

p cnf 4 8

1 2 -3 0

-1 -2 3 0

2 3 -4 0

-2 -3 4 0

-1 -3 -4 0

1 3 4 0

-1 2 4 0

1 -2 -4 0

DRAT proof

-1 0

d -1 -2 3 0

d -1 -3 -4 0

d -1 2 4 0

2 0

0

Figure 1: Left, a formula in DIMACS CNF
format, the conventional input for SAT solvers
which starts with p cnf to denote the format,
followed by the number of variables and the num-
ber of clauses. Right, a DRAT proof for that
formula. Each line in the proof is either an addi-
tion step (no prefix) or a deletion step identified
by the prefix “d”. Spacing in both examples is
used to improve readability. Each clause in the
proof should be an asymmetric tautology or a
RAT clause using the first literal as the pivot.

3 Proof Compression

We propose to compress clausal proofs using two phases. The first phase is a light-weight method
which can easily be added to any SAT solver that can produce proofs of unsatisfiability. The
second phase applies a strong off-the-shelf compression tool to the result of the first phase.

Byte Encoding The ASCII encoding of clausal proofs in Figure 1 is easy to read, but rather
verbose. For example, consider the literal -123456789, which requires 11 bytes to express (one
for each ASCII character and one for the separating space). This literal can also be represented
by a signed integer (4 bytes). If all literals in a proof can be expressed using a signed integer,
only 4 bytes are required to encode each literal. Such an encoding also facilitates omitting
a byte to express the separation of literals. Consequently, one can easily compress a clausal
ASCII proof with a factor of roughly 2.5 by using a binary encoding of literals.

In case the length of literals in the ASCII representation differs a lot, it may not be efficient
to allocate a fixed number of bytes to express each literal. Alternatively, the variable-byte
encoding [11] can be applied, which uses the most significant bit of each byte to denote whether
a byte is the last byte required to express a given literal. The variable-byte encoding can express
the literal 1234 (10011010010 in binary notation) using only two bytes: 11010010 00001001.
(in little-endian ordering, e.g., least-signifiant byte first).

Sorting Literals The order of literals in a clausal proof does not influence validness of the
proof, nor does the order influences its size. However, the order of literals can influence the costs
to validate a proof as it influences unit propagation and in turn determines which clauses will be
marked in backward checking (the default validation algorithm used in clausal proof checkers).
The order of literals in the proof produced by the SAT solver is typically not better or worse
than any permutation. Experience shows that this is often not the case for SAT solving: the
given order of literals in an encoding is generally superior compared to any permutation.

Sorting literals before compression has advantages in both phases. In the first phase, one
can use delta encoding: store the difference between two successive literals. Clauses in a proof
are typically long (dozens of literals) [5], resulting in a small difference between two successive
sorted literals. Delta encoding is particularly useful in combination with variable-byte encoding.

In the second phase, off-the-shelf compression tools could exploit the sorted order of literals.
Many clauses in proofs have multiple literals in common. SAT solvers tend to emit literals in a
random order. This makes it hard for compression tools to detect overlapping literals between
clauses. Sorting literals potentially increases the observability of overlap which in turn could
increase the quality of the compression algorithm.

3
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Table 1: Eight encodings of an example DRAT proof line. The first two encodings are shown
as ASCII text using decimal numbers, while the last six are shown as hexadecimals using the
MiniSAT encoding of literals. The prefix s denotes sorted, while the prefix ds denotes delta
encoding after sorted. 4byte denotes that 4 bytes are used to represent each literal, while vbyte
denotes that variable-byte encoding is used.

encoding example (prefix pivot lit1...litk−1 end) #bytes

ascii d 6278 -3425 -42311 9173 22754 0\n 33
sascii d 6278 -3425 9173 22754 -42311 0\n 33
4byte 64 0c 31 00 00 c3 1a 00 00 8f 4a 01 00 aa 47 00 00 c4 b1 00 00 00 00 00 00 25

s4byte 64 0c 31 00 00 c3 1a 00 00 aa 47 00 00 c4 b1 00 00 8f 4a 01 00 00 00 00 00 25
ds4byte 64 0c 31 00 00 c3 1a 00 00 e8 2c 00 00 1a 6a 00 00 cb 98 00 00 00 00 00 00 25

vbyte 64 8c 62 c3 35 8f 95 05 aa 8f 01 c4 e3 02 00 15
svbyte 64 8c 62 c3 35 aa 8f 01 c4 e3 02 8f 95 05 00 15

dsvbyte 64 8c 62 c3 35 e8 59 9a d4 01 cb b1 02 00 14

Literal Encoding In most SAT solvers, literals are mapped to natural numbers. The default
mapping function map(l), introduced in MiniSAT [3] and also used in the AIGER format [1]
converts signed DIMACS literals into unsigned integer numbers as follows:

map(l) =

{
2l + 1 if l > 0
−2l otherwise

Table 1 shows a DRAT proof line in the conventional DIMACS and in several binary encodings.
For all non-ASCII encodings, we will use map(l) to represent literals. Notice that the first literal
in the example is not sorted, because the proof checker needs to know the pivot literal (which
is the first literal in each clause). The remaining literals are sorted based on their map(l) value.

4 Experiments

We implemented two tools: ratz (encode) and ztar (decode)2. We used ratz to transform
DRAT proofs in the ASCII format to several alternative representations and applied off-the shelf
compression tools to make the resulting files more compact. The compression tools used during
the experiments are gzip, bzip2, and 7zip. Due to space limitations the experiments focus on
a single proof: a trimmed (i.e., removed redundant lines) DRAT proof 3 for Erdős Discrepancy
Problem [7] based on symmetry-breaking [4]. We selected a trimmed proof, because in practice
one wants to remove redundancy before compression.

Table 2 shows the results. The second column shows that delta encoding combined with
sorting and variable-byte encoding (last row of the table) reduces proof size by already more
than a factor of four in 25 seconds. This significant and efficient compression can easily be
added to any SAT solver that can produce clausal proofs, thereby reducing the space burden.
The results of the second phase, i.e., using off-the-shelf compression tools, are less clear. The
smallest file is produced by sorting and variable-byte encoding followed by 7zip. Delta encoding,
although it reduces the size in combination with variable-byte encoding, appears to be obstruct
all the compression tools.

2available at http://fmv.jku.at/ratz
3available at http://www.cs.utexas.edu/~marijn/sbp
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Table 2: Size of a trimmed DRAT proof (in bytes) and the conversion costs (wall-clock time in
seconds) for Erdős Discrepancy Problem using different encodings and compression algorithms.
A four core Intel Xeon E31280 @ 3.50GHz with 32GB memory was used for the experiments.
The tool 7z used all cores, while the other programs used only a single core.

encoding first phase gzip bzip2 7z

ascii 1,719,002,352 (——) 224,505,003 (58.68) 186,871,192 (183.63) 176,740,892 (173.44)

sascii 1,719,002,352 (48.75) 199,368,062 (51.43) 153,589,408 (204.46) 155,268,644 (162.71)

4byte 1,282,405,483 (19.46) 205,093,278 (47.75) 182,221,318 (98.61) 163,176,124 (114.07)

s4byte 1,282,405,483 (27.28) 179,853,433 (39.46) 144,742,387 (116.32) 141,086,084 (109.31)

ds4byte 1,282,405,483 (27.07) 210,994,395 (49.49) 168,958,717 (86.05) 157,274,204 (121.58)

vbyte 639,781,147 (12.76) 183,079,542 (24.70) 183,254,546 (58.39) 149,944,476 (66.89)

svbyte 639,781,147 (20.07) 158,535,823 (22.72) 146,177,432 (63.44) 128,300,756 (66.69)

dsvbyte 403,398,345 (17.97) 157,295,747 (16.15) 165,947,521 (45.96) 136,576,424 (40.42)

5 Conclusion

We proposed several compression techniques for clausal proofs. In particular the combination of
delta and variable-byte encoding is very useful to make proofs more compact. Both techniques
can easily be added to SAT solvers, which would hardly increase the costs to emit a clausal
proof. Off-the-shelf compression tools can be used to further reduce the proof size. Combining
both phases on a proof of Erdős Discrepancy Problem shows a compression of over 93%.
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Abstract

Extending first-order logic with ML-style polymorphism allows to define generic ax-
ioms dealing with several sorts. Until recently, most automated theorem provers relied on
preprocess encodings into mono/many-sorted logic to reason within such theories. In this
paper, we discuss the implementation of polymorphism into the first-order tableau-based
automated theorem prover Zenon. This implementation led us to modify some basic parts
of the code, from the representation of expressions to the proof-search algorithm.

1 Introduction
Formal verification tends to be a common milestone in the development of software for safety-
critical systems. Among the family of verification techniques, those using automated deductive
tools raised confidence to a high level during last decades and are now used in a wide range
of fields. These achievements were made possible thanks to the ability of such automated
deductive tools to reason on specific theories, like set theory or arithmetic for instance, helped
by an efficient decision procedure for each theory. When reasoning in several theories combining
different sorts, it is often necessary to express some general axioms regarding all different
sorts. One solution is to postulate one axiom per sort, leading to a multiplication of axioms.
Another solution is to express axioms in a generic way. First-order logic extended with ML-style
polymorphism (FOL-ML) is a good candidate to address this issue.

Until recently, most automated deductive tools, like automated theorem provers (ATP) or
SMT solvers, were not handling polymorphism. Whenever someone wanted to use such an ATP
or SMT solver to prove statements coming from a FOL-ML theory, he relied on a preprocessing
phase to encode into a mono/many-sorted logic [1]. Such encodings generally modify theories
by deconstructing the shape of formulas and adding some new axioms, leading to less efficient
proof search. A solution to keep the original form of the input theory and the statement
is to develop some deductive tools which natively understand polymorphism. As far as the
authors know, implementation of polymorphism into an automated deductive tool began with
the development of the SMT solver Alt-Ergo [3]. Two other projects have since been released,
both based on superposition. The first one is a prototype based on the prover SPASS [8], and
the other one is the new ATP Zipperposition [7].

Zenon [4] is a first-order monosorted tableau-based ATP. We present in this paper some
insights about the implementation of polymorphism into Zenon. This extension has required to
properly adapt a large part of the existing code, from the representation of expressions to the
proof-search algorithm.

This paper is organized as follows: in Sec. 2, we describe the new syntax for typed ex-
pressions, in Sec. 3, we give the type-checking algorithm, and finally in Sec. 4, we discuss
modifications in the proof-search algorithm and give the results of a benchmark.
∗This work has received funding from the BWare project (ANR-12-INSE-0010) funded by the INS programme

of the French National Research Agency (ANR).
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Expressions

a, b, . . . ::= v (typed variable)
| A (metavariable)
| ε(e) (Hilbert’s operator)
| f(a1, . . . , an) (function/predicate application)
| a1 → . . .→ an → b (arrow type)
| > | ⊥ (true and false)
| a = b (equality)
| ¬a | a ∧ b | a ∨ b | a⇒ b | a⇔ b (logical connectives)
| ∀v : a. b (universal quantification on variables)
| ∃v : a. b (existential quantification on variables)

Figure 1: AST for types, terms and formulas

2 Syntax of typed expressions
In Zenon, both terms and formulas are represented using a single abstract syntax tree, presented
in Figure 1. This decision follows from the use of Hilbert’s operator to handle existentially
quantified formulas, which introduces terms that depend on formulas. When we implemented
typed expressions in Zenon, we chose to extend that single abstract syntax tree (AST) with the
arrow type constructor, so that it could also represent types, rather than introduce another AST
for types. This allowed us to minimize modifications to the code base, as well as reuse existing
code and benefit from features already implemented such as hashconsing and substitutions.

In our implementation, each function/predicate and node of the AST is tagged with an
optional type (itself built using the same AST). We then have four distinct classes of expressions
built using the AST :

• A constant Type, with an empty tag

• Types are built using variables, meta-variables, and ε-terms with tag Type, universal quan-
tification1, the arrow type constructor, and application of type constructors, i.e functions
whose type is of the form: Type→ . . .→ Type→ Type. Types are tagged with Type.

• Terms are built using variables, meta-variables, ε-terms and application of functions.
Terms are tagged with a type.

• Formulas are built using >, ⊥, equality of terms, application of predicates, logical con-
nectives, universal quantification and existential quantification of formulas. Formulas are
tagged with a type constant Prop.

We then have access to the type of expressions through the get_type function, which returns
either Type, or a type.

3 Type checking
For efficiency reasons, the type-checking phase in Zenon occurs before the beginning of proof
search so that expressions are checked once and for all. Since the equality relation uses implicit

1Universal quantification in types is used to represent the type of polymorphic functions and predicates.
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(v : τ) ∈ Γ

Σ,Γ ` v ⇒ τ

(f : ∀α1. . . . ∀αn. τ
′
1 → . . .→ τ ′m → τ) ∈ Σ

Σ,Γ ` f(τ1, . . . , τn, a1, . . . , am) ⇒ τ{α1 := τ1, . . . , αn := τn}

(v : τ) ∈ Γ

Σ,Γ ` v ⇐ τ

Σ,Γ ` a⇒ τ Σ,Γ ` a⇐ τ Σ,Γ ` b⇐ τ

Σ,Γ ` a = b⇐ Prop

c ∈ {>,⊥}
Σ,Γ ` c⇐ Prop

Σ,Γ ` a⇐ Prop

Σ,Γ ` ¬a⇐ Prop

� ∈ {∧,∨,⇒,⇔} Σ,Γ ` a⇐ Prop Σ,Γ ` b⇐ Prop

Σ,Γ ` a�b⇐ Prop

Q ∈ {∀,∃} τ = Type or Σ,Γ ` τ ⇐ Type Σ,Γ, v : τ ` a⇐ Prop

Σ,Γ ` Qv : τ. a⇐ Prop

Σ,Γ, v : Type ` a⇐ Type

Σ,Γ ` ∀v : Type. a⇐ Type

Σ,Γ ` τi ⇐ Type for i ∈ [0, n]

Σ,Γ ` τ1 → . . .→ τn → τ0 ⇐ Type

(f : ∀α1. . . . ∀αn. τ
′
1 → . . .→ τ ′m → τ ′0) ∈ Σ

σ := {α1 := τ1, . . . , αn := τn}
σ(τ ′0) = τ0

Σ,Γ ` τi ⇐ Type
Σ,Γ ` ai ⇐ σ(τ ′i)

for all i ∈ [1, n]

Σ,Γ ` f(τ1, . . . , τn, a1, . . . , am) ⇐ τ0

Figure 2: Zenon’s type-checking algorithm

polymorphic typing, we require each quantifier in the input problem to specify the type of
the variables it binds (otherwise, formulas such as ∀x. x = x would be ambiguous) and each
function, type constructor, and predicate symbol to be declared with its type (this is required to
type formulas such as f(0) = f(1)). Since equality is the only implicitly polymorphic symbol,
we do not really need to infer types for all expressions but only for terms. We denote by
Σ,Γ ` t ⇒ τ the functional relation mapping a term to its inferred type and by Σ,Γ ` a ⇐ τ
the type-checking relation. These relations are defined in Figure 2 using a syntax-directed set
of typing rules.

We do not need to give rules for expressions which are not present in the input problem such
as meta variables and Hilbert’s epsilons. Moreover, we only need to define inference for terms.
Therefore it can be done by a single look-up in Σ or Γ. However, inference can return a type
for an ill-typed term because it does not take subterms into account; this is the reason why
in the rule for checking equality, we check back that a has the type returned by the inference
machinery.

3.1 Typing substitutions

During proof search, the only way to generate ill-typed expressions is by applying substitutions,
for example in the rules instantiating quantifiers and unfolding definitions. To avoid this issue,
we check that substitutions are well-typed. However, there are at least two ways to define the
notion of well-typed substitution:

• Strongly well-typed substitution:
The substitution σ = {x1 := t1, . . . , xn := tn} is strongly well-typed if each xi has the
same type as ti

• Weakly well-typed substitution:
The substitution σ = {x1 := t1, . . . , xn := tn} is weakly well-typed if each xi{x1 :=
t1, . . . , xi−1 := ti−1} has the same type as ti{x1 := t1, . . . , xi−1 := ti−1}

3
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The function performing substitutions in Zenon does not preserve strong well-typedness in
its recursive calls but only weak well-typedness which is, fortunately, enough to guarantee that
applying the substitution on a well-typed expression will result in a well-typed expression.

Strong well-typedness is faster to check because we only need to traverse the list
[(x1, t1); . . . ; (xn, tn)] once, leading to linear complexity. Checking that two terms have the same
type is performed in essentially constant time thanks to the type annotations of all expression
nodes (hence obtaining the types is fast) and hashconsing (hence comparing expressions is most
of the time as fast as comparing their hashes). On the other hand, checking weak well-typedness
is of quadratic complexity.

As a compromise between safety and efficiency we distinguish two substitution functions:
the old one, substitute_unsafe, preserving weak well-typedness in its recursive calls but not
performing any typing check; and a wrapper function substitute_safe checking2 that the
substitution it gets as argument is strongly well-typed and then calling substitute_unsafe.

In new version of Zenon extended with typing, only substitute_safe is used during proof
search and other parts of the new Zenon which need to substitute in well-typed expressions.

4 Proof Search

4.1 Dealing with Type Metavariables

Extension of Zenon to polymorphism slightly modifies the implementation of the proof-search
algorithm. The main modification deals with universal quantification over type variables. When
Zenon encounters a universally quantified formula ϕ, it generates a so-called metavariable linking
to ϕ by applying the δ∀M rule [5]. The original formula ϕ is kept in the context for later
instantiation.

For metavariables linked to quantified formulas over terms, the behavior of Zenon has not
changed: such metavariables are only used as tricks to find, by unification, some possible
instantiations for the original formulas that allow to close the local branches. After finding a
relevant value, Zenon instantiates the original formula by applying the δ∀inst rule and continues
its proof search.

For type metavariables, we have to instantiate original formulas as soon as possible, when
it makes possible the application of a further rule. Actually, only the relational rules of Zenon
(those dealing with the equality symbol) are concerned, because the possibility to apply them
depend on side conditions over the type of their parameters [5]. So, if we have some type
metavariables in a formula and if there are some possible instantiations that allow to apply one
of these rules, we instantiate the original formulas linked to the metavariables. In such a way,
we ensure to capture all the possible instantiations needed for the proof search.

4.2 Experimental Results

To assess our extension of Zenon to polymorphism, we performed an experiment using a bench-
mark made of all the 337 problems with a theorem status coming from the TFF1 [2] category of
the TPTP library, run on an Intel Xeon E5-2660 v2 2.20 GHz computer, with a timeout of 30 s and
a memory limit of 1 GiB. We compare the new typed version of Zenon3 presented in this paper
with the previous monosorted one (using the encoding of types into pure first-order logic [1]
implemented into the Why3 platform) and the other automated deductive tools dealing with

2these checks can also be disabled
3Available at: https://www.rocq.inria.fr/deducteam/ZenonModulo/.
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337 Problems Zenon Old Zenon Typed Zipperposition Alt-Ergo

Proved 96 106 150 221
Mean Time (sec.) 1.9 0.95 3.3 0.64

Table 1: Experimental Results over the TPTP TFF1 Benchmark

polymorphism, Zipperposition v0.6.1 and Alt-Ergo v0.99.1, except the prototype based on SPASS
which does not yet read TFF1 syntax. The results are summarized in Tab. 1 and, for each
prover, they give the number of proved problems and the mean time needed to prove a prob-
lem. This experiment shows that the polymorphic version of Zenon proves 10 more problems
than the monosorted one while being twice as fast. On the other side, the superposition-based
ATP Zipperposition proves 44 more problems than Zenon with a larger mean time and the SMT
solver Alt-Ergo proves 115 more problems with a lower mean time.

5 Conclusion

We have extended the automated theorem prover Zenon to polymorphism. Since we were adapt-
ing an existing code, we chose to minimize the impact of this extension to the original structure
of Zenon. The experimental results, presented in this paper, show that the polymorphic version
of Zenon is more efficient than the monosorted one on polymorphic problems.

Considering the significance of polymorphism in program verification, we hope that more
provers will integrate expressive typing systems in the future, especially since it does not af-
fect the generation of proof certificates [6] because proof checkers usually provide rich typing
systems.
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Abstract

A recursive function is well defined if its every recursive call corresponds a decrease in some well-founded order.
Such well-founded functions are useful for example in computer programs when computing a value from some
input. A boolean function can also be defined as an extreme solution to a recurrence relation, that is, as a least
or greatest fixpoint of some functor. Such extreme predicates are useful for example in logic when encoding a set
of inductive or coinductive inference rules. The verification-aware programming language Dafny supports both
well-founded functions and extreme predicates. This tutorial describes the difference in general terms, and then
describes novel syntactic support in Dafny for defining and proving lemmas with extreme predicates. Various
examples and considerations are given. Although Dafny’s verifier has at its core a first-order SMT solver, Dafny’s
logical encoding makes it possible to reason about fixpoints in an automated way.

0. Introduction
Recursive functions are a core part of computer science and mathematics. Roughly speaking, when
the definition of such a function spells out a terminating computation from given arguments, we may
refer to it as a well-founded function. For example, the common factorial and Fibonacci functions are
well-founded functions. There are also other ways to define functions. An important case regards the
definition of a boolean function as an extreme solution (that is, a least or greatest solution) to some
equation. For computer scientists with interests in logic or programming languages, these extreme
predicates are important because they describe the judgments that can be justified by a given set of
inference rules (see, e.g., [2, 17, 20, 24, 27]).

To benefit from machine-assisted reasoning, it is necessary not just to understand extreme predicates
but also to have techniques for proving theorems about them. A foundation for this reasoning was
developed by Paulin-Mohring [22] and is the basis of the constructive logic supported by Coq [0] as
well as other proof assistants [1, 25]. Essentially, the idea is to represent the knowledge that an extreme
predicate holds by the proof term by which this knowledge was derived. For a predicate defined as the
least solution, such proof terms are values of an inductive datatype (that is, finite proof trees), and for
the greatest solution, a coinductive datatype (that is, possibly infinite proof trees). This means that one
can use induction and coinduction when reasoning about these proof trees. Therefore, these extreme
predicates are known as, respectively, inductive predicates and coinductive predicates (or, co-predicates
for short). Support for extreme predicates is also available in the proof assistants Isabelle [23] and
HOL [5].

In this paper, I give my own tutorial account on the distinction between well-founded functions and
extreme predicates. I also show how the verification-aware programming language Dafny [12] sets these
up to obtain automation from an underlying first-order (that is, fixpoint and induction ignorant) SMT
solver. The encoding for coinductive predicates in Dafny was described previously [15]. The present
paper adds inductive predicates (which are duals of the coinductive ones), new syntactic shorthands
(based on the experience of using inductive predicates in Dafny), and examples.



1. Function Definitions
To define a function f : X → Y in terms of itself, one can write an equation like

f = F(f) (0)

where F is a non-recursive function of type (X → Y ) → X → Y . Because it takes a function as
an argument, F is referred to as a functor (or functional, but not to be confused by the category-theory
notion of a functor). Throughout, I will assume that F(f) by itself is well defined, for example that
it does not divide by zero. I will also assume that f occurs only in fully applied calls in F(f); eta
expansion can be applied to ensure this. If f is a boolean function, that is, if Y is the type of booleans,
then I call f a predicate.

For example, the common Fibonacci function over the natural numbers can be defined by the equa-
tion

fib = λn • if n < 2 then n else fib(n− 2) + fib(n− 1) (1)

With the understanding that the argument n is universally quantified, we can write this equation equiv-
alently as

fib(n) = if n < 2 then n else fib(n− 2) + fib(n− 1) (2)

The fact that the function being defined occurs on both sides of the equation causes concern that we
might not be defining the function properly, leading to a logical inconsistency. In general, there could
be many solutions to an equation like (0) or there could be none. Let’s consider two ways to make sure
we’re defining the function uniquely.

1.0. Well-founded Functions
A standard way to ensure that equation (0) has a unique solution in f is to make sure the recursion
is well-founded, which roughly means that the recursion terminates. This is done by introducing any
well-founded relation ≪ on the domain of f and making sure that the argument to each recursive call
goes down in this ordering. More precisely, if we formulate (0) as

f(x) = F ′(f) (3)

then we want to check E ≪ x for each call f(E) in F ′(f). When a function definition satisfies this
decrement condition, then the function is said to be well-founded.

For example, to check the decrement condition for fib in (2), we can pick ≪ to be the arithmetic
less-than relation on natural numbers and check the following, for any n:

2 ≤ n =⇒ n− 2 ≪ n ∧ n− 1 ≪ n (4)

Note that we are entitled to using the antecedent 2 ≤ n, because that is the condition under which the
else branch in (2) is evaluated.

A well-founded function is often thought of as “terminating” in the sense that the recursive depth in
evaluating f on any given argument is finite. That is, there are no infinite descending chains of recursive
calls. However, the evaluation of f on a given argument may fail to terminate, because its width may
be infinite. For example, let P be some predicate defined on the ordinals and let PDownward be a
predicate on the ordinals defined by the following equation:

PDownward(o) = P (o) ∧ ∀p • p ≪ o =⇒ PDownward(p) (5)

With ≪ as the usual ordering on ordinals, this equation satisfies the decrement condition, but evaluating
PDownward(ω) would require evaluating PDownward(n) for every natural number n. However, what
we are concerned about here is to avoid mathematical inconsistencies, and that is indeed a consequence
of the decrement condition.



1.0.0. Example with Well-founded Functions

So that we can later see how inductive proofs are done in Dafny, let’s prove that for any n, fib(n) is even
iff n is a multiple of 3. We split our task into two cases. If n < 2, then the property follows directly
from the definition of fib. Otherwise, note that exactly one of the three numbers n − 2, n − 1, and n
is a multiple of 3. If n is the multiple of 3, then by invoking the induction hypothesis on n − 2 and
n− 1, we obtain that fib(n− 2)+ fib(n− 1) is the sum of two odd numbers, which is even. If n− 2 or
n − 1 is a multiple of 3, then by invoking the induction hypothesis on n − 2 and n − 1, we obtain that
fib(n− 2) + fib(n− 1) is the sum of an even number and an odd number, which is odd. In this proof,
we invoked the induction hypothesis on n− 2 and on n − 1. This is allowed, because both are smaller
than n, and hence the invocations go down in the well-founded ordering on natural numbers.

1.1. Extreme Solutions

We don’t need to exclude the possibility of equation (0) having multiple solutions—instead, we can just
be clear about which one of them we want. Let’s explore this, after a smidgen of lattice theory.

For any complete lattice (Y,≤) and any set X , we can by pointwise extension define a complete
lattice (X → Y, ⇒̇ ), where for any f, g : X → Y ,

f ⇒̇ q ≡ ∀x • f(x) ≤ g(x) (6)

In particular, if Y is the set of booleans ordered by implication (false ≤ true), then the set of predicates
over any domain X forms a complete lattice. Tarski’s Theorem [26] tells us that any monotonic function
over a complete lattice has a least and a greatest fixpoint. In particular, this means that F has a least
fixpoint and a greatest fixpoint, provided F is monotonic.

Speaking about the set of solutions in f to (0) is the same as speaking about the set of fixpoints of
functor F . In particular, the least and greatest solutions to (0) are the same as the least and greatest
fixpoints of F . In casual speak, it happens that we say “fixpoint of (0)”, or more grotesquely, “fixpoint
of f” when we really mean “fixpoint of F”.

In conclusion of our little excursion into lattice theory, we have that, under the proviso of F being
monotonic, the set of solutions in f to (0) is nonempty, and among these solutions, there is in the ⇒̇
ordering a least solution (that is, a function that returns false more often than any other) and a greatest
solution (that is, a function that returns true more often than any other).

When discussing extreme solutions, I will now restrict my attention to boolean functions (that is,
with Y being the type of booleans). Functor F is monotonic if the calls to f in F ′(f) are in positive
positions (that is, under an even number of negations). Indeed, from now on, I will restrict my attention
to such monotonic functors F .

Let me introduce a running example. Consider the following equation, where x ranges over the
integers:

g(x) = (x = 0 ∨ g(x− 2)) (7)

This equation has four solutions in g. With w ranging over the integers, they are:

g(x) ≡ x ∈ {w | 0 ≤ w ∧ w even}
g(x) ≡ x ∈ {w | w even}
g(x) ≡ x ∈ {w | (0 ≤ w ∧ w even) ∨ w odd}
g(x) ≡ x ∈ {w | true}

(8)

The first of these is the least solution and the last is the greatest solution.
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Figure 0. Left: a finite proof tree that uses the rules of (9) to establish g(6). Right: an infinite proof tree
that uses the rules of (10) to establish g(1).

In the literature, the definition of an extreme predicate is often given as a set of inference rules. To
designate the least solution, a single line separating the antecedent (on top) from conclusion (on bottom)
is used:

g(0)

g(x− 2)

g(x)
(9)

Through repeated applications of such rules, one can show that the predicate holds for a particular value.
For example, the derivation, or proof tree, to the left in Figure 0 shows that g(6) holds. (In this simple
example, the derivation is a rather degenerate proof “tree”.) The use of these inference rules gives rise
to a least solution, because proof trees are accepted only if they are finite.

When inference rules are to designate the greatest solution, a double line is used:

g(0)

g(x− 2)

g(x)
(10)

In this case, proof trees are allowed to be infinite. For example, the (partial depiction of the) infinite
proof tree on the right in Figure 0 shows that g(1) holds.

Note that derivations may not be unique. For example, in the case of the greatest solution for g, there
are two proof trees that establish g(0): one is the finite proof tree that uses the left-hand rule of (10)
once, the other is the infinite proof tree that keeps on using the right-hand rule of (10).

1.2. Working with Extreme Predicates
In general, one cannot evaluate whether or not an extreme predicate holds for some input, because doing
so may take an infinite number of steps. For example, following the recursive calls in the definition (7) to
try to evaluate g(7) would never terminate. However, there are useful ways to establish that an extreme
predicate holds and there are ways to make use of one once it has been established.

For any F as in (0), I define two infinite series of well-founded functions, ♭fk and ♯fk where k ranges
over the natural numbers:

♭fk(x) =

{
false if k = 0
F(♭fk−1)(x) if k > 0

(11)

♯fk(x) =

{
true if k = 0
F(♯fk−1)(x) if k > 0

(12)

These functions are called the iterates of f , and I will also refer to them as the prefix predicates of f (or
the prefix predicate of f , if we think of k as being a parameter). Alternatively, we can define ♭fk and
♯fk without mentioning x: Let ⊥ denote the function that always returns false, let ⊤ denote the function



that always returns true, and let a superscript on F denote exponentiation (for example, F0(f) = f and
F2(f) = F(F(f))). Then, (11) and (12) can be stated equivalently as ♭fk = Fk(⊥) and ♯fk = Fk(⊤).

For any solution f to equation (0), we have, for any k and ℓ such that k ≤ ℓ:

♭fk ⇒̇ ♭f ℓ ⇒̇ f ⇒̇ ♯f ℓ ⇒̇ ♯fk (13)

In other words, every ♭fk is a pre-fixpoint of f and every ♯fk is a post-fixpoint of f . Next, I define two
functions, f↓ and f↑, in terms of the prefix predicates:

f↓(x) = ∃k • ♭fk(x) (14)

f↑(x) = ∀k • ♯fk(x) (15)

By (13), we also have that f↓ is a pre-fixpoint of F and f↑ is a post-fixpoint of F . The marvelous thing
is that, if F is continuous, then f↓ and f↑ are the least and greatest fixpoints of F . These equations let
us do proofs by induction when dealing with extreme predicates. I will explain in Section 2.2 how to
check for continuity.

Let’s consider two examples, both involving function g in (7). As it turns out, g’s defining functor
is continuous, and therefore I will write g↓ and g↑ to denote the least and greatest solutions for g in (7).

1.2.0. Example with Least Solution

The main technique for establishing that g↓(x) holds for some x, that is, proving something of the form
Q =⇒ g↓(x), is to construct a proof tree like the one for g(6) in Figure 0. For a proof in this direction,
since we’re just applying the defining equation, the fact that we’re using a least solution for g never
plays a role (as long as we limit ourselves to finite derivations).

The technique for going in the other direction, proving something from an established g↓ property,
that is, showing something of the form g↓(x) =⇒ R, typically uses induction on the structure of the
proof tree. When the antecedent of our proof obligation includes a predicate term g↓(x), it is sound to
imagine that we have been given a proof tree for g↓(x). Such a proof tree would be a data structure—to
be more precise, a term in an inductive datatype. For this reason, least solutions like g↓ have been given
the name inductive predicate.

Let’s prove g↓(x) =⇒ 0 ≤ x ∧ x even. We split our task into two cases, corresponding to which
of the two proof rules in (9) was the last one applied to establish g↓(x). If it was the left-hand rule, then
x = 0, which makes it easy to establish the conclusion of our proof goal. If it was the right-hand rule,
then we unfold the proof tree one level and obtain g↓(x−2). Since the proof tree for g↓(x−2) is smaller
than where we started, we invoke the induction hypothesis and obtain 0 ≤ (x − 2) ∧ (x − 2) even,
from which it is easy to establish the conclusion of our proof goal.

Here’s how we do the proof formally using (14). We massage the general form of our proof goal:

f↑(x) =⇒ R
= { (14) }

(∃k • ♭fk(x)) =⇒ R
= { distribute =⇒ over ∃ to the left }

∀k • (♭fk(x) =⇒ R)

The last line can be proved by induction over k. So, in our case, we prove ♭gk(x) =⇒ 0 ≤ x ∧ x even
for every k. If k = 0, then ♭gk(x) is false, so our goal holds trivially. If k > 0, then ♭gk(x) = (x =
0 ∨ ♭gk−1(x− 2)). Our goal holds easily for the first disjunct (x = 0). For the other disjunct, we apply
the induction hypothesis (on the smaller k− 1 and with x− 2) and obtain 0 ≤ (x− 2) ∧ (x− 2) even,
from which our proof goal follows.



1.2.1. Example with Greatest Solution

We can think of a given predicate g↑(x) as being represented by a proof tree—in this case a term in a
coinductive datatype, since the proof may be infinite. For this reason, greatest solutions like g↑ have
been given the name coinductive predicate, or co-predicate for short. The main technique for proving
something from a given proof tree, that is, to prove something of the form g↑(x) =⇒ R, is to destruct
the proof. Since this is just unfolding the defining equation, the fact that we’re using a greatest solution
for g never plays a role (as long as we limit ourselves to a finite number of unfoldings).

To go in the other direction, to establish a predicate defined as a greatest solution, like Q =⇒ g↑(x),
we may need an infinite number of steps. For this purpose, we can use induction’s dual, coinduction.
Were it not for one little detail, coinduction is as simple as continuations in programming: the next part
of the proof obligation is delegated to the coinduction hypothesis. The little detail is making sure that it
is the “next” part we’re passing on for the continuation, not the same part. This detail is called produc-
tivity and corresponds to the requirement in induction of making sure we’re going down a well-founded
relation when applying the induction hypothesis. There are many sources with more information, see
for example the classic account by Jacobs and Rutten [8] or a new attempt by Kozen and Silva that aims
to emphasize the simplicity, not the mystery, of coinduction [10].

Let’s prove true =⇒ g↑(x). The intuitive coinductive proof goes like this: According to the
right-hand rule of (10), g↑(x) follows if we establish g↑(x − 2), and that’s easy to do by invoking the
coinduction hypothesis. The “little detail”, productivity, is satisfied in this proof because we applied a
rule in (10) before invoking the coinduction hypothesis.

For anyone who may have felt that the intuitive proof felt too easy, here is a formal proof using (15),
which relies only on induction. We massage the general form of our proof goal:

Q =⇒ f↑(x)
= { (15) }

Q =⇒ ∀k • ♯fk(x)
= { distribute =⇒ over ∀ to the right }

∀k • Q =⇒ ♯fk(x)

The last line can be proved by induction over k. So, in our case, we prove true =⇒ ♯gk(x) for every k.
If k = 0, then ♯gk(x) is true, so our goal holds trivially. If k > 0, then ♯gk(x) = (x = 0 ∨ ♯gk−1(x−2)).
We establish the second disjunct by applying the induction hypothesis (on the smaller k − 1 and with
x− 2).

1.3. Other Techniques

Although in this paper I consider only well-founded functions and extreme predicates, it is worth men-
tioning that there are additional ways of making sure that the set of solutions to (0) is nonempty. For
example, if all calls to f in F ′(f) are tail-recursive calls, then (under the assumption that Y is nonempty)
the set of solutions is nonempty. To see this, consider an attempted evaluation of f(x) that fails to de-
termine a definite result value because of an infinite chain of calls that applies f to each value of some
subset X ′ of X . Then, apparently, the value of f for any one of the values in X ′ is not determined by
the equation, but picking any particular result values for these makes for a consistent definition. This
was pointed out by Manolios and Moore [18]. Functions can be underspecified in this way in the proof
assistants ACL2 [9] and HOL [11].



2. Functions in Dafny
In this section, I explain with examples the support in Dafny0 for well-founded functions, extreme
predicates, and proofs regarding these.

2.0. Well-founded Functions in Dafny
Declarations of well-founded functions are unsurprising. For example, the Fibonacci function is de-
clared as follows:

function fib(n: nat): nat

{

if n < 2 then n else fib(n-2) + fib(n-1)

}

Dafny verifies that the body (given as an expression in curly braces) is well defined. This includes
decrement checks for recursive (and mutually recursive) calls. Dafny predefines a well-founded relation
on each type and extends it to lexicographic tuples of any (fixed) length. For example, the well-founded
relation x ≪ y for integers is x < y ∧ 0 ≤ y, the one for reals is x ≤ y − 1.0 ∧ 0.0 ≤ y (this is
the same ordering as for integers, if you read the integer relation as x ≤ y − 1 ∧ 0 ≤ y), the one for
inductive datatypes is structural inclusion, and the one for coinductive datatypes is false.

Using a decreases clause, the programmer can specify the term in this predefined order. When a
function definition omits a decreases clause, Dafny makes a simple guess. This guess (which can be
inspected by hovering over the function name in the Dafny IDE) is very often correct, so users are rarely
bothered to provide explicit decreases clauses.

If a function returns bool, one can drop the result type : bool and change the keyword function to
predicate.

2.1. Proofs in Dafny
Dafny has lemma declarations. These are really just special cases of methods: they can have pre- and
postcondition specifications and their body is a code block. Here is the lemma we stated and proved in
Section 1.0.0:

lemma FibProperty(n: nat)

ensures fib(n) % 2 == 0 <==> n % 3 == 0

{

if n < 2 {

} else {

FibProperty(n-2); FibProperty(n-1);

}

}

The postcondition of this lemma (keyword ensures) gives the proof goal. As in any program-correctness
logic (e.g., [6]), the postcondition must be established on every control path through the lemma’s body.
For FibProperty, I give the proof by an if statement, hence introducing a case split. The then branch is
empty, because Dafny can prove the postcondition automatically in this case. The else branch performs
two recursive calls to the lemma. These are the invocations of the induction hypothesis and they follow
the usual program-correctness rules, namely: the precondition must hold at the call site, the call must

0Dafny is open source at dafny.codeplex.com and can also be used online at rise4fun.com/dafny.

http://dafny.codeplex.com
http://rise4fun.com/dafny


terminate, and then the caller gets to assume the postcondition upon return. The “proof glue” needed to
complete the proof is done automatically by Dafny.

Dafny features an aggregate statement using which it is possible to make (possibly infinitely) many
calls at once. For example, the induction hypothesis can be called at once on all values n’ smaller than
n:

forall n’ | 0 <= n’ < n {

FibProperty(n’);

}

For our purposes, this corresponds to strong induction. More generally, the forall statement has the
form

forall k | P(k)

ensures Q(k)

{ Statements; }

Logically, this statement corresponds to universal introduction: the body proves that Q(k) holds for an
arbitrary k such that P(k), and the conclusion of the forall statement is then ∀k • P (k) =⇒ Q(k).
When the body of the forall statement is a single call (or calc statement), the ensures clause is inferred
and can be omitted, like in our FibProperty example.

Lemma FibProperty is simple enough that its whole body can be replaced by the one forall state-
ment above. In fact, Dafny goes one step further: it automatically inserts such a forall statement at the
beginning of every lemma [13]. Thus, FibProperty can be declared and proved simply by:

lemma FibProperty(n: nat)

ensures fib(n) % 2 == 0 <==> n % 3 == 0

{ }

Going in the other direction from universal introduction is existential elimination, also known as
Skolemization. Dafny has a statement for this, too: for any variable x and boolean expression Q, the
assign such that statement x :| Q; says to assign to x a value such that Q will hold. A proof obligation
when using this statement is to show that there exists an x such that Q holds. For example, if the fact
∃k • 100 ≤ fib(k) < 200 is known, then the statement k :| 100 <= fib(k) < 200; will assign to k

some value (chosen arbitrarily) for which fib(k) falls in the given range.

2.2. Extreme Predicates in Dafny
In this previous subsection, I explained that a predicate declaration introduces a well-founded predicate.
The declarations for introducing extreme predicates are inductive predicate and copredicate. Here is
the definition of the least and greatest solutions of g from above, let’s call them g and G:

inductive predicate g(x: int) { x == 0 || g(x-2) }

copredicate G(x: int) { x == 0 || G(x-2) }

When Dafny receives either of these definitions, it automatically declares the corresponding prefix pred-
icates. Instead of the names ♭gk and ♯gk that I used above, Dafny names the prefix predicates g#[k] and
G#[k], respectively, that is, the name of the extreme predicate appended with #, and the subscript is given
as an argument in square brackets. The definition of the prefix predicate derives from the body of the
extreme predicate and follows the form in (11) and (12). Using a faux-syntax for illustrative purposes,
here are the prefix predicates that Dafny defines automatically from the extreme predicates g and G:

predicate g#[_k: nat](x: int) { _k != 0 && (x == 0 || g#[_k-1](x-2)) }

predicate G#[_k: nat](x: int) { _k != 0 ==> (x == 0 || G#[_k-1](x-2)) }



The Dafny verifier is aware of the connection between extreme predicates and their prefix predicates, (14)
and (15).

Remember that to be well defined, the defining functor of an extreme predicate must be monotonic,
and for (14) and (15) to hold, the functor must be continuous. Dafny enforces the former of these by
checking that recursive calls of extreme predicates are in positive positions. The continuity requirement
comes down to checking that they are also in continuous positions: that recursive calls to inductive
predicates are not inside unbounded universal quantifiers and that recursive calls to co-predicates are
not inside unbounded existential quantifiers [15, 19].

2.3. Proofs about Extreme Predicates

From what I have presented so far, we can do the formal proofs from Sections 1.2.0 and 1.2.1. Here is
the former:

lemma EvenNat(x: int)

requires g(x)

ensures 0 <= x && x % 2 == 0

{

var k: nat :| g#[k](x);

EvenNatAux(k, x);

}

lemma EvenNatAux(k: nat, x: int)

requires g#[k](x)

ensures 0 <= x && x % 2 == 0

{

if x == 0 { } else { EvenNatAux(k-1, x-2); }

}

Lemma EvenNat states the property we wish to prove. From its precondition (keyword requires) and
(14), we know there is some k that will make the condition in the assign-such-that statement true. Such
a value is then assigned to k and passed to the auxiliary lemma, which promises to establish the proof
goal. Given the condition g#[k](x), the definition of g# lets us conclude k != 0 as well as the disjunction
x == 0 || g#[k-1](x-2). The then branch considers the case of the first disjunct, from which the proof
goal follows automatically. The else branch can then assume g#[k-1](x-2) and calls the induction
hypothesis with those parameters. The proof glue that shows the proof goal for x to follow from the
proof goal with x-2 is done automatically.

Because Dafny automatically inserts the statement

forall k’, x’ | 0 <= k’ < k && g#[k’](x’) {

EvenNatAux(k’, x’);

}

at the beginning of the body of EvenNatAux, the body can be left empty and Dafny completes the proof
automatically.

Here is the Dafny program that gives the proof from Section 1.2.1:

lemma Always(x: int)

ensures G(x)

{ forall k: nat { AlwaysAux(k, x); } }

lemma AlwaysAux(k: nat, x: int)

ensures G#[k](x)



{ }

While each of these proofs involves only basic proof rules, the setup feels a bit clumsy, even with the
empty body of the auxiliary lemmas. Moreover, the proofs do not reflect the intuitive proofs I described
in Section 1.2.0 and 1.2.1. These shortcoming are addressed in the next subsection.

2.4. Nicer Proofs of Extreme Predicates

The proofs we just saw follow standard forms: use Skolemization to convert the inductive predicate into
a prefix predicate for some k and then do the proof inductively over k; respectively, by induction over
k, prove the prefix predicate for every k, then use universal introduction to convert to the coinductive
predicate. With the declarations inductive lemma and colemma, Dafny offers to set up the proofs in these
standard forms. What is gained is not just fewer characters in the program text, but also a possible
intuitive reading of the proofs. (Okay, to be fair, the reading is intuitive for simpler proofs; complicated
proofs may or may not be intuitive.)

Somewhat analogous to the creation of prefix predicates from extreme predicates, Dafny automati-
cally creates a prefix lemma L# from each “extreme lemma” L. The pre- and postconditions of a prefix
lemma are copied from those of the extreme lemma, except for the following replacements: For an
inductive lemma, Dafny looks in the precondition to find calls (in positive, continuous positions) to
inductive predicates P(x) and replaces these with P#[_k](x). For a co-lemma, Dafny looks in the post-
condition to find calls (in positive, continuous positions) to co-predicates P (including equality among
coinductive datatypes, which is a built-in co-predicate) and replaces these with P#[_k](x). In each case,
these predicates P are the lemma’s focal predicates.

The body of the extreme lemma is moved to the prefix lemma, but with replacing each recursive call
L(x) with L#[_k-1](x) and replacing each occurrence of a call to a focal predicate P(x) with P#[_k-1](x).
The bodies of the extreme lemmas are then replaced as shown in the previous subsection. By construc-
tion, this new body correctly leads to the extreme lemma’s postcondition.

Let us see what effect these rewrites have on how one can write proofs. Here are the proofs of our
running example:

inductive lemma EvenNat(x: int)

requires g(x)

ensures 0 <= x && x % 2 == 0

{ if x == 0 { } else { EvenNat(x-2); } }

colemma Always(x: int)

ensures G(x)

{ Always(x-2); }

Both of these proofs follow the intuitive proofs given in Sections 1.2.0 and 1.2.1. Note that in these
simple examples, the user is never bothered with either prefix predicates nor prefix lemmas—the proofs
just look like “what you’d expect”.

Since Dafny automatically inserts calls to the induction hypothesis at the beginning of each lemma,
the bodies of the given extreme lemmas EvenNat and Always can be empty and Dafny still completes the
proofs. Folks, it doesn’t get any simpler than that!

3. Case Study: Modeling Semantics
Computer scientists in the programming language area like to model the semantics of languages in order
to reason about their behavior. This activity is often aided by the use of inductive predicates [3, 20, 24,



27], and sometimes coinductive predicates [17]. Let me illustrate with a small excerpt from a semantics
proof how Dafny’s features can be used.

Chapter 7 of Nipkow and Klein’s book Concrete Semantics [20] defines the big-step and small-
step semantics for the rudimentary imperative language IMP [27]. The commands (statements) of the
language are defined using an inductive datatype:

datatype com = SKIP | Assign(vname, aexp) | Seq(com, com)

| If(bexp, com, com) | While(bexp, com)

and the big-step semantics is defined using an inductive predicate, of which I show the case for sequential
composition (Seq) here:

inductive predicate big_step(c: com, s: state, t: state)

{ match c ...

case Seq(c0, c1) =>

∃ s’ :: big_step(c0, s, s’) && big_step(c1, s’, t)

}

This case corresponds to what in inference rules would be rendered as follows:

big_step(c0, s, s′) big_step(c1, s′, t)
big_step(Seq(c0, c1), s, t)

(16)

Note how the s′ above the line becomes existentially quantified in the definition of the inductive predi-
cate in Dafny.

The small-step semantics of IMP is defined using two inductive predicates, one for a single step
(omitted here) and one for the reflexive transitive closure thereof:

inductive predicate small_step_star(c: com, s: state, c’: com, s’: state)

{

(c == c’ && s == s’) ||

∃ c”, s” :: small_step(c, s, c”, s”) && small_step_star(c”, s”, c’, s’)

}

A usual theorem of interest is to prove a correspondence between the big-step and small-step semantics.
Here, I show the statement of that theorem along with the proof case for Seq:

inductive lemma BigStep_implies_SmallStepStar(c: com, s: state, t: state)

requires big_step(c, s, t)

ensures small_step_star(c, s, SKIP, t)

{ match c ...

case Seq(c0, c1) =>

var s’ :| big_step(c0, s, s’) && big_step(c1, s’, t);

calc {

true;

==> // induction hypothesis

small_step_star(c1, s’, SKIP, t);

==> // small-step semantics with SKIP as first argument to Seq

small_step_star(Seq(SKIP, c1), s’, SKIP, t);

==> // induction hypothesis

small_step_star(c0, s, SKIP, s’) && small_step_star(Seq(SKIP, c1), s’, SKIP, t);

==> { lemma_7_13(c0, s, SKIP, s’, c1); }

small_step_star(Seq(c0, c1), s, Seq(SKIP, c1), s’) &&



small_step_star(Seq(SKIP, c1), s’, SKIP, t);

==> { star_transitive(Seq(c0, c1), s, Seq(SKIP, c1), s’, SKIP, t); }

small_step_star(c, s, SKIP, t);

}

}

This proof case first Skolemizes the s’ from the corresponding definition of big_step and then em-
barks on a proof calculation [16] that shows successive implications from true to the proof goal. The
proof looks natural and never mentions any prefix predicate explicitly. Under the hood, the lemma’s
precondition is really big_step#[_k](c, s, t) and the right-hand side of the Skolemization is really
big_step#[_k-1](c0, s, s’) && big_step#[_k-1](c1, s’, t). The first and third steps of the calcu-
lation hold on behalf of these prefix predicates and the (automatically applied) induction hypothesis.
Overall, these shorthands contribute to a short and readable proof.

One more example will illustrate a final point. Here is the statement and proof of “Lemma 7.13”
that was used above:

inductive lemma lemma_7_13(c0: com, s0: state, c: com, t: state, c1: com)

requires small_step_star(c0, s0, c, t)

ensures small_step_star(Seq(c0, c1), s0, Seq(c, c1), t)

{

if c0 == c && s0 == t {

} else {

var c’, s’ :| small_step(c0, s0, c’, s’) && small_step_star(c’, s’, c, t);

lemma_7_13(c’, s’, c, t, c1);

}

}

The else branch of this lemma, like the Seq case in the proof above, uses Skolemization to give names
(c’ and s’) to what is known to hold at this point. This is typical when the definition of the inductive
predicate uses an existential quantifier. But what if the definition has further disjuncts with existential
quantifiers? Then the if statement in the lemma must check for these, which I can illustrate with the
same example by just reversing the order of the then and else branches:

if ∃ c’, s’ :: small_step(c0, s0, c’, s’) && small_step_star(c’, s’, c, t) {

var c’, s’ :| small_step(c0, s0, c’, s’) && small_step_star(c’, s’, c, t);

lemma_7_13(c’, s’, c, t, c1);

}

(Here, I omitted the else branch in the usual way, since it is empty anyway.) Having to repeat the
condition both in the if guard and the subsequent Skolemization is clumsy. Therefore, Dafny features
if statements with binding guards, which allow the body of lemma_7_13 to be simply:

if c’, s’ :| small_step(c0, s0, c’, s’) && small_step_star(c’, s’, c, t) {

lemma_7_13(c’, s’, c, t, c1);

}

In short, the if alternative is taken if there exist values for c’ and s’ that make the condition hold, and
then c’ and s’ remain bound in the then branch. Dafny also includes a symmetric if statement, like the
if . . . fi statement in Dijkstra’s guarded command language [4]. It also supports the binding guards, as
can be seen here:

if {

case c0 == c && s0 == t =>



case c’, s’ :| small_step(c0, s0, c’, s’) && small_step_star(c’, s’, c, t) =>

lemma_7_13(c’, s’, c, t, c1);

}

This concludes my tutorial examples. More examples of coinductive definitions and proofs are found
in previous papers [14, 15]. The full Dafny encoding of Nipkow and Klein’s chapter 7 is found in the
test suite of the Dafny open-source distribution, dafny.codeplex.com. Never in this encoding (other than
in an example) are the prefix predicates or prefix lemmas mentioned explicitly, which gives support to
the idea that the syntactic rewrites hit the spot. A user can inspect the rewrites by hovering over the calls
to the extreme lemmas and predicates in the Dafny IDE.

4. Other Tools

Other tools, like Coq [22], Isabelle [21], HOL [5], Agda [1], VeriFast [7], and F* [25], have since
long supported inductive predicates, typically via dependent types. In these languages, the notation for
defining inductive predicates is inverted compared to Dafny, using a clausal form rather than a casewise
form [5]. For example, here is the big-step definition in Coq, showing the case for Seq:

Inductive big_step : com -> state -> state -> Prop := ...

| BS_Seq : forall c0 c1 s s’ t,

big_step c0 s s’ -> big_step c1 s’ t -> big_step (Seq c0 c1) s t

Sometimes, this direction of the definition is more intuitive. It would be nice to support in Dafny an
alternative syntax for writing definitions this way.

In this paper, I have presented extreme predicates as being defined as extreme fixpoints of a functor
F . A well-founded predicate is also a fixpoint of the defining functor, but talking about it as a least
or greatest fixpoint is not interesting, since the fixpoint of the defining functor is unique. From this
perspective, it is curious that the keyword used in Coq to define a well-founded function is Fixpoint.

Another difference is that whereas tools like Coq and F* do the induction over the actual proof tree,
Dafny’s induction is essentially over the height of the proof tree (an upper bound of which is given by
_k). With the syntactic rewriting shown in this paper, the Dafny proofs can read as if they were over the
proof trees, rather than having to talk about the height explicitly.

When it comes to defining co-predicates, the continuity restriction is awkward. It means that the
common existential quantifiers like in the inductive definition of Seq above cannot be used directly. The
workaround is to move the existential quantifier outside the entire co-predicate, see [15]. It would be
wonderful to have a different solution for this in Dafny.

The fact that the Dafny verifier uses an SMT solver provides useful automation for a lot of proof
glue. Dafny’s encoding of extreme predicates and its automatic insertion of the induction hypothesis
extend this automation to more advanced proof steps. The verifying type checker for F* [25] also uses
an SMT solver, but does not include the more advanced automation. The Why3 language provides
a syntax for inductive predicates and its verifier backend supports several SMT solvers. However, the
inductive predicates defined are treated as any arbitrary solution to (0), so the SMT solvers do not reason
about least or greatest fixpoints [3].

In this paper, I’ve talked about Dafny as a tool to state and prove lemmas. More generally, Dafny
is a programming language and the constructs I have shown for proofs are shared with the compiled
fragment of the language. In particular, forms of the forall statement, the assign-such-that statement,
and the binding if guards are also available for writing programs that compile and run.

http://dafny.codeplex.com


5. Conclusions

In this paper, I have conveyed a way to understand well-founded functions and extreme predicates and
have given a number of small but representative examples of their use. The Dafny language previously
had well-founded functions, induction, co-predicates, and co-lemmas. New in this paper are the in-
ductive predicates and inductive lemmas, which are simply the duals of the coinductive counterparts.
Having both makes for a more balanced understanding of how these are used, and I tried in my presen-
tation not to make the coinductive constructs seem any more mysterious than the inductive counterparts.
Because the inductive constructs are used more often in practice, the additional experience with them
has led to the further improvements presented in this paper, namely rewriting of focal predicates in ex-
treme lemmas and the binding if guards. I hope that the automation facilitated by Dafny, as well as
this tutorial itself, will give students and researchers less painful access to mechanized support around
formalizations and proofs.
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Abstract

In this paper we describe our combined statistical/semantic parsing method based on the
CYK chart-parsing algorithm augmented with limited internal typechecking and external
ATP filtering. This method was previously evaluated on parsing ambiguous mathematical
expressions over the informalized Flyspeck corpus of 20000 theorems. We first discuss the
motivation and drawbacks of the first version of the CYK-based component of the algorithm,
and then we propose and implement a more sophisticated approach based on better statistical
model of mathematical data structures.

1 Introduction

Computer-understandable (formal) mathematics is today still quite far from taking over the
mathematical mainstream. Despite the impressive formalizations such as Flyspeck [5], Feit-
Thompson [4], seL4 [11], CompCert [13], and CCL [2], and the progress in general automation
over such large formal corpora, formalizing proofs is still largely unappealing to mathematicians.
While the research on AI and strong automation over large theories has taken off in the last
decade and automation improvements are today coming from several directions, there has been so
far very little progress in automating the understanding of informal LATEX-written and ambiguous
mathematical writings.

Recently, we have proposed to try to change this state of affairs by learning how to parse
informal mathematics from aligned informal/formal corpora [10]. Such learning can be addi-
tionally combined with strong semantic filtering methods such as typechecking and large-theory
ATP. Suitable aligned corpora are appearing today, the major example being Flyspeck and in
particular its alignment (by Hales) with the detailed informal Blueprint for Formal Proofs [5].
Very recently [8] we have implemented the first version of a statistical/semantic parsing toolchain
that learns parsing rules from many pairs of ambiguous/nonambiguous Flyspeck formulas, and
combines statistical parsing of new ambiguous formulas with internal semantic pruning and ex-
ternal proving/disproving step. The resulting parsing/proving system trained on all of Flyspeck
is available online1 and can be used for experimenting with parsing ambiguous statements.

In this short paper we explain in more detail the particular statistical learning/parsing
approach based on the CYK chart parsing algorithm [14] for probabilistic context-free grammars
(PCFG) that we have been using (Sec. 2.1), and focus on some drawbacks of the context-
free approach that can negatively influence the statistical learning and parsing performance
(Sec. 2.2). We demonstrate this on a simple example, where the PCFG setting is not strong
enough to eventually learn the correct parsing (Sec. 3.1). Then we propose and implement
a modification of CYK that takes into account larger parsing subtrees and their probabilities
(Sec. 3.2). This modification is motivated by an analogy with large-theory reasoning systems.

1http://colo12-c703.uibk.ac.at/hh/parse.html
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There, the precision of the probabilistic selection of the right premises for a new conjecture can
typically be significantly improved by considering the large number of term and formula subtrees
of the data, rather than just characterizing formulas and their similarity by the bare symbols
appearing in them. Finally, we report the first measurements done with the new implementation
and discuss future work (Sec. 3.3).

2 Training Statistical Parsing on Aligned Corpora

2.1 PCFG

Given a large corpus of corresponding informal/formal (ambiguous/nonambiguous or LATEX/HOL)
formulas, how do we automatically train an AI system that will correctly parse the next informal
formula into a formal one?

Our domain differs from the natural-language domains, where millions of examples of paired
(e.g., English/German) sentences are available for training machine translation, the languages
have many more words (concepts) than in mathematics, and the sentences to a large extent
also lack the recursive structure that is frequently encountered in mathematics. Given that we
currently have only thousands of the informal/formal examples, we have decided against using
purely statistical alignment methods based on n-grams, and rather investigated methods that
can learn how to compose larger parse trees from smaller ones based on those encountered in
the limited number of examples that we have.

One well-known approach ensuring this kind of compositionality is the use of CFG (Context
Free Grammar) parsers. This approach has been widely used, e.g., for word-sense disambiguation
in natural languages, which is another linguistic area close to our informal/formal task. An
advantage of this approach is the existence of a parsing algorithm that works in polynomial
complexity wrt. the size of the parsed sentence and the input grammar. A well-known and
frequently used example is the CYK (Cocke–Younger–Kasami) chart-parsing algorithm [14],
using bottom-up parsing and dynamic programming. By default CYK requires the CFG to be
in the Chomsky Normal Form (CNF), and the transformation to CNF can cause an exponential
blow-up of the grammar. However, an improved version of CYK can be used that gets around
this issue [12].

A CFG-based parser obviously needs for its work the input grammar – the set of all grammar
rules that can be used for parsing. In linguistic applications such grammar is typically extracted
from grammar trees which correspond to the correct parses of natural-language sentences. Great
efforts have been made in the linguistic community to create large treebanks of such correct
parses – typically taking years of manual annotation work. The grammar rules extracted from
the treebanks are typically ambiguous: there are multiple possible parse trees for a particular
sentence. This is why CFG is extended by adding a probability to each grammar rule, resulting in
PCFG (Probabilistic CFG). During the PCFG parsing of an ambiguous sentence, each resulting
parse tree is assigned its probability, which allare most probable wrt. the treebank of training
examples. The grammar ows to focus on the few parses that rule probabilities can be trained
e.g. by the inside-outside algorithm [1].

2.2 Using PCFG for learning informal/formal alignment

We have so far experimented with several ways how to set up the parsing grammar and its
learning. The most low-level approach consists of using the simplest HOL Light lambda calculus
internal term structure [6], where terms and types are annotated with only a few nonterminals
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such as: Comb (application), Abs (abstraction), Const (higher-order constant), Var (variable),
Tyapp (type application), and Tyvar (type variable). This has led to many possible parses in
the context-free setting, because the top-level learned rules become very universal, e.g:

Comb -> Const Var.

Comb -> Const Const.

Comb -> Comb Comb.

So far, the type information does not help to constrain the applications, and the last rule allows
a series of several constants to be given arbitrary application order, leading to uncontrolled
explosion.

That is why we have first re-ordered and simplified the HOL Light parse trees to propagate
the type information at appropriate places where the context-free rules have a chance of providing
meaningful pruning information. For example, the raw HOL Light parse tree for theorem

REAL_NEGNEG: !x. --(--x) = x

is as follows (see also the tree in Fig. 1):

(Comb (Const "!" (Tyapp "fun" (Tyapp "fun" (Tyapp "real") (Tyapp "bool")) (Tyapp "bool")))

(Abs "A0" (Tyapp "real") (Comb (Comb (Const "=" (Tyapp "fun" (Tyapp "real") (Tyapp "fun"

(Tyapp "real") (Tyapp "bool")))) (Comb (Const "real_neg" (Tyapp "fun" (Tyapp "real") (Tyapp

"real"))) (Comb (Const "real_neg" (Tyapp "fun" (Tyapp "real") (Tyapp "real"))) (Var "A0"

(Tyapp "real"))))) (Var "A0" (Tyapp "real")))))

Note that the CFG rules for this tree are often very general: e.g., the top-level node produces
the rule Comb -> Const Abs, etc. After our re-ordering and simplification the parse tree used
for grammar generation becomes (see also Fig. 2):

("(Type bool)" ! ("(Type (fun real bool))" (Abs ("(Type real)" (Var A0)) ("(Type bool)"

("(Type real)" real_neg ("(Type real)" real_neg ("(Type real)" (Var A0)))) = ("(Type real)"

(Var A0))))))

The CFG rules extracted from this transformed tree become quite a bit more meaningful,
e.g., the two rules:

"(Type bool)" -> "(Type real)" = "(Type real)".

"(Type real)" -> real_neg "(Type real)".

say that equality of two reals has type bool, and negation applied to reals yields reals. Such
“typing” rules restrict the number of possible parses much more than the general “application”
rules extracted from the original HOL Light tree, while still having a non-trivial generalization
(learning) effect that is needed for the compositional behavior of the information extracted from
the trees. For example, once we learn that the variable “u” is mostly parsed as a real number,
we will be able to apply real_neg to “u” even if the particular subterm ‘‘-- u’’ has never
yet been seen in the training examples, and the probability of this parse will be relatively high.
In other words, having the HOL types as “semantic categories” (corresponding e.g. to the word
senses when using PCFG for word-sense disambiguation) seems to be quite a reasonable first
choice for the experiments, even though one could probably come up with even more appealing
semantic categories based on more involved statistical and semantic analysis of the data.

We should also note that ambiguous notation, such as ‘‘--’’, is wrapped in the training
trees in its disambiguated “semantic” nonterminal – in this case $#real_neg. While the type
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Comb

Const Abs

! Tyapp

fun Tyapp Tyapp

fun Tyapp Tyapp

real bool

bool

A0 Tyapp Comb

real Comb Var

Const Comb

= Tyapp

fun Tyapp Tyapp

real fun Tyapp Tyapp

real bool

Const Comb

real_neg Tyapp

fun Tyapp Tyapp

real real

Const Var

real_neg Tyapp

fun Tyapp Tyapp

real real

A0 Tyapp

real

A0 Tyapp

real

Figure 1: HOL Light parse tree

annotation might often be sufficient for disambiguation, such explicit disambiguation nontermi-
nal is both more precise and allows easier extraction of the HOL semantics from the constructed
parse trees. The actual tree used for training the grammar is thus as follows (see also Fig. 3):

("(Type bool)" ! ("(Type (fun real bool))" (Abs ("(Type real)" (Var A0)) ("(Type bool)"

("(Type real)" ($#real_neg --) ("(Type real)" ($#real_neg --) ("(Type real)" (Var A0))))

($#= =) ("(Type real)" (Var A0))))))

Once the PCFG is learned from such data, we use the CYK algorithm with additional internal
lightweight semantic checks to parse ambiguous formulas. These semantic checks are performed
to require compatibility of the types of free variables in parsed subtrees. The most probable
parse trees are then given to HOL Light and typechecked there, which is followed by proof and
disproof attempts by the HOL(y)Hammer system [7], using all the semantic knowledge available
in the Flyspeck library (about 22k theorems). See Fig. 4 for the overall structure of the system.
The first large-scale disambiguation experiment conducted over “ambiguated” Flyspeck in [8]
showed that about 40% of the ambiguous sentences have their correct parses among the best 20
parse trees produced by the trained parser. This is encouraging, but certainly invites further
research in improving the statistical/semantic parsing methods.
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"(Type bool)"

! "(Type (fun real bool))"

Abs

"(Type real)" "(Type bool)"

Var

A0

"(Type real)" = "(Type real)"

real_neg "(Type real)"

real_neg "(Type real)"

Var

A0

Var

A0

Figure 2: Transformed tree of REAL_NEGNEG

3 Adding Context

A major limiting issue when using PCFG-based parsing algorithms is the context-freeness of the
grammar. In some cases, no matter how good are the training data, there is no way how to set
up the parsing rules probabilities so that the required parse will have the largest probability.

3.1 Example

Consider the following term:

1 * x + 2 * x.

with the following simplified grammar tree (Fig. 5) as our training data (treebank):

(S (Num (Num (Num 1) * (Num x)) + (Num (Num 2) * (Num x))) .)

From the grammar tree we extract the following CFG:

S -> Num .

Num -> Num + Num

Num -> Num * Num

Num -> 1

Num -> 2

Num -> x

If we use this grammar for parsing the original (non-bracketed) sentence, we obtain the
following five possible parse trees:
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"(Type bool)"

! "(Type (fun real bool))"

Abs

"(Type real)" "(Type bool)"

Var

A0

"(Type real)" $#= "(Type real)"

$#real_neg "(Type real)"

-- $#real_neg "(Type real)"

-- Var

A0

= Var

A0

Figure 3: The tree of REAL_NEGNEG used for actual grammar training

INPUT
as

informal mathematical sentence

grammar parser
(CYK on PCFG)

OUTPUT
as

valid formal mathematical sentence

formal mathematical corpora

verifier/reasoner
(ATP)

learned grammar
(PCFG)

basic semantic filtering/validation
and

generation of formal sentences

Figure 4: The statistical/semantic parsing toolchain.
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S

Num .

Num + Num

Num * Num

1 x

Num * Num

2 x

Figure 5: Example grammar tree

(S (Num (Num 1) * (Num (Num (Num x) + (Num 2)) * (Num x))) .)

(S (Num (Num 1) * (Num (Num x) + (Num (Num 2) * (Num x)))) .)

(S (Num (Num (Num 1) * (Num (Num x) + (Num 2))) * (Num x)) .)

(S (Num (Num (Num (Num 1) * (Num x)) + (Num 2)) * (Num x)) .)

(S (Num (Num (Num 1) * (Num x)) + (Num (Num 2) * (Num x))) .)

Only the last tree however corresponds to the training tree. The problem is that no matter
what probabilities we add to the grammar rules, we cannot make the priority of + smaller than
the priority of *: a context-free grammar forgets the context and cannot remember and apply
complex mechanisms such as priorities. The probability of all parsed trees is in this case always
the same:

p(S -> Num .) × p(Num -> Num + Num) × p(Num -> Num * Num) × p(Num -> Num * Num)×
p(Num -> 1) × p(Num -> 2) × p(Num -> x) × p(Num -> x)

While the example does not strictly imply the priorities as we know them, it is clear that we
would like the grammar to prefer parse trees that are in some sense more similar to the training
data. One method that is frequently used for dealing with similar problems in the NLP domain
is grammar lexicalization [3] where additional terminal can be appended to nonterminals and
propagated from the subtrees, thus creating many more possible (more precise) nonterminals.
This approach however does not solve the particular problem with operator priorities. We
also believe that considering probabilities of larger subtrees in the data as proposed below is
conceptually cleaner.

Some of the problems with priorities could also be solved by generating different grammars
in more complicated ways than just extracting them directly from the treebank. If we consider
our example then such a different grammar can be the following:
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S -> NumP2 .

NumP2 -> NumP2 + NumP2

NumP2 -> NumP1

NumP1 -> NumP1 * NumP1

NumP1 -> NumP0

NumP0 -> 1

NumP0 -> 2

NumP0 -> x

Here we do not investigate such more complicated ways, also because we want to allow parses
that do not strictly obey the priorioties. We believe that informal mathematical texts do not
strictly obey them either.

3.2 Considering Subtrees

The underlying idea is a simple analogy with the n-gram statistical machine-translation models,
or with the large-theory premise selection systems where characterizing formulas by all subterms
and subformulas typically considerably improves the performance of the algorithms [9]. While
considering subtrees may initially seem computationally involved, we believe that by using good
indexing datastructures it becomes feasible, solving some the PCFG problems mentioned above
in a reasonably clean way.

In more detail, the idea is as follows. We will extract not just subtrees of depth 2 from the
treebank (as is done by PCFG), but all subtrees of certain depth. So far we work with depth 3,
but other depths and approaches (e.g., frequency-based rather than depth-based) are possible.
During the CYK parsing we will adjust the probabilities of the parsed subtrees also according
to the subtree statistics extracted from the treebank. The extracted subtrees will be technically
treated as new “grammar rules” of the form:

root of the subtree -> list of the children of the subtree

We will learn the probabilities of these new grammar rules, formally treating the nonterminals on
the left-hand side as different from the old nonterminals when counting the probabilities (this
is the current technical solution, which can be modified in the future). Since the right-hand
side of the new grammar rules contains whole subtrees, we will be able to compute the parsing
probabilities using more context/structural information than in PCFG.

In our example, after the extraction of all subtrees of depth 3 followed by a suitable adjust-
ment of their probabilities, we would get a new “extended PCFG” with the following additional
rules:

S -> (Num Num + Num) .

Num -> (Num Num * Num) + (Num Num * Num)

Num -> (Num 1) * (Num x)

Num -> (Num 2) * (Num x)

This grammar could again parse all the five different parse trees as above, but they would have
different probabilities, and the training tree would obviously be the most probable one. For
example the probability of the original treebank parse would be:

p(Num -> (Num 1) * (Num x)) × p(Num -> (Num 2) * (Num x))×
p(Num -> (Num Num * Num) + (Num Num * Num))×

p(S -> Num .)

8
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On the other hand, the probability of some of the parses (e.g., the first two when using the
original algorithm) would remain unmodified, because in these parses there are no subtrees of
depth 3 from the training tree.

3.3 Technical Implementation

We use a discrimination tree D to store the subtrees from the treebank and to quickly look
them up during the chart parsing. When a particular cell in the chart is finished (we know
all its parses), we go through all its parses and try to look up their subtree of depth 3 in
the discrimination tree D. If we succeed, we recompute the probability according to the new
“subtree grammar rule”, compare the resulting probability with the old one, and keep the better
one.

The subtree lookup is logarithmic, however the number of subtrees we may need to look up
can grow quite a lot in the worst case. This is why we have kept the depth at 3 so far. We
have not done an extensive evaluation yet, however preliminary experiments with depth 3 and
limiting CYK to the best 10 parses show that the new implementation is actually a bit faster
than the old one [8]. In particular, when training on all 21873 Flypeck trees and testing on
11911 of them, the new version is about 23% faster than the old one (10342.75s vs 13406.97s
total time). The new version also fails to produce at least a single parse less often than the old
version (631 vs 818).

This likely means that the subtrees help to promote the correct parse, which in the old version
is considered at some point too improbable to make it into the top 10 parses and consequently
thrown away by the greedy optimization. The correct (training) parse appears among the best
10 parses in 39% of the 11911 examples for the old algorithm (their average rank there being
2.68), and in 58% cases of the 11911 examples for the new algorithm (their average rank there
being 1.97). While this is just a preliminary evaluation where we use the training data also
for testing and do not run external typechecking and ATPs, this improvemnt in the parsing
precision is very promising. Thorough experimental evaluation and further optimization of the
set of subtrees used by the algorithm is future work.
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Abstract

We describe our initial experiments with several state-of-the-art automated theorem
provers on the problems in Tarskian Geometry created by Beeson and Wos. In compari-
son to the manually-guided Otter proofs by Beeson and Wos, we can solve a large number
of problems fully automatically, in particular thanks to the recent large-theory reasoning
methods.

1 Introduction

In their 2014 paper [1] Beeson and Wos report on their project which uses OTTER to find proofs
of theorems in Tarskian geometry proved in Part I of the book “Metamathematische Methoden
in der Geometrie” by Schwabhäuser, Szmielew and Tarski. We have become interested in their
work for a couple of reasons.

First, we have recently started to look at good ways how to apply Veroff’s techniques such as
hints and proof sketches [5] on large-theory problems coming from ITPs like Mizar [3], Isabelle [4],
and HOL [2]. Under the hints strategy, a generated clause is given special consideration if it
matches (subsumes) a user-supplied hint clause. A proof sketch for a theorem T is a sequence of
clauses giving a set of conditions sufficient to prove T . Typically, the clauses of a proof sketch
identify potentially notable milestones on the way to finding a proof. The hints mechanism
provides a natural and effective way to take full advantage of proof sketches in the search for
a proof. It can be very effective to include as proof sketches proofs of related theorems in the
same area of study. The large number of related problems coming from the ITP libraries seem
to be a natural target for such techniques.

This however turns out to be nontrivial. Hints currently work on the clause level, and
consistency of their symbols (i.e., the same symbol always having the same meaning) across
different problems is assumed. This works for the algebraic clausal problems that Prover9 is
typically applied to. The large-theory problems are however formulated in FOF, and their
skolemization typically produces many symbols that might not be consistently used among the
different problems. This, and the large number of problems, formulas and symbols so far confuses
the hints technique. The Tarski problems seem to be right in between the two kinds of problems:
they are clausal and do not contain too many symbols, yet they at least partially also qualify as
large-theory problems. The number of clauses is about 200, and the more advanced problems
typically contain all the previously proved lemmas as axioms. Making the hints method work
on the Tarski problems would be a useful step towards making hints work on the ITP-generated
large-theory problems.

The large-theory aspect of the Tarski problems is another motivation. It turns out that
some of the problems really need many axioms (e.g., 59 for and automatically found proof of
Satz10.12a by the E.T system). Quite some work has been done recently to develop methods that
select the most relevant lemmas for proving a particular conjecture, and to develop specialized
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strategies for solving large-theory problems. Beeson and Wos do not use such methods. Instead,
they use OTTER and often revert to what is quite close to interactive theorem proving: writing
manually intermediate lemmas that guide the proof search. Looking at the results of recent
CASC and its large-theory divisions, it would be quite surprising if the performance of unguided
OTTER run in an automated mode on the problems would be anywhere near the state-of-the-art
systems. That’s why we first simply try to run some of those, and see how many problems we
can today prove without any interactive guidance. Here we report the results and issues found
so far.

2 Running Several ATPs on the Tarski Problems

We started by downloading 164 problems in the Otter format from the web site of the project,
and re-proved 163 of them with Otter (using all the tricks used by Beeson and Wos). The
remaining Satz11.15b.in – which was marked as work-in-progress – was eventually proved in
19000 s by Otter.

We first wrote a script that commented out the main sources of “guiding information” in
the files: the special parameter settings, the hints and the demodulators. Then we ran Otter
and Prover9 on such “blank” problems in auto mode for 300 s. Otter solved 72 problems and
Prover9 102. In 20 s Prover9 solved only 92 problems . This indicated that using more CPU
time and different strategies would likely help further.

To be able to use other ATPs, we have used the ladr to tptp translator, followed by some pre-
and post-processing that gets around using some symbols both as functions and as predicates in
the Otter problems. Since the problems are large and may profit from conjecture-oriented clause
selection mechanisms in E, we also renamed the status of the conjecture-originated axioms to
“negated conjecture”. Then we ran E 1.8 (using “–auto-schedule”, i.e., its strategy scheduling
mode) for 300 s solving 125 problems, and E.T 0.1 also for 300 s, solving 129 problems. E.T uses
more strategies than E, and applies stronger axiom pruning. The strongest system is however
Vampire 3.0, which solves 137 of the problems in 300 s. We have also tried Z3 (to get some more
solutions), which solves 92 files in 300 s. All the systems together can prove 141 problems in
300 s at this point – about twice as many as unguided Otter. The manual coding of the proofs
by providing intermediate steps to Otter could have been largely avoided with quite limited
resources.

Finally, we did some experiments with higher time limits. Three more problems could be
solved by running Vampire 3.0 in the CASC mode for 1 hour. Running Vampire for longer in
this mode does not work – it seems that the CASC mode is limited to such shorter overall times.
Vampire and E.T (run with even higher time limits) together add 6 more problems, making the
final count so far at 147 fully automatically solved problems out of the 164. These results are
however a bit questionable due to the issues described next.

3 Problems with the Problems

Already during the translation to TPTP and the initial runs with other ATP we have encountered
several kinds of problems with the files. Some of them – e.g. problems with naming of clauses –
prevent us so far from running stronger learning-based large-theory systems such as MaLARea
on the problems. We list them here and note how they could be prevented. We have spent quite
significant effort on cleaning up the files, however it is still not completely finished.
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• In several cases the statement of a particular lemma or definition is different in different
problems. This is really dangerous in a larger formalization and could lead to many issues.
Sometimes this only involves naming of the variables, but sometimes the clauses really
differ. This could not happen in an ITP-based development, where each lemma/definition
is stated only once, and ATP problems are generated automatically by the corresponding
hammer systems. Even pervasive use of simple ATP mechanisms such as includes should
be enough to prevent this.

• Using manual skolemization and the clausal form has its dangers: some of the different
statements of the same formula from the book are caused by bugs in manual Skolemization,
or even just by introducing differently named skolem functions and constants. This could
be prevented by switching to formulas instead of clauses.

• While the Otter/Prover9 format occasionally allows more mathematician-friendly notation
than TPTP, unlike in TPTP the name of a clause is just an unchecked comment that can
be anywhere and have typos in it. This already prevents simple duplication/consistency
checking as done by the TPTP tools, and also more advanced checking of the proofs (and
formulas uses in them) as done, e.g., by the GDV verifier.

• In some of the clauses there are clear typos, leading, e.g., to the appearance of singleton
variables. If a Prolog-friendly language such as TPTP was used, they would be easily
detected and reported when loading the formulas into Prolog.

We were quite surprised that relatively many of such issues have escaped not only the authors,
but also the IJCAR’14 refereeing – at least there is no mention of the debugging processes in
the paper. In the conferences focused on interactive theorem proving as well as when reviewing
submissions to some large formal libraries, it is today a common practice to not only run and re-
check the formal developments, but also to look at and point out various issues with definitions,
obvious naming problems, dangerous use of additional axioms, etc. It would be good if IJCAR
– and in general the ATP community – adopted similar refereeing practices in such cases.

4 Future Work

Our plan is to try to prove as many Tarski problems as possible by the standard (large-theory)
techniques available in systems like E, Prover9 and Vampire, and then proceed to test Prover9
techniques that transfer hints between the problems. It is likely that in this almost-large-theory
setting we will need to complement the hints method with methods that select only the most
relevant hints for a particular problem. Such methods are similar to the recent methods for
premise and lemma selection developed in the context of large theories. We hope that this
way we will eventually (thanks to the Tarski problems) also arrive at good techniques for hint
guidance in large theories.

Beeson and Wos have – independently of our feedback and later taking it into account –
started to work on cleaning up the Tarski problems, and very recently produced a new version
of their problems. A useful future extension would be to import and verify the whole development
in a safe ITP such as HOL Light, using the existing TPTP proof importing capabilities.
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Abstract

We present the proof search monad, a set of combinators that allows one to write a proof search
engine in a style that resembles the formal rules closely. The user calls functions such as premise, prove
or choice; the library then takes care of generating a derivation tree. Proof search engines written
in this style enjoy: first, a one-to-one correspondence between the implementation and the derivation
rules, which makes manual inspection easier; second, proof witnesses “for free”, which makes a verified,
independent validation approach easier too.

1 Theory and practice
This paper attempts to present, in a tutorial-style, the design of an OCaml library. In order to
facilitate the discussion, we focus on a very constrained logic; later (Section 5), we briefly discuss
how to extend the library to cover more use-cases. The original motivation for the library was
to serve as a core building block for the type-checker of Mezzo [12]. The nature of the core,
minimal logic that we are about to present is, of course, inspired by typical nature of type-
checking problems: it features equality, quantifiers, and positive literals; Section 5 mentions
how to extend it with, among other things, function symbols and variance (positive/negative
positions), as is typical for type-checking problems.

1.1 A minimal theory
We are concerned with proving the validity of logical formulas; that is, with writing a search
procedure that determines whether a given goal is satisfiable. To get started, we consider
a system made up of conjunctions of equalities, along with existential quantifiers. Any free
variables are assumed to be universally quantified. For instance, one may want to prove the
following formula:

∃y. x = y (1)

In order to show the validity of this judgement, one usually builds a proof derivation using
rules from the logic. In our case, the rules are given in Figure 1, where [x/y]P means “substitute
x with y in P”. For instance, proving Equation 1 requires applying ExistsE, then Refl.

Refl

x = x

And
P Q

P ∧Q

ExistsE
[x/y]P

∃y. P

Figure 1: A simple logic
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Refl

V, σ ⊢ x = x ⊣ σ

Subst
V, σ ⊢ σP ⊣ σ′

V, σ ⊢ P ⊣ σ′

Inst
x ∈ V y? ∈ V y? ̸∈ σ

V, {y? 7→ x} ◦ σ ⊢ P ⊣ σ′

V, σ ⊢ P ⊣ σ′

And
V, σ ⊢ P ⊣ σ′

V, σ′ ⊢ Q ⊣ σ′′

V, σ ⊢ P ∧Q ⊣ σ′′

ExistsE
V ⊎ y?, σ ⊢ P ⊣ σ′

V, σ ⊢ ∃y. P ⊣ σ′
|V

Figure 2: Algorithmic proof rules

These rules embody the Truth of our logic, i.e. an omniscient reader may use them to show
with absolute certainty that a given formula is true. However, if one wants to algorithmically
determine whether a given formula is true, ExistsE is useless. Indeed, unless the algorithm
(solver) is equipped with superpowers, it cannot magically guess, out of the blue, a suitable x
in ExistsE that will ensure the remainder of the derivation succeeds. To put it another way, x
is a free variable (a parameter) of ExistsE; the whole point of writing a proof search algorithm
is to 1) find that ExistsE is the right rule to apply, and 2) find that x is a suitable value for
instantiating y, because it will make y = x succeed.

Hence, in order to build a search procedure for that logic, one will use another set of algo-
rithmic rules, which hopefully enjoy:
soundness : if the algorithmic rules succeed, then there exists a derivation in the logic that

proves the validity of the original formula, and
completeness : if the algorithmic rules fail, then there exists no derivation in the logic that

would prove the validity of the original formula.
For instance, in our logic of existentially-quantified conjunctions of equalities, one may want

to use the rules from Figure 2. These rules differ from Figure 1 in that they are algorithmic;
they take an input (⊢) and return an output (⊣).

In particular, in order to determine suitable values for the x parameter in ExistsE, the
implementation reasons in terms of substitutions. V is a set of variables which may be sub-
stituted (recall that free variables are considered universally quantified, hence not eligible for
substitution); variables that may be substituted are typeset as y?. The algorithm has internal
state, that is, it carries a substitution σ. Upon hitting an existential quantifier y?, the algo-
rithmic rules open y? and mark it as eligible for substitution (ExistsE). Later on (for instance,
upon hitting y? = x), the algorithm may pick a substitution for y? using Inst. A substitution
may be applied at any time (Subst). The preconditions of Inst guarantee that the algorithm
makes at most one choice for instantiating y?.

In other words, the algorithmic rules defer the instantiation of the existential quantifier
until some sub-goal, later on, gives us a hint as to what exactly this instantiation should be.
This implementation technique is known as flexible variables.

The new algorithmic rules differ from the original logical rules significantly; first, there are
five rules for the algorithmic system, compared to just three for the logical system. Second,
these five rules do not map trivially to their counterparts in the logical system. Third, these
rules are still very much abstract; the implementation that we are about to roll out uses an op-
timized representation for substitutions (union-find) that is not formalized in Figure 2. Phrased
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differently, one not only needs to check that the algorithmic rules are faithful to the proof rules,
but also that the implementation itself is faithful to the algorithmic rules.

This paper presents a library that allows one to write an implementation of the algorithmic
rules while automatically generating a derivation. The library forces the client code to lay out
premises, rule applications and instantiations. The level of detail of the resulting derivation is
left up to the client code; the user may wish to record a proof derivation using the proof rules,
or record a trace of the algorithm using the algorithmic rules. In any case, the derivation serves
as a witness; in the case of a proof derivation, a validator may certify that the proof is valid,
while in the case of an algorithmic trace, the user may verify the algorithm, or inspect the trace
for debugging or feedback purposes.

The library has been used, in a preliminary form, to implement the core of the Mezzo type-
checker [12]. This paper presents a cleaned-up, isolated version of this library that exposes a
proper interface using monads and domain-specific combinators.

1.2 An implementation with flexible variables and union-find
The logic we present is a much simplified version of the logic (type system) of Mezzo [10]. In the
present document, we only mention the right-exists quantifier. General systems such as Mezzo
have all four possible combinations of left/right exists/forall. The right-elimination of existential
quantifiers, or the left-elimination of universal quantifiers gives flexible variables, while the
right-elimination of universal quantifiers, or the left-elimination of existential quantifiers gives
universally-quantified variables, also called rigid variables.

In order to simplify the problem, we assume that all existential variables have been intro-
duced as flexible variables already. That way, we won’t be sidetracked, talking about binders
and the respective merits of De Bruijn vs. locally nameless. Furthermore, we assume that all
instantiations of flexible variables are legal. This is not true in general: for instance, if the goal
is ∀x,∃y?, ∀z. P , picking y? = z makes no sense. Mezzo forbids this choice using levels [11]; in
the present document, we skip this discussion altogether and assume that “all is well”. Finally,
although in a general setting, several rules may trigger for a given goal (this is the case in
Mezzo), the algorithmic set of rules we use is syntax-driven: the syntactic shape of the goal
determines which rule should be applied.

We thus restrict our formulas to conjunctions of equalities between variables. The plan is to
write a solver that takes, as an input, a formula, and outputs a valid substitution, if any. That
is, write an algorithm that abides by the rules from Figure 2. For instance, one may want to
solve: x = y?∧z = z. A solution exists: the solver outputs σ = {y? 7→ x} as a valid substitution
that solves the input problem. However, if one attempts to solve: x = y? ∧ y? = z, the solver
fails to find a proper substitution, and returns nothing. Indeed, the first clause demands that
y? substitutes to x, meaning that the second clause becomes x = z, which always evaluates to
false (x and z are two distinct rigid variables).

Once the algorithm has run, we obtain an output substitution σ. One can, if they wish
to do so, take the reflexive-transitive closure σ∗, and apply it to a flexible variable (say, y?)
to recover the parameter of ExistsE that should be used in the logical rules (here, x). This
way of checking correctness is not satisfactory and does not scale if nested quantifiers appear in
the goal; the point of the subsequent sections is to make sure the search algorithm produces a
proper proof witness (derivation) that has a tree-like structure and does not leak implementation
details (such as substitutions).

We implement proof search in OCaml [8] (Figure 3); we implement substitutions using a
union-find data structure [1, 13]. The data type of formulas is self-explanatory. Variables
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type formula = and descr =
| Equals of var * var | Flexible
| And of formula * formula | Rigid

and var = P.point and state = descr P.state

Figure 3: Formulas and state

module MOption = struct
(* ... defines [return], [nothing] and [>>=] *)

end

let unify state v1 v2: state option = let rec solve state formula: state =
match P.find v1 state, P.find v2 state with match formula with
| Flexible, Flexible | Equals (v1, v2) ->
| Flexible, Rigid -> unify state v1 v2

return (P.union v1 v2 state) | And (f1, f2) ->
| Rigid, Flexible -> solve state f1 >>= fun state ->

return (P.union v2 v1 state) solve state f2
| Rigid, Rigid ->

if P.same v1 v2 state then
return state

else
nothing

Figure 4: Solver for the simplified problem

are implemented as equivalence classes in the persistent union-find data structure, which the
module P implements. The V, σ parameters in our rules are embodied by the state type; just
like the σ parameter is chained from one premise to another (And), state is an input and an
output to the solver. Just like the σ parameter in the rules, a state of the persistent union-find
represents a set of equations between variables. The algorithmic rules mentioned a theoretical
σ parameter; the state is our specific implementation choice.

The choice of a union-find (as opposed to explicit substitutions) is irrelevant. All that
matters is that we pick a data structure that models substitutions, and that the structure be
persistent.

Figure 4 implements a solver for our minimal problem; since we perform computations
that either return a result of a failure, the code leads itself well to an implementation using
monads [14, 15], in our case, the MOption monad. The Some state is for success, meaning
a substitution has been found, while the None case means no solution exists. The solver is
complete.

The solver uses MOption.>>= to sequence premises in the And case. It doesn’t keep track
of premises; it just ensures (thanks to >>=) that if the first premise evaluates to nothing, the
second premise is not evaluated, since it is suspended behind a fun expression (OCaml is a
strict language).

4



The Proof Search Monad J. Protzenko

(* These two modules belong to the library. *)
module type LOGIC = sig module Derivations.Make (L: LOGIC) = struct

type formula type derivation = L.formula * rule
type rule_name and rule = L.rule_name * premises

end and premises = Premises of derivation list
end

(* This is the client code using modules from the library. *)
module MyLogic = struct

type formula = ... (* as before *)
type rule_name = R_And | R_Refl | R_Inst

end
module MyDerivations = Derivations.Make(MyLogic)

Figure 5: The functor of proof trees (library and client code)

2 Building derivations

There are two shortcomings with this solver. First, the unify sub-routine conflates several
rules together. Indeed, the return (P.union ...) expression hides a combination of Inst
and Refl. Second, we have no way to replay the proof to verify it independently. One may
argue that in this simplified example, the outputs substitution is the proof witness: one can
just apply the substitution to the original formula and verify that all the clauses are of the form
x = x, without the need for a proof tree. In the general case, however, the proof tree contains
the ExistsE rule, and proof witnesses are attached to arbitrary nodes of the tree. We thus
need to build a properly annotated proof tree in the general case.

2.1 Defining proof trees

One way to make the solver better is to make sure each step it performs corresponds in an
obvious manner to the application of an admissible rule. To that effect, we define the data type
of all three rules in our system, which we apply to the functor of proof trees (Figure 5).

We record applications of Inst, Refl and And. This produces a derivation tree (algorithm
trace) that makes sure that the algorithm follows the algorithmic rules from Figure 2. Section 4
shows how to generate a different, more compact tree that matches the rules from Figure 1.

A derivation tree is a pair of a formula (the goal we wish the prove) and a rule (that
we apply in order to prove the goal). A rule has a name and premises; the premises type
is simply a derivation list (the Premises constructor is here to prevent a non-constructive
type abbreviation). When using the library, the client is expected to make sure that each
rule_name is paired with the proper number of premises (0 for Refl, 1 for Inst and 2 for
And); this is not enforced by the type system.

In the (simplified) sketch from Figure 5, rule names are just constant constructors, since the
rule parameters (such as x and y? in Inst) can be recovered from the formula. In the general
case (Section 4), the various constructors of rule_name do have parameters that record how
one specific rule was instantiated.
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module WriterT (M: MONAD) (L: MONOID): sig module L = struct
type 'a m = (L.a * 'a) M.m type a = Derivations.derivation list
val return: 'a -> 'a m let empty = []
val ( >>= ): 'a m -> ('a -> 'b m) -> 'b m let append = List.append

end
val tell: L.a -> unit m

end = ...

module M = MOption
module MWriter = WriterT(M)(L)

Figure 6: The writer monad transformer (library code)

2.2 Proof tree combinators
We previously used the >>= operator from the MOption monad in order to chain premises
(Figure 4). We now need a new operator, that not only binds the result (i.e. stops evaluating
premises after a failure, as before), but also records the premises in sequence, in order to build
a proper derivation. The former is still faithfully implemented by the option monad; the latter
is implemented by the writer monad [5].

Computations in the writer monad return a result (of type 'a) along with a log of elements
(of type L.a). The (usual) >>= and return combinators operate on the result part of the
computation, while the (new) tell combinator operates on the logging part of the computation.
The tell combinator appends a new element to the log; this is done by way of the MONOID
module type, which essentially demands a value for the empty log, and a function to append
new entries into the log.

In order to get a new >>= operator that combines the features of the option and writer
monads, we apply the WriterT monad transformer to the MOption monad (Figure 6) and
obtain MWriter.

The type of computations 'a MWriter.t boils down to (derivation list * state) option
after functor application. A computation in the monad represents a given point in the proof;
the solver is focused on a rule; has proved a number of premises so far (the derivation list);
has reached a certain state (threaded through the premises). The option type accounts for
failure; in case a premise cannot be proved, the computation aborts and becomes None.

Once all the premises have been proven, one needs to draw a horizontal line and reach the
conclusion of the proof. That is, take the final state and the list of premises, and generate a
derivation that stands for the application of the entire rule.

Contrary to the first implementation (Figure 4), where the working state and the return
value of solve both had type state option, we now distinguish between an outcome (the
result of a call to solve) and a working state (a computation in the MWriter monad).

An outcome is the pair of a final state along with a derivation that justifies that we
reached this state. The pair is wrapped in M.t (here, option): if the computation of premises
is a failure, then the proof of the desired goal is a failure too.

The type outcome (Figure 7) is parametric: it works for any state that the client code uses.
In other words, our library is generic with regards to the particular state type the client uses.

We now have a duality between the outcome type (the result of solving a goal) and the m
type (a computation within the monad, i.e. a working state between two premises). Therefore,
we introduce two high-level combinators: premise and prove. The former goes from outcome
to m: it injects a new sub-goal as a premise of the rule we are currently trying to prove. The
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(* This snippet is in the [MWriter(M)(L)] monad. Upon a first reading, think
[module M = MOption]. *)

type 'a outcome = ('a * derivation) M.m

let premise (outcome: 'a outcome): 'a m =
M.bind outcome (fun (state, derivation) ->

tell [ derivation ] >>= fun () ->
return state

)

let prove (goal: goal) (x: ('a * rule_name) m): 'a outcome =
M.(x >>= fun (premises, (state, rule)) ->

return (state, (goal, (rule, Premises premises))))

let axiom (state: 'a) (goal: goal) (axiom: rule_name): 'a outcome =
prove goal (return (state, axiom))

let qed r e =
return (e, r)

let fail: 'a outcome =
M.nothing

Figure 7: The high-level combinators for building proof derivations (library code)

latter goes from m to outcome: if all premises have been satisfied, it draws the horizontal line
that builds a new node in the derivation tree.

• premise is the composition of tell, which records the derivation for this sub-goal, and
return, which passes the state on to the next sub-goal.

• prove is a computation in the M monad (here, MOption). If all the premises have been
satisfied, it bundles them as a new node of the derivation tree. If a premise failed, then x
is M.nothing, and prove also returns a failed outcome.

• axiom is short-hand for a rule that requires no premises.
• fail is for situations where no rule applies: this is a failed outcome.
• qed is a convenience combinator that pairs the state with the name of the rule we want to

conclude with; it makes the implementation of solve (Figure 8) more elegant.

2.3 A solver in the new style
Figure 8 demonstrates an implementation of solve in the new style. Compared to the previous
implementation (Figure 4):

• prove_equality makes it explicit which rules are applied, and singles out two distinct
rule applications in the flexible-rigid case;

• the premises of each rule are clearly identified;
• axioms and failure conditions are explicit,
• the And case is easy to review manually, to make sure that no premise was forgotten.
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let rec prove_equality (state: state) (goal: formula) (v1: var) (v2: var) =
let open MOption in
match P.find v1 state, P.find v2 state with
| Flexible, Flexible
| Flexible, Rigid ->

let state = P.union v1 v2 state in
prove goal begin

(* Recursive call reduces to the [axiom ... R_Refl] case below. *)
premise (prove_equality state goal v1 v2) >>=
qed R_Instantiate

end
(* ... *)
| Rigid, Rigid ->

if P.same v1 v2 state then
axiom state goal R_Refl

else
fail

let rec solve (state: state) (goal: formula): state outcome =
match goal with
| Equals (v1, v2) ->

prove_equality state goal v1 v2
| And (g1, g2) ->

prove goal begin
premise (solve state g1) >>= fun state ->
premise (solve state g2) >>=
qed R_And

end

Figure 8: A solver written using the high-level combinators (client code)

This is, as mentioned previously, a minimal example that showcases the usage of the library.
In the implementation of Mezzo, switching the core of the type-checker to this style revealed
several bugs where premises were not properly chained or simply forgotten.

3 Backtracking
3.1 Limitations of the option monad
We now extend our formulas with disjunctions (Figure 10). A consequence is that we now need
our base monad M to offer a new operation; namely, one that, among several possible choices,
picks the first one that is not a failure. We thus augment MOption with a search combinator
(Figure 10), which in turn allows us to implement a high-level choice combinator for our
library. The choice combinator attempts to prove a goal by trying a function f on several
arguments of type a, each of which has a given outcome. We extend solve with an extra case,
which attempts to prove a disjunction by first trying a left-elimination (Or-L, Figure 9), then
a right-elimination (Or-R).

The solver can now solve problems of the form x = z ∨ y? = z. It fails, however, to solve
problems of the form (y? = x∨y? = z)∧y? = z. The reason is, the option monad is not powerful
enough: upon finding a suitable choice in the disjunction case, it commits to it and drops the
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Or-L
V ⊢ P ⊣ V ′

V ⊢ P ∨Q ⊣ V ′

Or-R
V ⊢ Q ⊣ V ′

V ⊢ P ∨Q ⊣ V ′

Figure 9: New proof rules for disjunction

(* We extend formulas with disjunctions. *)
type formula =
(* ... *)
| Or of formula * formula

(* The logic is also extended with two rules. *)
type rule_name =
(* ... *)
| R_OrL
| R_OrR

module MOption = struct
(* ... *)
let rec search f = function

| [] -> None
| x :: xs ->

match f x with
| Some x -> Some x
| None -> search f xs

end

(* Equipped with [search], we define the [choice] library combinator... *)
let choice (goal: goal) (args: 'a list) (f: 'a -> ('b * rule_name) m): 'b outcome =

M.search (fun x -> prove goal (f x)) args

(* ...which one uses as follows: *)
let rec solve (state: state) (goal: formula): state outcome =

match goal with
(* ... *)
| Or (g1, g2) ->

choice goal [ R_OrL, g1; R_OrR, g2 ] (fun (r, g) ->
premise (solve state g) >>=
qed r

)

Figure 10: The choice combinator (library and client code)

9
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module LL = LazyList
module MExplore

type 'a m = 'a LL.t
let return = LL.one
let ( >>= ) = LL.flattenl (LL.map f x)
let nothing = LL.nil
let search f l = LL.bind (LL.of_list l) f

end

Figure 11: The exploration monad

other one. In other words, when hitting the disjunction, MOption commits to σ = {y? 7→ x},
instead of keeping σ = {y? 7→ z} as a backup solution. Phrased yet again differently, we need
to replace MOption with the non-determinism monad that will implement backtracking.

3.2 The exploration monad
Conceptually, we want to change our way of thinking; instead of thinking of solve as a function
that returns a solution, we now think of it as a function that returns several possible solutions.
The state is now a set of states, each of which represent a path in the search tree of derivation
trees.

The monad of non-determinism is implemented using lists; OCaml is a strict language, so
we write the non-determinism monad (also known as the exploration or backtracking monad)
using lazy lists (Figure 11).

The reader can now go back and replace module M = MOption with module M = MExplore
in Figure 6. The rest of the library remains unchanged; the solve function (the client code) is
also unchanged; and the combinators of the library now implement backtracking.

In particular, the earlier example of (y? = x∨ y? = z)∧ y? = z is now successfully solved by
the library. Thanks to laziness, no extra computations occur; further solutions down the lazy
list are only evaluated if the first ones failed.

4 Extension: quantifiers and proof trees
We mentioned earlier that the derivation we were building tracked the application of algorithmic
rules; that is, we were building a trace of the algorithm. While the trace is useful to extract
information for the user, one may also want to build a proper proof witness in order to certify
the validity of the formula.

In order to make a proof tree relevant and not just provide the substitution as the proof
witness, we introduce quantifiers to the language, and construct proof trees that apply the proof
rules from Figure 1, Figure 9, Figure 12. The nodes of the proof tree are rules; each node is
annotated, if applicable, by its implicit parameters. That is, Refl and ExistsE are annotated
with their implicit x parameter.

The updates to the library required to implement quantifiers are minimal; the bulk of the
work is essentially writing substitution and a proper treatment of binders on the client-side.

Figure 13 presents in an informal style the series of updates required.
i) We augment the data type of formulas with quantifiers; we replace the type of rules with

the rules from the logic. Furthermore, we demand that the Refl and ExistsE rules be
annotated with their argument.
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ForallE
P

∀y. P

Figure 12: Extra rule for the universal quantifier

(* i) Update of the [MyLogic] module. *)
type formula =
(* ... *)
| Exists of string * formula
| Forall of string * formula

type rule_name =
| R_And
| R_Refl of atom
| R_OrL
| R_OrR
| R_ExistsE of atom
| R_ForallE

(* ii) Update of the [Derivations] module. *)
type derivation =
goal * rule

and goal =
L.state * L.formula

and (* ... *)

(* iii) Update of the [Combinators] module. *)
let prove (goal: Logic.formula) (x: ('a * rule_name) m): 'a outcome =

M.(x >>= fun (premises, (env, rule)) ->
return (env, ((env, goal), (rule, Premises premises))))

(* iv) Update of the client. *)
let rec solve (state: state) (goal: formula): state outcome =
(* ... *)
| Exists (atom, g) ->

let var, g, state = open_flexible state atom g in
let var = assert_open var in
prove goal begin

premise (solve state g) >>= fun state ->
qed (R_ExistsE (name var state)) state

end

Figure 13: Dealing with quantifiers

11



The Proof Search Monad J. Protzenko

Bound variables are globally-unique atoms (strings); open variables are equivalence classes
of the union-find, as before (not shown here).

ii) We previously did not distinguish between a goal and a formula; this was only possible
because we assumed all variables were initially open, meaning that we could deference an
open variable in any state. Now, we open binders and substitute variables, through the
allocation of new points in the union-find (the state). Therefore, a given formula only
makes sense when paired with a specific state.

iii) We update the prove combinator to record the state upon creating a new node in the
derivation tree. More precisely, the prove combinator records the state after the premises
have been satisfied.

iv) Only a slight is needed on the client side to record a proper proof witness: in the Exists
case, the solver prods the union-find state to discover the instantiation choice that has
been made for the existentially-quantified variable, and records it in the proof tree.

The sample code in the library comes with a pretty-printer. Here is the output for a simple
formula that combines all features from our formula language.

prove ∀x. ∀z. ∃y. (y = x \/ y = z) /\ y = z using [forall]
| prove ∀z. ∃y. (y = x \/ y = z) /\ y = z using [forall]
| | prove ∃y. (y = x \/ y = z) /\ y = z using [exists[z]]
| | | prove (z = x \/ z = z) /\ z = z using [/\]
| | | | prove z = x \/ z = z using [\/_r]
| | | | | prove z = z using axiom [refl[z]]
| | | | prove z = z using axiom [refl[z]]

5 Extending the library; extending the logic; limitations
The approach advocated in the present paper works well for sequent-style calculi; in the context
of Mezzo, the logic is extended with the following extra features:

• function symbols, such as, but not limited to: ML arrow types (→), type applications
(list α) and constructor applications (Cons {head : α; tail : list α})

• positive and negative positions (also known as “variance” in type-checking lingo; this
applies to function symbols, such as arrows or type constructors)

• higher-order quantification (∀(p : predicate) . . .)
• affinity (where some hypothesis may be used at most once)
• framing, which bears some similarities with focusing.

This in turn requires the client code to keep track of more information, while also adopting
more sophisticated data structures. In particular, the client code now carries, in addition to a
substitution (a.k.a. union-find), a set of available hypotheses, which flows left-to-right in the
algorithmic rules. Changing polarities changes the direction of the flow.

A limitation of this library is that it only works as long as every branch of the exploration
terminates; contrary to Kiselyov et al.’s library [7], we do not implement fair interleaving. One
could conceivably bound the depth of the search tree, but the exploration of the tree remains
sequential, not concurrent.

The logic does not necessarily have to be decidable for this approach to work well; indeed,
we conjecture that type-checking Mezzo programs is not decidable [12, p. 167]. What matters
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is that exploration follows a deterministic set of rules; in Mezzo, the backtracking points are
chosen and controlled [12, p. 165]. We, of course, explore a fine-tuned subset of the search
space.

If one is willing to give up on modularity, stronger static guarantees can be attained by
making the rule_name type more specific; namely, by encoding in each constructor the number
of premises required. The drawback is that the library now has to be aware of the specific logic;
in the current state of things, the library is completely agnostic with regards to the client code’s
particular logical system.

It is unclear how one could memoize the sub-computations, as they depend very much on
the current state, which is likely to change at every step.

6 Source code

The library is available online at https://github.com/msprotz/proof-search-monad. The
file example01.ml contains the full implementation of the primitive solver described in Section 1.
The file example02.ml contains the backtracking solver written within the proof search monad,
as described in Section 3. One can get the non-backtracking version, described in Section 2, by
replacing MExplore with MOption. Finally, the file example03.ml contains the final algorithm
described in Section 4. The representation of binders adopted in the last example is suboptimal;
bound variables are represented using globally-unique atoms. One may want to use locally
nameless, with De Bruijn indices for bound variables (as used in Mezzo). It allows keeps the
boilerplate to a minimum, though.

7 Related work

An article titled “The Proof Monad” already exists [6]; in spite of the closely related title, the
article is concerned with a slightly different problem, namely giving an operational semantics
to tactic languages used in theorem provers. In that sense, the article is related to Mtac [16],
which is also concerned with a proper monad for writing tactics in Coq.

Hedges [3] compares various explorations monads, notably using the continuation monad,
the selection monad [2] and their respective monad transformers. The main focus of the article
seems to be the relationship between backtracking and game theory.

Hinze [4] shows how to use the backtracking monad transformer, i.e. add backtracking to any
existing monad. It would be interesting to determine whether our library can be re-implemented
using a backtracking monad transformer, rather than the writer transformer applied to the
monad of non-determinism. The (draft) version of the library used in Mezzo also builds failed
derivations (as error messages) that list all attempted proofs, along with the first premise that
failed; doing so would not be possible using exceptions.

The choice operator is related to polarization and focusing [9]. For instance, in the problem
y? = x ∨ y? = z, depending on which side of the disjunction the algorithm considers first, the
outcome is going to be different. This is analogous to a synchronous phase (where the order
of the rules matters, and where a particular choice may have consequences on the rest of the
search). Similarly, one may swap premises chained by the >>= operator, as the order doesn’t
matter. This is analogous to a asynchronous phase.
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8 Conclusion
We presented a support library for writing a proof search engine using backtracking. The
library is parameterized by: the type of formulas; the type of rule applications; the internal
state type of the client. This leaves complete freedom for the client to define their own logic.
By merely using the combinators of the library, the client gets derivations built for free; this
allows a separate verifier to independently check the steps required to prove the formula. By
opting into the library, the client gets to rewrite their code in a new syntactic style that makes
rule application explicits, forbids “bundled” applications of multiple rules at the same time
and clearly lays out the premises required to prove a judgement. Since the code resembles the
logical rules, mistakes are easier to spot.

The logic presented in this paper is as simple as it gets. It does, however, highlight the main
concepts. A version of this library is used in the core of Mezzo’s type-checker. The version of
the library used in Mezzo also builds failed derivations; these failed derivations stop at the first
failed premise or, in case of a choice, list all the failed attempts. We have not yet explained
this last feature as a clean combination of monads and operators, but hope to do so in the near
future.
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Abstract

Logistics service supply chains (LSSCs) are composed of several nodes, with distinct
behaviors, that ensure moving a product or service from a producer to consumer. Given the
usage of LSSC in many safety-critical applications, such as hospitals, it is very important
to ensure their reliable operation. For this purpose, many LSSC structures are modelled
using Reliability Block Diagrams (RBDs) and their reliability is assessed using paper-
and-pencil proofs or computer simulations. Due to their inherent incompleteness, these
analysis techniques cannot ensure accurate reliability analysis results. In order to overcome
this limitation, we propose to use higher-order-logic (HOL) theorem proving to conduct
the RBD-based reliability analysis of LSSCs in this paper. In particular, we present the
higher-order-logic formalizations of LSSC with different and same types of capacities. As
an illustrative example, we also present the formal reliability analysis of a simple three-node
corporation.

1 Introduction

Logistics service supply chain (LSSC) decisions are usually impossible to reverse, and their im-
pact may span several decades. These decisions are very difficult to make given the involvement
of several elements of uncertainty, such as changing demand patterns and weather conditions
or failing components, associated with these decisions. On the other hand, the reliability of
LSSCs, i.e., the ability to perform well when parts of the system fail, is very important as
LSSCs are used in many safety-critical applications, such as medicine [14] and space logistics
[18]. Moreover, ensuring that the inventory is delivered on time can be of great significance
to many companies. Generally, the reliability of a LSSC can be increased by adding more
redundancy in it but this choice eventually results in increasing the overall cost, which is also
undesirable in many cases. Therefore, it is very important to judge the reliability of the LSSC
and its associated cost before development [19]. This kind of reliability analysis is frequently
based on Reliability Block Diagrams (RBDs) [23], which are graphical structures consisting of
blocks and connectors (lines). The main idea is to represent the structure of the given LSSC in
terms of an appropriate RBD [15]. Now, based on this RBD, the reliability characteristics of
the overall system can be judged based on the failure rates of individual components, whereas
the overall system failure happens if all the paths for successful execution fail.

Traditionally, the RBD-based analysis of LSSC has been done using paper-and-pencil proof
methods and computer simulations. Due to the involvement of manual manipulation and sim-
plification, paper-and-pencil proof methods are error-prone and the problem gets more severe
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while analyzing large LSSCs. Moreover, it is possible, in fact a common occurrence, that many
key assumptions required for the analytical proofs are in the mind of the mathematician and are
not documented. These missing assumptions are thus not communicated to the supply chain
designers and are ignored in the LSSC implementations, which may also lead to erroneous de-
signs. RBD-based computer simulators, such as ReliaSoft [20] and ASENT [5], generate samples
from the exponential and Weibull random variables to model the reliabilities of the sub-modules
of the given LSSC. This data is then manipulated using computer arithmetic and numerical
techniques to compute the reliability of the complete LSSC. These software are more scalable
than the paper-and-pencil proof methods. However, they cannot ensure absolute correctness as
well due to the involvement of pseudo-random numbers and numerical methods.

Formal methods [10], which are computer based mathematical reasoning techniques, has
been used to overcome the inaccuracy limitations of the paper-and-pencil proof methods and
simulation for communication networks. The main idea behind the formal analysis of a system
is to first construct a mathematical model of the given system using a state-machine or an
appropriate logic and then use logical reasoning and deduction methods to formally verify that
this system exhibits the desired characteristics, which are also specified mathematically using
an appropriate logic. For instance, Petri nets have been used for the RBD based analysis of a
LSSC [15]. The technique has been used to automatically evaluate the reliability of a few node
corporations, but the analysis is not scalable for large systems due to the state-space explosion
problem [10]. Moreover, generic mathematical RBD relationships cannot be verified using such
state-based petri nets techniques, which limits the scope of this approach. Similarly, a Colored
Petri Nets (CPN) based tool has been used to model dynamic RBDs (DRBDs) [21], which
are used to describe the dynamic reliability behavior of systems. The CPN verification tools,
based on model checking principles, are then used to verify behavioral properties of the DRBDs
models to identify design flaws [21]. However, due to the state-based model, only state related
property verification, like deadlock checks, is supported by this approach and generic reliability
relationships cannot be verified.

Higher-order logic [7] is a system of deduction with a precise semantics and can be used to
formally model any system that can be described mathematically including recursive definitions,
random variables, RBDs, and continuous components. Similarly, interactive theorem provers
are computer based formal reasoning tools that allow us to verify higher-order-logic properties
under user guidance. The foremost requirement for reasoning about reliability related properties
of a LSSC in a theorem prover is the availability of the higher-order-logic formalization of
probability theory. Hurd’s formalization of measure and probability theories [13] is a pioneering
work in this regard. Building upon this formalization, most of the commonly-used continuous
random variables [9] and some reliability theory fundamentals [11][1] have been formalized using
the HOL theorem prover [22]. However, the foundational formalization of probability theory
[13] only supports the whole universe as the probability space. This feature limits its scope
in many aspects [16] and one of the main limitations, related to RBD-based analysis, is the
inability to reason about multiple continuous random variables [9][11]. Some recent probability
theory formalizations [16][12] allow using any arbitrary probability space that is a subset of the
universe and thus are more flexible than Hurd’s formalization of probability theory. Particularly,
Mhamdi’s probability theory formalization [16], which is based on extended-real numbers (real
numbers including ±∞), has been recently used to reason about the RBD-based reliability
analysis of a series pipelines structure [4] and failure analysis of satellite solar arrays [3], which
involves multiple exponential random variables.

In this paper, given the involvement of several elements of continuous and random nature
in LSSCs, we propose to conduct the formal RBD-based reliability analysis of a LSSC within



the sound core of a higher-order-logic theorem prover [22]. For this purpose, we plan to build
upon the recently proposed higher-order-logic formalization of series RBD, which has been
used to conduct reliability analysis of simple oil and gas pipeline [4]. However, this foundational
formalization of a series RBD [4] has limited scope and cannot be used to analyze the RBD model
of a given LSSC due to the redundancies in these models. The main contribution of this paper is
the extension of the series RBD formalization to series-parallel RBD configurations in order to
model LSSC scenarios, including the cases when the capacities are different and of same types.
For illustration purposes, the paper also presents the formal analysis of a simple LSSC that has
been analysed using Petri Nets before [15]. Thanks to the sound reasoning process, the results
obtained from the formal reliability analysis of the LSSC scenarios can help design engineers
validating the reliability results that are generally obtained through traditional techniques.
These accurately determined reliability results can bring many other benefits including trade-
off studies for different LSSC designs in order to optimize reliability and cost.

The paper is organized as follows: Sections 2 and 3 present a brief description about the
HOL theorem prover and the formalization of probability theory and random variables. Section
4 provides the RBD-based formalization of LSSC scenarios with different and same type of
capacities in HOL. Section 5 presents the formal reliability analysis of a three node corporation
LSSC by utilizing series and series-parallel RBD configurations. Finally, Section 6 concludes
the paper.

2 HOL Theorem Prover

HOL is an interactive theorem prover developed at the University of Cambridge, UK, for con-
ducting proofs in higher-order logic. It utilizes the simple type theory of Church [8] along with
Hindley-Milner polymorphism [17] to implement higher-order logic. HOL has been successfully
used as a verification framework for both software and hardware as well as a platform for the
formalization of pure mathematics.

The HOL core consists of only 5 basic axioms and 8 primitive inference rules, which are
implemented as ML functions. Soundness is assured as every new theorem must be verified
by applying these basic axioms and primitive inference rules or any other previously verified
theorems/inference rules.

Table 1 provides the mathematical interpretations of some frequently used HOL symbols
and functions, which are inherited from existing HOL theories, in this paper.

3 Probability Theory and Random Variables

Based on the measure theoretic foundations, a probability space is defined as a triple (Ω,Σ, P r),
where Ω is a set, called the sample space, Σ represents a σ-algebra of subsets of Ω, where the
subsets are usually referred to as measurable sets, and Pr is a measure with domain Σ and
is 1 for the whole sample space. In the HOL probability theory formalization [16], given
a probability space p, the functions space and subsets return the corresponding Ω and Σ,
respectively. Based on this definition, all basic probability axioms have been verified. Now, a
random variable is a measurable function between a probability space and a measurable space,
which essentially is a pair (S,A), where S denotes a set and A represents a nonempty collection
of sub-sets of S. A random variable is termed as discrete if S is a set with finite elements and
continuous otherwise.



HOL Symbol Standard Symbol Meaning

∧ and Logical and
∨ or Logical or
¬ not Logical negation
:: cons Adds a new element to a list

++ append Joins two lists together
HD L head Head element of list L
TL L tail Tail of list L
EL n L element nth element of list L
MEM a L member True if a is a member of list L
λx.t λx.t Function that maps x to t(x)
SUC n n+ 1 Successor of a num

lim(λn.f(n)) lim
n→∞

f(n) Limit of a real sequence f

Table 1: HOL Symbols and Functions

The probability that a random variable X is less than or equal to some value x, Pr(X ≤ x) is
called the cumulative distribution function (CDF) and it characterizes the distribution of both
discrete and continuous random variables. The CDF has been formalized in HOL as follows [4]:

` ∀ p X x. CDF p X x = distribution p X {y | y ≤ Normal x}

where the variables p, X and x represent a probability space, a random variable and a real
number, respectively. The function Normal takes a real number as its inputs and converts it
to its corresponding value in the extended-real data-type, i.e, it is the real data-type with the
inclusion of positive and negative infinity. The function distribution takes three parameters:
a probability space p, a random variable X and a set of extended-real numbers and outputs
the probability of a random variable X that acquires all values of the given set in probability
space p.

Now, reliability R(t) is stated as the probability of a system or component performing its
desired task over a certain interval of time t.

R(t) = Pr(X > t) = 1− Pr(X ≤ t) = 1− FX(t) (1)

where FX(t) is the CDF. The random variable X, in the above definition, models the time to
failure of the system and is usually modeled by the exponential random variable with parameter
λ, which corresponds to the failure rate of the system. Based on the HOL formalization of
probability theory [16], Equation (1) has been formalized as follows [4]:

` ∀ p X x. Reliability p X x = 1 - CDF p X x

The series RBD, presented in [4], is based on the notion of mutual independence of random
variables, which is one of the most essential prerequisites for reasoning about the mathematical
expressions for all RBDs. If N reliability events Li are mutually independent then

Pr(

N⋂
i=1

Li) =

N∏
i=1

Pr(Li) (2)

This concept has been formalized as follows [4]:
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Figure 1: RBDs for the (a) Scenario with Different Types of Capacity (b) Scenario with the
Same Type of Capacity

` ∀ p L. mutual indep p L = ∀ L1 n. PERM L L1 ∧
1 ≤ n ∧ n ≤ LENGTH L ⇒
prob p (inter list p (TAKE n L1)) = list prod (list prob p (TAKE n L1))

The function mutual indep accepts a list of events L and probability space p and returns
True if the events in the given list are mutually independent in the probability space p. The
predicate PERM ensures that its two lists as its arguments form a permutation of one another.
The function LENGTH returns the length of the given list. The function TAKE returns the first
n elements of its argument list as a list. The function inter list performs the intersection
of all the sets in its argument list of sets and returns the probability space if the given list of
sets is empty. The function list prob takes a list of events and returns a list of probabilities
associated with the events in the given list of events in the given probability space. Finally,
the function list prod recursively multiplies all the elements in the given list of real numbers.
Using these functions, the function mutual indep models the mutual independence condition
such that for any 1 or more events n taken from any permutation of the given list L, the
property Pr(

⋂N
i=1 Li) =

∏N
i=1 Pr(Li) holds.

4 Formalization of LSSC in HOL

A LSSC is essentially a service supply chain based on the ability logistics cooperation, which
is generally required when the logistics service integrators face shortage in their capacity to
deliver services to customers. At this stage, service integrators need to buy the logistics service
capacity with functional logistics service providers. There could be a possible scenario where the
type of capacity provided by the functional logistics service providers is of multiple (different)
nature, such as transport and storage capacity. This scenario is modeled by using a series RBD
configuration as shown in Figure 1(a) [15]. In case if the capacity type is the same then this
scenario is modeled by using the series-parallel RBD configuration as depicted in Figure 1(b)
[15].

In order to formalize the LSSC scenarios in HOL, we firstly present the formalization of
series RBD and series-parallel RBD configurations, which are essentially utilized to conduct
the reliability analysis of the LSSC, in HOL. If Ai(t) is a mutually independent event that
represents the reliable functioning of the ith component of a serially connected system with N
components at time t, then the overall reliability of the complete system is [6]:



Rseries(t) = Pr(

N⋂
i=1

Ai(t)) =

N∏
i=1

Ri(t) (3)

The above equation can be utilized, by specifying N = 3, to evaluate the reliability of the
LSSC for the first scenario by modeling it with a series RBD configuration consisting of three
reliability blocks, as shown in Figure 1(a). Mathematically, it can be expressed as follows:

RLSSC fst scen =Rlogis provdr1 ∗Rlogis provdr2 ∗ Rlogis integr (4)

We formalized the corresponding LSSC first scenario series RBD configuration in HOL as:

Definition 1: ` ∀ p logis provdr1 logis provdr2 logis integr.

LSSC series RBD p [logis provdr1;logis provdr2;logis integr] =

inter list p [logis provdr1;logis provdr2;logis integr]

The function LSSC series struct takes a list of events corresponding to the failure of LSSC
system components, i.e., logis provdr1, logis provdr2 and logis integr, and the probability
space p and returns the series structure event of the complete LSSC system. The function
inter list returns the intersection of all of the elements of the given list and the whole
probability space, if the given list is empty.

We formally verified the reliability expression for the first scenario, given in Equation 4,
representing different capacity types, shown in Figure 1(a), in HOL as follows:

Theorem 1: ` ∀ p logis provdr1 logis provdr2 logis integr. prob space p ∧
(∀ x’. MEM x’ [logis provdr1;logis provdr2;logis integr] ⇒
x’ ∈ events p) ∧
mutual indep p [logis provdr1;logis provdr2;logis integr] ⇒
prob p (LSSC series struct p [logis provdr1;logis provdr2;logis integr] =

list prod (list prob p [logis provdr1;logis provdr2;logis integr])

The first assumption ensures that p is a valid probability space based on the probability theory
in HOL [16]. The next two assumptions guarantee that the list of events, representing the
reliability of LSSC components, must be in the events space p and the reliability events are
mutually independent. The conclusion of Theorem 1 models the series RBD configuration of
LSSC first scenario with different capacity.

Similarly, in the series-parallel RBD configuration, if Aij(t) is the event corresponding to
the reliability of the jth component connected in a ith subsystem at time t, then the reliability
of the complete system can be expressed as follows:

Rseries−parallel(t) = Pr(

N⋂
i=1

M⋃
j=1

Aij(t)) =

N∏
i=1

(1−
M∏
j=1

(1−Rij(t))) (5)

The above equation can be used to obtain the reliability of LSSC for the second scenario,
which is modeled by a series-parallel RBD configuration, as shown in Figure 1(b). Mathemati-
cally, the reliability of this second scenario is as follows:



RLSSC snd scen =(1− (1−Rlogis provdr1) ∗ (1−Rlogis provdr2)) ∗ (1− (1−Rlogis integr)) (6)

The HOL formalization of Equation 6 is as follows:

Definition 2: ` ∀ p logis provdr1 logis provdr2 logis integr.

LSSC series parallel struct p [[logis provdr1;logis provdr2];logis integr]=

series struct p (parallel struct list

[[logis provdr1;logis provdr2];logis integr])

The function LSSC series parallel struct accepts a two dimensional list, i.e., a list of lists,
along with a probability space p and returns the corresponding reliability event of the system
constituted from the series connection of the parallel stages. The function series struct

is used to model the series connection while the function parallel struct list is used to
model the parallel stages. The function parallel struct list takes a two dimensional list of
events along with probability space p and returns a single dimensional list of events by mapping
the inter list function, already explained in Definition 1, on each element of the given two
dimensional event list.

Now, the reliability expression for the series-parallel RBD configuration of the LSSC, which
corresponds to the second scenario with same capacity type, given in Equation 6, can be verified
as the following HOL theorem:

Theorem 2: ` ∀ p logis provdr1 logis provdr2 logis integr. (prob space p) ∧
mutual indep p FLAT([[logis provdr1;logis provdr2];logis integr]) ∧
(∀x’. MEM x’ [logis provdr1;logis provdr2;logis integr]) ⇒
x’ ∈ events p) ⇒
prob p

(LSSC series parallel struct p [[logis provdr1;logis provdr2];logis integr] =

list prod (one minus list

(list compl rel list prod p [[logis provdr1;logis provdr2];logis integr]))

where logis provdr1, logis provdr2 and logis integr are the reliability events associated with
the logistic service providers and integrator, respectively. The function list compl rel

list prod accepts a two-dimensional list of events, representing the time to failure of individ-
ual components connected in a series-parallel structure along with the probability space p and
returns a list, which is the product of complement reliabilities of the components connected
in parallel. The functions list prod, one minus list and list prob are used to model the
product of reliabilities, complement of reliabilities, and the events corresponding to the compo-
nent functioning reliably at the desired time, respectively. The assumptions of Theorem 2 are
similar to the ones used in Theorem 1.

5 Case Study: A Three Node Corporation LSSC

In order to formally verify the reliability expression of a LSSC used in a typical three node
corporation, we first need to formally model the reliability events that are associated with its
logistic service providers and integrator. A reliability event list constructed from the list of
random variables can be formalized in HOL is as follows:



Definition 3: ` ∀ p x. rel event list p [] x = [] ∧
∀ p x h t.rel event list p (h::t) x =

PREIMAGE h {y | Normal x < y} ∩ p space p :: rel event list p t x

The function rel event list accepts a probability space p, a list of random variables, repre-
senting the failure time of individual components, and a real number x, which represents the
time index at which the reliability is desired. It returns a list of events, representing the proper
functioning of all individual components at time x.

Definition 4: ` ∀ p L x. List rel event list p L x =

MAP (λa. rel event list p a x) L

The function List rel event list accepts a probability space p, a list of random variables,
representing the failure time of individual components, and a real number x, which represents
the time index at which the reliability is desired. It returns a two dimensional list of events
by mapping the function rel event list on every element of the given two dimensional list of
random variables, which in turn models the proper functioning of all individual components at
time x.

We consider that the reliability of each LSSC component connected in RBD configurations,
as shown in Figure 1, is exponential distributed. The HOL formalization of the exponential
distribution predicate, which models the failure behavior of LSSC components, is as follows:

Definition 5: ` ∀ p X l. exp dist p X l =

∀ x. (CDF p X x = if 0 ≤ x then 1 - exp (-l * x) else 0)

The function exp dist guarantees that the CDF of the random variable X is that of an ex-
ponential random variable with a failure rate l in a probability space p. We classify a list of
exponentially distributed random variables based on this definition as follows:

Definition 6: ` ∀ p L. list exp p [] L = T ∧
∀ p h t L. list exp p (h::t) L = exp dist p (HD L) h ∧ list exp p t (TL L)

The function list exp accepts a list of failure rates, a list of random variables L and a prob-
ability space p. It guarantees that all elements of the list L are exponentially distributed with
the corresponding failure rates, given in the other list, within the probability space p. For this
purpose, it utilizes the list functions HD and TL, which return the head and tail of a list, re-
spectively. Next we model a two dimensional list of exponential distribution functions to model
nodes connected in a series-parallel RBD as follows:

Definition 7: ` (∀ p L. list list exp p [] L = T) ∧
∀ h t p L. list list exp p (h::t) L =

list exp p h (HD L) ∧ list list exp p t (TL L)

The function list list exp accepts two lists, i.e., a two dimensional list of failure rates and
random variables L, corresponding to the components at each stage of a series-parallel RBD. It
calls the function list exp recursively to ensure that all elements of the list L are exponentially
distributed with the corresponding failure rates, given in the other list, within the probability
space p.

The reliability of the first scenario of LSSC, modeled by a series RBD configuration and
each component reliability is represented by exponential distribution, can be expressed as:



RLSSC fst scen(t) = e(λlogis provdr1+λlogis provdr2+λlogis integr)t (7)

where the λ terms in the above equation represent the failure rates of logistic service providers
and integrators.

Now, based on Equation (7), we carried out the formal reliability analysis of the first scenario
of LSSC, given in Figure 1(a), in HOL and the resulting theorem is as follows:

Theorem 3: ` ∀ X logis provdr1 X logis provdr2 X logis integr C logis provdr1

C logis provdr2 C logis integr p t.

0 ≤ t ∧ prob space p ∧
(∀x’. MEM x’

rel event list p [X logis provdr1;X logis provdr2;X logis integr] t ⇒
x’ ∈ events p) ∧
mutual indep p

(rel event list p [X logis provdr1;X logis provdr2;X logis integr] t) ∧
list exp p [C logis provdr1;C logis provdr2;C logis integr]

[X logis provdr1;X logis provdr2;X logis integr] ⇒
prob p (series struct p

(rel event list p [X logis provdr1;X logis provdr2;X logis integr] t) =

exp (-list sum [C logis provdr1;C logis provdr2;C logis integr]*t)

where the function list sum returns the sum of all the elements of the given failure rate list.
The first assumption ensures that the variable t models time as it can acquire positive integer
values only. The next assumption ensures that p is a valid probability space based on the
probability theory in HOL [16]. The next two assumptions ensure that the events correspond-
ing to the failures modeled, by the random variables X logis provdr1, X logis provdr2 and
X logis integr are valid events from the probability space p and they are mutually independent.
Finally, the last assumption assigns the random variables X logis provdr1, X logis provdr2
and X logis integr, as exponential random variables with failure rates C logis provdr1,
C logis provdr2 and C logis integr, respectively. The conclusion of Theorem 3 represents the
desired reliability expression.

Similarly, the reliability of the second scenario of LSSC with exponential failure distribution,
shown in Figure 1(b), can be expressed as:

RLSSC snd scen(t) =(1− (1− e(λlogis provdr1t) ∗ (1− e(λlogis provdr1t))) ∗ (1− (1− eλlogis integrt))

(8)

We formally verified the above equation in HOL as follows:

Theorem 4: ` ∀ X logis provdr1 X logis provdr2 X logis integr C logis provdr1

C logis provdr2 C logis integr p t.

(0 ≤ t) ∧ (prob space p) ∧
mutual indep p (FLAT

(List rel event list p [[X logis provdr1;X logis provdr2];X logis integr] t)) ∧
list list exp p([[C logis provdr1;C logis provdr2];C logis integr])

([[X logis provdr1;X logis provdr2];X logis integr]) ⇒
prob p (LSSC series parallel struct p

(list rel event list p [[X logis provdr1;X logis provdr2];X logis integr] t)) =

list prod (one minus list

(list exp func list ([[C logis provdr1;C logis provdr2];C logis integr]) t)



where the functions list prod and list exp func list accept a two-dimensional list of failure
rates and return a list with products of one minus exponentials of every sub-list. For example,
list exp func list [[c1; c2; c3]; [c4; c5]; [c6; c7; c8] x =

[1 - exp -(c1+c2+c3) x; 1 - exp -(c4+c5) x; 1 - exp -(c6+c7+c8) x]. The assump-
tions of Theorem 4 are quite similar to the ones used in Theorem 3. The proofs of Theorems 3
and 4 involves Theorems 1 and 2 and some basic probability theory axioms and some properties
of the exponential function exp. The reasoning process took about 2000 lines of HOL script
[2] with dedicated probability-theoretic guidance. The first LSSC scenerio reliability analysis
is mainly carried out by using the series RBD formalization, which is presented in [4]. How-
ever, the major part of the effort was put into the formalization of generic series-parallel RBD
configurations. This formalization facilitated the formalization of second scenario of LSSC,
considerably as the analysis only took about 650 of HOL code.

The distinguishing features of the formally verified Theorems 3 and 4, compared to the
reliability analysis of the LSSC scenarios of Figure 1 using Petri Nets [15], includes its generic
nature, i.e., all the variables are universally quantified and thus can be specialized to obtain the
reliability of any number of logistic providers and integrators for any given failures rates. The
guaranteed correctness of the theorems is due to the involvement of a sound theorem prover in
their verification, which ensures that all the required assumptions for the validity of the result
are accompanying the theorems. To the best of our knowledge, the above-mentioned benefits
are not shared by any other computer based reliability analysis approach.

6 Conclusions

The accuracy of reliability analysis of LSSC is a dire need these days due to their extensive usage
in safety-critical applications, where an incorrect reliability estimate may lead to disastrous
situations including the loss of innocent lives. In this paper, we presented a higher-order-logic
formalization of commonly used RBD configurations, i.e., series and series-parallel, to facilitate
the formal reliability analysis of LSSC within a theorem prover. The commonly used LSSC
RBDs are also formalized and we illustrated the usefulness of the proposed idea by considering
a small application. In future, we plan to formally analyze the reliability of larger LSSC models.
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