Craig Interpolation for Integer Arithmetic: Results, Implementation, Experiences

Philipp Rümmer

Uppsala University

IWIL Workshop
March 10th, 2012
Outline

Craig Interpolation for Presburger Arithmetic
- Motivation
- Craig’s theorem
- Results and methods for integers

Implementation, Experiences
- Implementation in the theorem prover PRINCESS
- Experiences with Scala for solvers
- Some experimental data
Motivation: inference of invariants

Generic verification problem ("safety")

{ pre } while (*) Body { post }

Standard approach: loop rule using invariant

\[
\begin{align*}
\text{pre} & \Rightarrow \phi \\
\{ \phi \} & \text{Body} \{ \phi \} \\
\phi & \Rightarrow \text{post}
\end{align*}
\]

How to compute \(\phi \) automatically?
From intermediate assertions to invariants

\[\{\text{pre}\} \text{ Body; Body } \{\text{post}\}\]

Bounded model checking problem

Compute intermediate assertion \(\psi_1\)

\[\{\text{pre}\} \text{ Body } \{\psi_1\}\]
\[\{\psi_1\} \text{ Body } \{\text{post}\}\]

[McMillan, 2003]
From intermediate assertions to invariants

\(\{\text{pre}\} \text{ Body; Body } \{\text{post}\}\)

Bounded model checking problem

Compute intermediate assertion \(\psi_1\)

\(\{\text{pre}\} \text{ Body } \{\psi_1\}\)

\(\{\psi_1\} \text{ Body } \{\text{post}\}\)

\([\psi_1 \Rightarrow \text{pre}]\)

\(\text{pre} \text{ is invariant}\)

[McMillan, 2003]
From intermediate assertions to invariants

{pre} Body; Body {post}

? Bounded model checking problem

Compute intermediate assertion ψ_1

{pre} Body {ψ_1} {pre} Body {ψ_1}

$[\psi_1 \Rightarrow \text{pre}]$

pre is invariant

{post} Body

[otherwise]

pre is invariant

[McMillan, 2003]
From intermediate assertions to invariants

\{\text{pre } \lor \psi_1\} \text{ Body; Body } \{\text{post}\} \quad ?

Bounded model checking problem \checkmark

Compute intermediate assertion \(\psi_2\)

\{\text{pre } \lor \psi_1\} \text{ Body } \{\psi_2\} \quad \{\psi_2\} \text{ Body } \{\text{post}\}

[\psi_1 \Rightarrow \text{pre}]

pre is invariant \checkmark

[otherwise]

[McMillan, 2003]
From intermediate assertions to invariants

\{ \text{pre} \lor \psi_1 \} \text{ Body; Body } \{ \text{post} \} \quad \text{?}

Bounded model checking problem \checkmark

Compute intermediate assertion \(\psi_2 \)

\{ \text{pre} \lor \psi_1 \} \text{ Body } \{ \psi_2 \}

\{ \psi_2 \} \text{ Body } \{ \text{post} \}

[\psi_2 \Rightarrow \text{pre} \lor \psi_1]

\text{pre} \lor \psi_1 \text{ is invariant} \checkmark

[otherwise]

[McMillan, 2003]
From intermediate assertions to invariants

\[\{ \text{pre} \lor \psi_1 \} \text{ Body; Body } \{ \text{post} \} \]

Bounded model checking problem

Compute intermediate assertion \(\psi_2 \)

\[\{ \psi_2 \} \text{ Body } \{ \text{post} \} \]

\[[\psi_2 \Rightarrow \text{pre} \lor \psi_1] \]

\(\text{pre} \lor \psi_1 \) is invariant

[McMillan, 2003]
How to compute intermediate assertions?

\[\{ \text{pre} \} \quad \text{pre} \ (s_0) \]

\[\text{Body;} \quad \rightarrow \quad \text{Body} (s_0, s_1) \]

\[\text{Body} \quad \rightarrow \quad \text{Body} (s_1, s_2) \]

\[\{ \text{post} \} \quad \rightarrow \quad \text{post} (s_2) \]
How to compute intermediate assertions?

VC generation

\[
\begin{align*}
\{ \text{pre} \} & \quad \text{pre} \ (s_0) \\
\text{Body;} & \quad \rightarrow \ \text{Body} \ (s_0, s_1) \\
\text{Body} & \quad \rightarrow \ \text{Body} \ (s_1, s_2) \\
\{ \text{post} \} & \quad \rightarrow \ \text{post} \ (s_2)
\end{align*}
\]

Theorem (Craig, 1957)

Suppose \(A \rightarrow C \) is a valid FOL implication. Then there is a formula \(I \) (an interpolant) such that

- \(A \rightarrow I \) and \(I \rightarrow C \) are valid,
- every non-logical symbol of \(I \) occurs in both \(A \) and \(C \).
How to compute intermediate assertions?

\[
\begin{align*}
\{ \text{pre} \} & \quad \text{pre} (s_0) \\
\text{Body; } & \quad \rightarrow \text{Body} (s_0, s_1) \\
\text{Body} & \quad \rightarrow \text{Body} (s_1, s_2) \\
\{ \text{post} \} & \quad \rightarrow \text{post} (s_2)
\end{align*}
\]

\[A(s_0, s_1) \downarrow \]
\[I(s_1) \downarrow \]
\[C(s_1, s_2)\]

Theorem (Craig, 1957)

Suppose \(A \rightarrow C \) is a valid FOL implication. Then there is a formula \(I \) (an interpolant) such that

- \(A \rightarrow I \) and \(I \rightarrow C \) are valid,
- every non-logical symbol of \(I \) occurs in both \(A \) and \(C \).
Illustration

Interpolation problem: \[A \rightarrow I \rightarrow C \]
Illustration

Interpolation problem: \(A \rightarrow I \rightarrow C \)
Example

Program with assertion:

```c
if (a == 2*x && a >= 0) {
    b = a / 2;
    c = 3*b + 1;
    assert (c > a);
}
```

As a verification condition:

```
a = 2*x & a >= 0
->
2*b <= a & a <= 2*b + 1
->
c = 3*b + 1
->
c > a
```
Example

Program with assertion:

```java
if (a == 2*x && a >= 0) {
    b = a / 2;
    c = 3*b + 1;
    assert (c > a);
}
```

As a verification condition:

- \(a = 2\times x \&\& a \geq 0 \)
- \(2\times b \leq a \& a \leq 2\times b + 1 \)
- \(c = 3\times b + 1 \)

- Interpolant: \(3\times b \geq a \)
- Interpolant: \(c \geq a + 1 \)
- \(c > a \)
Other applications of interpolation

- Blocking lemmas for test-case generation
- Refinement of abstractions in CEGAR
- Computation of summaries
- Synthesis
Interpolation procedures need to support the program logic:

```c
int a[], i;
max = a[0];
for (i = 1; i < n; ++i)
  if (a[i] > max)
    max = a[i];
assert (max >= a[i/2]);
```

E.g., combined use of linear integer arithmetic and arrays
Relevant questions, given a logic L

- Is L closed under interpolation?
- Practical interpolation procedures for L

Definition

Logic L is **closed under interpolation** if for all $A, B \in F$ such that $A \Rightarrow B$, there is an interpolant expressible in L.

- In particular:
 Is quantifier-free fragment of L closed under interpolation?
Interpolation for integers

Presburger Arithmetic (QPA)

\[t ::= \alpha | c | x | \alpha t + \cdots + \alpha t \]
\[\phi ::= \phi \land \phi | \phi \lor \phi | \neg \phi | \phi \rightarrow \phi | \forall x. \phi | \exists x. \phi \]
\[| t \doteq 0 | t \leq 0 | \alpha | t \]

\(t \ldots \) terms
\(\phi \ldots \) formulae
\(x \ldots \) variables
\(c \ldots \) constant symbols
\(\alpha \ldots \) integer literals (\(\mathbb{Z} \))
Interpolation for integers

Presburger Arithmetic (QPA)

\[t ::= \alpha | c | x | \alpha t + \cdots + \alpha t \]

\[\phi ::= \phi \land \phi | \phi \lor \phi | \neg \phi | \phi \rightarrow \phi | \forall x. \phi | \exists x. \phi \]

\[t \div 0 | t \leq 0 | \alpha | t \]

Mainly considered here: the quantifier-free fragment (PA)
Interpolation by quantifier elimination (QE)

Theorem (QE for Presburger Arithmetic)

For every formula ϕ in full QPA, there is an equivalent quantifier-free formula ψ that can effectively be computed.
Lemma

If \(A \rightarrow C \) is a valid implication, then

- \(\exists_{\text{local-syms}(A)}(A) \) is the strongest interpolant,
- \(\forall_{\text{local-syms}(C)}(C) \) is the weakest interpolant.

local-syms(A): symbols occurring in A, but not in C
local-syms(C): . . .

Corollary

Both PA and QPA are closed under interpolation.
Interpolation vs. QE

However . . .

- QE has high computational complexity
- **strongest** and **weakest** interpolants are often not needed/desirable
 ⇒ Larger interpolants, containing irrelevant information
Proof-based interpolation techniques

Implication $A \rightarrow C$

Theorem prover

Proof of $A \rightarrow C$

Proof lifting

Interpolating proof of $A \rightarrow C$

Craig interpolant $A \rightarrow I \rightarrow C$
Abstraction with interpolants

\{\text{pre}\} \text{ Body; Body } \{\text{post}\} \Rightarrow \text{Interpolant extracted from proof}

\Rightarrow \text{Abstraction from unnecessary details}

\text{Bounded model checking problem} \checkmark

\text{Compute intermediate assertion } \psi_1

...
Abstraction with interpolants

\{\text{pre}\} \text{ Body; Body } \{\text{post}\} \\
\downarrow \\
\text{Bounded model checking problem} \quad \checkmark \\
\downarrow \\
\text{Compute intermediate assertion } \psi_1 \\
\downarrow \\
\ldots

\text{Interpolant extracted from proof} \\
\Rightarrow \\
\text{Abstraction from unnecessary details}
Towards practical integer interpolation procedures

- Difference logic
 [McMillan, 2006]

- Integer equalities + divisibility constraints
 [Jain, Clarke, Grumberg, 2008]

- Unit-two-variable-per-inequality
 [Cimatti, Griggio, Sebastiani, 2009]

- Simplex-based, full PA
 [Lynch, Tang, 2008]

 \Rightarrow Leaves local symbols/quantifiers in interpolants
Towards practical interpolation procedures (2)

Proof-based methods for full PA:

- **Sequent calculus-based**
 [Brillout, Kroening, Rümmer, Wahl, 2010]
- **Simplex-based, special branch-and-cut rule**
 [Kroening, Leroux, Rümmer, 2010]
- **Simplex-based, targeting SMT**
 [Griggio, Le, Sebastiani, 2011]
- **From Z3 proofs**
 [McMillan, 2011]
What makes interpolation over integers difficult?
Definition

Suppose $A \land B$ is unsatisfiable. A reverse interpolant is a formula I such that

- $A \rightarrow I$ and $B \rightarrow \neg I$ are valid,
- every non-logical symbol of I occurs in both A and B.

Lemma

I is reverse interpolant for $A \land B$ if and only if I is interpolant for $A \rightarrow \neg B$.
What makes interpolation over integers difficult?

Consider rational case:

\[\bigwedge_{i=1}^{n} t_i \leq 0 \quad \land \quad \bigwedge_{j=1}^{m} s_j \leq 0 \]

\(A \) and \(B \)
What makes interpolation over integers difficult?

Consider [**rational**](https://en.wikipedia.org/wiki/Rational_number) case:

\[
\bigwedge_{i=1}^{n} t_i \leq 0 \quad \wedge \quad \bigwedge_{j=1}^{m} s_j \leq 0
\]

\[A \wedge B\]

Lemma (Witnesses)

*\(A \wedge B\) is unsat over \(\mathbb{Q}\) iff there are non-negative \(\{\alpha_i\}_{i=1}^{n}, \{\beta_j\}_{j=1}^{m}\) such that:

\[
\sum_{i=1}^{n} \alpha_i t_i + \sum_{j=1}^{m} \beta_j s_j \in \mathbb{Q}_{>0}
\]
What makes interpolation over integers difficult?

Consider rational case:

\[
\prod_{i=1}^{n} t_i \leq 0 \quad \land \quad \prod_{j=1}^{m} s_j \leq 0
\]

Lemma (Witnesses)

\(A \land B \text{ is unsat over } \mathbb{Q} \text{ iff there are non-negative } \{ \alpha_i \}_{i=1}^{n}, \{ \beta_j \}_{j=1}^{m} \text{ such that:} \)

\[
\sum_{i=1}^{n} \alpha_i t_i + \sum_{j=1}^{m} \beta_j s_j \in \mathbb{Q}_{>0}
\]

Then:

\[
\sum_{i=1}^{n} \alpha_i t_i \leq 0 \text{ is a reverse interpolant}
\]
What makes interpolation over integers difficult? (2)

Why does this not work for integers?
What makes interpolation over integers difficult? (2)

Why does this not work for integers?

Over \(\mathbb{Z} \), additional rules are needed, such as:

- Branch-and-bound
 (unproblematic, but incomplete)
- Cutting planes, Gomory cuts
- Cuts-from-proofs
- Omega rule

\(\Rightarrow \) Interpolation more intricate
What makes interpolation over integers difficult? (3)

Theorem

There is a family \(\{ A_n \land B_n \}_n \) of PA formulae such that

- \(A_n \land B_n \) is unsatisfiable,
- \(A_n \land B_n \) has a cutting plane proof of size independent of \(n \),
- all reverse interpolants have size at least linear in \(n \).

(for the definition of PA shown earlier)
What makes interpolation over integers difficult? (4)

Example:

\[A_n = -n < y + 2nx \land y + 2nx \leq 0 \]
\[B_n = 0 < y + 2nz \land y + 2nz \leq n \]

All reverse interpolants for \(A_n \land B_n \) are equivalent to:

\[I_n = (2n \mid y) \lor (2n \mid y + 1) \lor (2n \mid y + 2) \lor \cdots \lor (2n \mid y + n - 1) \]
What makes interpolation over integers difficult? (4)

Example:

\[A_n = -n < y + 2nx \land y + 2nx \leq 0 \]
\[B_n = 0 < y + 2nz \land y + 2nz \leq n \]

All reverse interpolants for \(A_n \land B_n \) are equivalent to:

\[I_n = (2n \mid y) \lor (2n \mid y + 1) \lor (2n \mid y + 2) \lor \cdots \lor (2n \mid y + n - 1) \]

Problematic: mixed cuts
Three main approaches to handle mixed cuts

- Fully expanded interpolants
- Restricted/taylor-made cut rule
- Extended interpolant language

Next:
Comparison + unifying description
Interpolation outline

Implication \(A \rightarrow C \)

\[\text{Theorem prover} \]

Proof of \(A \rightarrow C \)

\[\text{Proof lifting} \]

Interpolating proof of \(A \rightarrow C \)

Craig interpolant \(A \rightarrow I \rightarrow C \)
Interpolation outline

Implication $A \rightarrow C$

Proof of $A \rightarrow C$

Proof lifting

Interpolating proof of $A \rightarrow C$

Craig interpolant $A \rightarrow I \rightarrow C$
Main non-interpolating proof rules

Closure rule ($\alpha > 0$)

$$
\Gamma, \alpha \leq 0 \vdash \Delta \quad \text{CLOSE-INEQ}'
$$

Linear combination of inequalities ($\alpha > 0, \beta > 0$)

$$
\frac{\Gamma, \ldots, \alpha s + \beta t \leq 0 \vdash \Delta}{\Gamma, s \leq 0, t \leq 0 \vdash \Delta} \quad \text{FM-ELIM}'
$$

Strengthening inequalities (subsumes rounding + cuts)

$$
\frac{\Gamma, t \not\vdash 0 \vdash \Delta \quad \Gamma, t + 1 \leq 0 \vdash \Delta}{\Gamma, t \leq 0 \vdash \Delta} \quad \text{STRENGTHEN}'
$$
Example of non-interpolating proof

\[\begin{align*}
\ast & \quad \text{INEQ-CLOSE'} \\
\ldots, \, & \quad 3 \leq 0 \vdash \\
\ldots, \, & \quad 3x \leq 0, \quad -2x + 1 \leq 0 \vdash \\
\ldots, \, & \quad 3x - 2 \leq 0, \quad -2x + 1 \leq 0 \vdash \\
a + x \leq 0, \quad & \quad -a + 2x - 2 \leq 0, \quad -2x + 1 \leq 0 \vdash \\
\end{align*} \]

\[\text{FM-ELIM'} \]

\[\text{STRENGTHEN'} \times 2 \]

\[\text{FM-ELIM'} \]
Interpolation outline

PA implication $A \rightarrow C$

Theorem prover

Proof of $A \rightarrow C$

Proof lifting

Interpolating proof of $A \rightarrow C$

Craig interpolant $A \rightarrow I \rightarrow C$
Basic idea of proof lifting

Interpolation problem: \(A \rightarrow I \rightarrow C \)

\[
\begin{align*}
\Gamma_3 & \vdash \Delta_3 \\
\Gamma_2 & \vdash \Delta_2 \\
\Gamma_1 & \vdash \Delta_1 \\
\vdots & \\
A & \vdash C
\end{align*}
\]
Basic idea of proof lifting

Interpolation problem: \(A \rightarrow I \rightarrow C \)

Main idea: annotations track inequalities from \(A \)
Basic idea of proof lifting

Interpolation problem: \(A \rightarrow I \rightarrow C \)

Main idea: annotations track inequalities from \(A \)
Basic idea of proof lifting

Interpolation problem: \(A \rightarrow I \rightarrow C \)

Main idea: annotations track inequalities from \(A \)
Basic idea of proof lifting

Interpolation problem: \(A \rightarrow I \rightarrow C \)

...

\[\Gamma_3 \vdash \Delta_3 \]
\[\Gamma_2^* \vdash \Delta_2^* \]
\[\Gamma_1^* \vdash \Delta_1^* \]

...

\[A^* \vdash C^* \]

Main idea: annotations track inequalities from \(A \)
Basic idea of proof lifting

Interpolation problem: \(A \rightarrow I \rightarrow C \)

Main idea: annotations track inequalities from \(A \)
Basic idea of proof lifting

Interpolation problem: \(A \rightarrow I \rightarrow C \)

Main idea: annotations track inequalities from \(A \)
Basic idea of proof lifting

Interpolation problem: \(A \Rightarrow I \Rightarrow C \)

Main idea: annotations track inequalities from \(A \)
Basic idea of proof lifting

Interpolation problem: $A \rightarrow I \rightarrow C$

annotation of formulae with labels

$\Gamma^* \vdash \Delta^*_3 \triangleright l_3$

$\Gamma^*_2 \vdash \Delta^*_2 \triangleright l_2$

$\Gamma^*_1 \vdash \Delta^*_1$

$A^* \vdash C^*$

propagation of interpolants

Main idea: annotations track inequalities from A
Basic idea of proof lifting

Interpolation problem: $A \rightarrow I \rightarrow C$

annotation of formulae with labels

$\Gamma_3^* \vdash \Delta_3^* \uparrow l_3$
$\Gamma_2^* \vdash \Delta_2^* \uparrow l_2$
$\Gamma_1^* \vdash \Delta_1^* \uparrow l_1$

$A^* \vdash C^*$

propagation of interpolants

Main idea: annotations track inequalities from A
Basic idea of proof lifting

Interpolation problem: \(A \rightarrow I \rightarrow C \)

Main idea: annotations track inequalities from \(A \)
Labelled formulae

Interpolation problem: \(A \rightarrow I \rightarrow C \)

<table>
<thead>
<tr>
<th>Labelled formula</th>
<th>Intuition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\phi[\phi^A])</td>
<td>“(\phi^A) is (A)-contribution to (\phi)”</td>
</tr>
<tr>
<td></td>
<td>(\phi^A) is the partial interpolant of (\phi)</td>
</tr>
</tbody>
</table>
Interpolating rules

Interpolation problem: \(A \rightarrow I \rightarrow C \)

Initialisation rule: \(t \leq 0 \) comes from \(A \)

\[
\frac{\Gamma, t \leq 0 \left[t \leq 0 \right] \vdash \Delta \triangleright I}{\Gamma, t \leq 0 \vdash \Delta \triangleright I} \text{ IPI-LEFT-L}
\]

Initialisation rule: \(t \leq 0 \) comes from \(C \)

\[
\frac{\Gamma, t \leq 0 \left[0 \leq 0 \right] \vdash \Delta \triangleright I}{\Gamma, t \leq 0 \vdash \Delta \triangleright I} \text{ IPI-LEFT-R}
\]

- Similarly for equations, etc.
Interpolating rules

Closure rule \((\alpha > 0)\)

\[
\frac{}{\Gamma, \alpha \leq 0 [t^A \leq 0] \vdash \Delta \triangleright t^A \leq 0} \quad \text{CLOSE-INEQ}
\]

Linear combination of inequalities \((\alpha > 0, \beta > 0)\)

\[
\frac{}{\Gamma, \ldots, \alpha s + \beta t \leq 0 [\alpha s^A + \beta t^A \leq 0] \vdash \Delta \triangleright l} \quad \text{FM-ELIM}
\]

\[
\frac{}{\Gamma, s \leq 0 [s^A \leq 0], t \leq 0 [t^A \leq 0] \vdash \Delta \triangleright l}
\]
How to interpolate \textsc{strengthen'}?

\[
\Gamma, t \div 0 \vdash \Delta \quad \Gamma, t + 1 \leq 0 \vdash \Delta
\]

\[
\Gamma, t \leq 0 \vdash \Delta \quad \text{\textsc{strengthen'}}
\]

Three sound & complete ways . . .
1. Method: only do pure strengthening

Pure STRENGTHEN

<table>
<thead>
<tr>
<th>Rule</th>
<th>Premise</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Gamma, t \doteq 0 [t \doteq 0] \vdash \Delta \triangleright l)</td>
<td>(\Gamma, t + 1 \leq 0 [t + 1 \leq 0] \vdash \Delta \triangleright J)</td>
<td>STRENGTHEN-L</td>
</tr>
<tr>
<td>(\Gamma, t \leq 0 [t \leq 0] \vdash \Delta \triangleright l \lor J)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Gamma, t \doteq 0 [0 \doteq 0] \vdash \Delta \triangleright l)</td>
<td>(\Gamma, t + 1 \leq 0 [0 \leq 0] \vdash \Delta \triangleright J)</td>
<td>STRENGTHEN-R</td>
</tr>
<tr>
<td>(\Gamma, t \leq 0 [0 \leq 0] \vdash \Delta \triangleright l \land J)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Resembles Omega test
Can lead to large proofs, but interpolants of linear size
Integration with Simplex in [LPAR, 2010]
1. Method: only do pure strengthening

Pure STRENGTHEN

\[
\begin{align*}
\Gamma, t \doteq 0 [t \doteq 0] & \vdash \Delta \triangleright I \\
\Gamma, t + 1 \leq 0 [t + 1 \leq 0] & \vdash \Delta \triangleright J \\
\hline
\Gamma, t \leq 0 [t \leq 0] & \vdash \Delta \triangleright I \lor J & \text{STRENGTHEN-L}
\end{align*}
\]

\[
\begin{align*}
\Gamma, t \doteq 0 [0 \doteq 0] & \vdash \Delta \triangleright I \\
\Gamma, t + 1 \leq 0 [0 \leq 0] & \vdash \Delta \triangleright J \\
\hline
\Gamma, t \leq 0 [0 \leq 0] & \vdash \Delta \triangleright I \land J & \text{STRENGTHEN-R}
\end{align*}
\]

- Resembles Omega test
- Can lead to large proofs, but interpolants of linear size
- Integration with Simplex in [LPAR, 2010]
 ⇒ Special branch-and-cut rule
Interpolating proof for previous example

\[
\begin{align*}
\ast & \quad \ldots, \ 3 \leq 0 [6x \leq 0] \vdash \ x \leq 0 \\
\ast & \quad \ldots, \ 3x \leq 0 [3x \leq 0], \ -2x + 1 \leq 0 [0 \leq 0] \vdash \ x \leq 0 \\
\ast & \quad \ldots, \ 3x - 2 \leq 0 [3x - 2 \leq 0], \ -2x + 1 \leq 0 [0 \leq 0] \vdash \ x \leq 0 \\
& \quad a + x \leq 0 [a + x \leq 0], \\
& \quad -a + 2x - 2 \leq 0 [-a + 2x - 2 \leq 0], \vdash \ x \leq 0 \\
& \quad -2x + 1 \leq 0 [0 \leq 0]
\end{align*}
\]

Original proof

\[
\begin{align*}
\ast & \quad \ldots, \ 3 \leq 0 \vdash \ \text{INEQ-CLOSE'} \\
\ast & \quad \ldots, \ 3x \leq 0, \ -2x + 1 \leq 0 \vdash \ \text{FM-ELIM'} \quad \ldots \\
\ast & \quad \ldots, \ 3x - 2 \leq 0, \ -2x + 1 \leq 0 \vdash \ \text{STRENGTHEN'} \times 2 \\
& \quad a + x \leq 0, \ -a + 2x - 2 \leq 0, \ -2x + 1 \leq 0 \vdash \ \text{FM-ELIM'}
\end{align*}
\]
2. Method: allow **mixed strengthening**

General, mixed **STRENGTHEN** ("mixed cuts")

\[
\begin{align*}
\Gamma, t \leq 0 \left[t^A \leq 0 \right] & \vdash \Delta \triangleright E \\
\Gamma, t + 1 \leq 0 \left[t^A \leq 0 \right] & \vdash \Delta \triangleright l^0 \\
\Gamma, t + 1 \leq 0 \left[t^A + 1 \leq 0 \right] & \vdash \Delta \triangleright l^1 \\
\Gamma, t \leq 0 \left[t^A \leq 0 \right] & \vdash \Delta \triangleright l^1 \vee (E \land l^0) \quad \text{STRENGTHEN}
\end{align*}
\]
2. Method: allow mixed strengthening

General, mixed \texttt{STRENGTHEN} ("mixed cuts")

\[
\begin{align*}
\Gamma, t \leq 0 \left[t^A \leq 0 \right] & \Rightarrow \Delta \triangleright E \\
\Gamma, t + 1 \leq 0 \left[t^A \leq 0 \right] & \Rightarrow \Delta \triangleright I^0 \\
\Gamma, t + 1 \leq 0 \left[t^A + 1 \leq 0 \right] & \Rightarrow \Delta \triangleright I^1 \\
\Gamma, t \leq 0 \left[t^A \leq 0 \right] & \Rightarrow \Delta \triangleright I^1 \lor (E \land I^0) \quad \text{STRENGTHEN}
\end{align*}
\]

- Covers Omega test, Gomory cuts, etc.
- Interpolants can be exponentially larger than (non-interpolating) proofs
- Sometimes observed in practice:
 Proof can be constructed, but proof lifting times out
3. Method: bounded quantification

STRENGTHEN with bounded quantification
3. Method: bounded quantification

\[
\begin{align*}
\Gamma, t \div 0 \left[t^A \div 0 \right] & \vdash \Delta \triangleright E \\
\Gamma, t + 1 \leq 0 \left[t^A \leq 0 \right] & \vdash \Delta \triangleright l^0 \\
\Gamma, t + 1 \leq 0 \left[t^A + 1 \leq 0 \right] & \vdash \Delta \triangleright l^1 \\
\Gamma, t \leq 0 \left[t^A \leq 0 \right] & \vdash \Delta \triangleright l^1 \lor (E \land l^0)
\end{align*}
\]

STRENGTHEN with bounded quantification
3. Method: bounded quantification

\[\Gamma, t \leq 0 [t^A \leq 0] \vdash \Delta \triangleright E \]
\[\Gamma, t + 1 \leq 0 [t^A \leq 0] \vdash \Delta \triangleright I^0 \]
\[\Gamma, t + 1 \leq 0 [t^A + 1 \leq 0] \vdash \Delta \triangleright I^1 \]
\[\Gamma, t \leq 0 [t^A \leq 0] \vdash \Delta \triangleright I^1 \lor (E \land I^0) \]

STRENGTHEN with bounded quantification
3. Method: bounded quantification

\[\Gamma, t \leq 0 \left[t^A \leq 0 \right] \vdash \Delta \triangleright E \]
\[\Gamma, t + 1 \leq 0 \left[t^A + p \leq 0 \right] \vdash \Delta \triangleright l(p) \]
\[\Gamma, t \leq 0 \left[t^A \leq 0 \right] \vdash \Delta \triangleright l(1) \lor (E \land l(0)) \]

STRENGTHEN with bounded quantification

Proofs + interpolants only grow linearly
Interpolants contain bounded quantifiers
Specialised versions for rounding possible [IJCAR, 2010]
Related observation in [Griggio, Le, Sebastiani, 2011]:
Mixed cuts can be interpolated concisely using integer division
3. Method: bounded quantification

STRENGTHEN with bounded quantification

\[
\begin{align*}
\Gamma, t \div 0[t^A \div 0] & \vdash \Delta \triangleright E \\
\Gamma, t + 1 \leq 0[t^A + p \leq 0] & \vdash \Delta \triangleright l(p) \\
\Gamma, t \leq 0[t^A \leq 0] & \vdash \Delta \triangleright \exists 0 \leq p \leq 1.
\quad l(p) \land (p \div 1 \lor E)
\end{align*}
\]
3. Method: bounded quantification

STRENGTHEN with bounded quantification

\[
\Gamma, t \doteq 0 [t^A \doteq 0] \vdash \Delta \triangleright E \\
\Gamma, t + 1 \leq 0 [t^A + p \leq 0] \vdash \Delta \triangleright I(p) \\
\Gamma, t \leq 0 [t^A \leq 0] \vdash \Delta \triangleright 0 \leq p \leq 1. \\
I(p) \land (p \doteq 1 \lor E)
\]

- Proofs + interpolants only grow linearly
- Interpolants contain bounded quantifiers
- Specialised versions for rounding possible [IJCAR, 2010]
- Related observation in [Griggio, Le, Sebastiani, 2011]: Mixed cuts can be interpolated concisely using integer division
Combining method 2 + 3

Observation, in practice:
QE methods often eliminate bounded quantifiers \textit{without blowup}
Combining method 2 + 3

Observation, in practice:
QE methods often eliminate bounded quantifiers without blowup

Implication $A \rightarrow C$

Theorem prover

Proof of $A \rightarrow C$

Proof lifting (method 2)

Quantifier-free interpolant I
Combining method 2 + 3

Observation, in practice:
QE methods often eliminate bounded quantifiers without blowup

Implication $A \rightarrow C$

Proof of $A \rightarrow C$

Proof lifting (method 2)

Quantifier-free interpolant I

Quantifier elimination

Proof lifting (method 3)

Interpolant I' with bounded quantifiers
Ongoing work

Elimination of bounded quantifiers …

- Often leads to very concise interpolants
- Sometimes causes blowup (e.g., when encoding bitvector problems)

Ongoing: better integration of methods 2 + 3

- Detect in which cases bounded quantifiers are cheap to eliminate

Also ongoing:

- Experimental comparison of methods 1+2+3, in a model checker
Implementations
Implementations

Method 1: OpenSMT [LPAR, 2010]
- Simplex-based
- Branch-and-cut rule, avoiding mixed cuts

Method 2 + 3: Princess [IJCAR, 2010]
- Omega-based
- First interpolants with **bounded quantifiers**, then **quantifier elimination** (Omega)
About PRINCESS

- Started in 2007, slowly moving along
 (name “PRINCESS” → complicated explanation)
- Entirely implemented in Scala

- Original motivation:
 Explore combination of FOL + theory reasoning
- Input logic:
 QPA + uninterpreted predicates/functions
Combination of different prover architectures

Experiment in Princess:

- KE-tableau/DPLL
- Theory procedures
- E-matching
- Free variables + constraints

- Interesting completeness results
- Proof generation (used for interpolation)
- Some features that are rather unique
(In)Completeness of the PRINCESS calculus

Lemma (Completeness)

Complete for fragments:

- $\hat{\text{FOL}}$
- $\hat{\text{PA}}$
- Purely existential formulae
- Purely universal formulae
- Universal formulae with finite parametrisation (same as $\mathcal{ME}(\text{LIA})$)

- Valid formulae in the full logic are not enumerable

 [Halpern, 1991]
About Scala

Java + functional features

- Algebraic datatypes
- Pattern matching
- Type inference
- Higher-order functions
- Monads
- Actors, concurrent datatypes

- Developed by Martin Odersky’s group, EPFL
- Compilation to Java bytecode (primarily)
- Full access to Java libraries
About Scala

<table>
<thead>
<tr>
<th>Java + functional features</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Algebraic datatypes</td>
</tr>
<tr>
<td>• Pattern matching</td>
</tr>
<tr>
<td>• Type inference</td>
</tr>
<tr>
<td>• Higher-order functions</td>
</tr>
<tr>
<td>• Monads</td>
</tr>
<tr>
<td>• Actors, concurrent datatypes</td>
</tr>
</tbody>
</table>

- Developed by Martin Odersky’s group, EPFL
- Compilation to Java bytecode (primarily)
- Full access to Java libraries

- Is Scala a language usable for solver implementations?
Some observations and thoughts on Scala . . .
Elegant APIs possible

val c = new ConstantTerm("c")
val d = new ConstantTerm("d")

val f = new IFunction("f", 1, false, false)

println(isSat(c >= 12 & c*2 < 40 & f(c-d) < 100))
Elegant APIs possible

```scala
val c = new ConstantTerm("c")
val d = new ConstantTerm("d")

val f = new IFunction("f", 1, false, false)

println(isSat(c >= 12 & c*2 < 40 & f(c-d) < 100))
```

Maybe more relevant for solver users than developers
Deployment

- Bytecode is very convenient

- However: Scala tends to generate many many classes
 E.g. in PRINCESS: before compilation \(\approx 350 \)
 after compilation \(\approx 3000 \)

- ProGuard (compression tool) is useful
 \(\Rightarrow \) Generate one jar file, including all Scala libraries
Princess was not developed in a very performance-oriented way:

- Mostly functional (immutable) datastructures
- No native datastructures (JNI)
- Generally:
 - Correctness considered more important than efficiency
Compared to other languages (Compiler shootout)

| compare 2 | |---| |---| | 25% | median | 75% | ---| | ---| | ---| |
|-------------------|---|---|---|---|---|---|---|---|---|
| **Fortran Intel** | 1.00 | 1.00 | 1.00 | **1.00** | 1.49 | 2.24 | 5.15 |
| **C++ GNU g++** | 1.00 | 1.00 | 1.03 | **1.27** | 1.68 | 2.65 | 4.06 |
| **C GNU gcc** | 1.00 | 1.00 | 1.00 | **1.30** | 1.47 | 2.17 | 3.24 |
| **ATS** | 1.01 | 1.01 | 1.17 | **1.37** | 1.60 | 2.24 | 7.95 |
| **Ada 2005 GNAT** | 1.01 | 1.01 | 1.35 | **1.62** | 2.44 | 4.08 | 7.55 |
| **Java 7 -server**| 1.11 | 1.11 | 1.58 | **1.76** | 2.02 | 2.68 | 5.62 |
| **Scala** | 1.24 | 1.24 | 1.81 | **2.18** | 3.22 | 5.33 | 9.79 |
| **Pascal Free Pascal** | 1.38 | 1.38 | 2.01 | **2.39** | 2.84 | 4.10 | 5.36 |
| **Haskell GHC** | 1.10 | 1.10 | 1.64 | **2.64** | 4.34 | 8.38 | 8.73 |
| **C# Mono** | 1.44 | 1.44 | 2.26 | **2.72** | 5.46 | 10.26 | 20.52 |
| **Clean** | 1.76 | 1.76 | 2.11 | **3.01** | 4.15 | 7.21 | 11.17 |
| **OCaml** | 1.55 | 1.55 | 2.02 | **3.40** | 4.90 | 6.26 | 6.26 |
| **Lisp SBCL** | 1.02 | 1.02 | 1.87 | **3.81** | 4.99 | 9.67 | 10.87 |
| **F# Mono** | 1.43 | 1.43 | 2.53 | **3.97** | 5.62 | 10.24 | 18.28 |
| **Racket** | 1.17 | 2.16 | 4.19 | **4.79** | 5.55 | 7.58 | 18.58 |
JVM warm-up
JVM warm-up (2)

Caused by:
- Dynamic class loading
- Just-in-time compilation + optimisation

This means:
- Restarting solver between queries has to be avoided
- Load solver as a library (jar-file), or
- Run as a daemon
Evaluation on AUFLIA benchmarks

<table>
<thead>
<tr>
<th></th>
<th>AUFLIA+p (193)</th>
<th>AUFLIA-p (193)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z3</td>
<td>191</td>
<td>191</td>
</tr>
<tr>
<td>Princess</td>
<td>145</td>
<td>137</td>
</tr>
<tr>
<td>CVC3</td>
<td>132</td>
<td>128</td>
</tr>
</tbody>
</table>

- Unsatisfiable AUFLIA benchmarks from SMT-comp 2011
- Intel Core i5 2-core, 3.2GHz, timeout 1200s, 4Gb
Typical PA SAT queries in a model checker (Eldarica)
Profiling Scala applications

Does not work
Synthetic interpolation benchmarks (beginning 2011)

- Evaluation on SMT-LIB QF_LIA benchmarks
- Partitionings:
 First $\frac{k}{10} \cdot n$ benchmark conjuncts as A, rest as B
 (where n is total number of conjuncts, $k \in \{1, \ldots, 9\}$)

- Intel Xeon X5667 4-core, 3.07GHz, 12GB heap-space, Linux, timeout 900s.

http://www.philipp.ruemmer.org/princess.shtml
Compared tools

- **Princess, OpenSMT**
- **SMTInterpol**: interpolating SMT solver from Uni Freiburg
- **CSIsat**: constraint-based interpolation for linear rational arithmetic + unint. functions
- **Omega**: quantifier elimination procedure (strongest interpolants can be computed using QE)
Experimental results

<table>
<thead>
<tr>
<th></th>
<th>Multiplier</th>
<th>Bitadder</th>
<th>Mathsat</th>
<th>Rings</th>
<th>Convert</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>16 unsat</td>
<td>17 unsat</td>
<td>100 unsat</td>
<td>294 unsat</td>
<td>38 unsat</td>
</tr>
<tr>
<td></td>
<td>1 sat</td>
<td></td>
<td></td>
<td></td>
<td>109 sat</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>172 unkn.</td>
</tr>
<tr>
<td>Princess</td>
<td>8/1/41</td>
<td>7/0/63</td>
<td>44/13/396</td>
<td>130/0/209</td>
<td>38/82/334</td>
</tr>
<tr>
<td></td>
<td>136/1623</td>
<td>298/76953</td>
<td>106/7007</td>
<td>233/5146</td>
<td>88.0/1</td>
</tr>
<tr>
<td>OpenSMT</td>
<td>5/1/45</td>
<td>7/0/63</td>
<td>74/15/666</td>
<td>9/0/81</td>
<td>37/0/333</td>
</tr>
<tr>
<td></td>
<td>48.9/2357</td>
<td>103/23362</td>
<td>53.0/2020</td>
<td>59.9/4611</td>
<td>0.08/1</td>
</tr>
<tr>
<td>SMTInterpol</td>
<td>5/1/45</td>
<td>5/0/45</td>
<td>65/13/585</td>
<td>0/0/-</td>
<td>37/0/333</td>
</tr>
<tr>
<td></td>
<td>24.4/48827</td>
<td>8.58/41077</td>
<td>45.7/126705</td>
<td>-/-</td>
<td>13.6/2</td>
</tr>
</tbody>
</table>
| CSIsat | 4/1/36 | 1/0/9 | 25/12/225 | -/- | -/-
| | 106/2640 | 0.56/188 | 70.8/12683 | -/- | -/-
| Omega QE | -/-/125 | -/-/129 | -/-/612 | -/-/1474 | -/-/296 |
| | 109/15392 | 97.8/93181 | 169/101088 | 227/55307 | 15.4/2668 |

| #unsat / #sat / #interpolants / average time (s) / average int. size |
Experimental results: interpolant sizes
Experimental results: interpolant sizes (2)
Conclusions

Is Scala a language usable for solver implementations?

Pros
- Deployment
- Very elegant APIs possible
- Convenient

Cons
- Warm-up time of JVM
- Performance penalty still significant
Thanks for your attention!