Craig Interpolation for Integer Arithmetic: Results, Implementation, Experiences

Philipp Rümmer
Uppsala University
IWIL Workshop
March 10th, 2012

Outline

Craig Interpolation for Presburger Arithmetic

- Motivation
- Craig's theorem
- Results and methods for integers

Implementation, Experiences

- Implementation in the theorem prover Princess
- Experiences with Scala for solvers
- Some experimental data

Motivation: inference of invariants

Generic verification problem ("safety")

$$
\text { \{ pre \} while (*) Body \{ post \} }
$$

Standard approach: loop rule using invariant

$$
\frac{\text { pre } \Rightarrow \phi \quad\{\phi\} \text { Body }\{\phi\} \quad \phi \Rightarrow \text { post }}{\{\text { pre }\} \text { while (*) Body \{ post \}}}
$$

How to compute ϕ automatically?

From intermediate assertions to invariants

$$
\text { \{pre\} Body; Body \{post\} ? }
$$

Bounded model checking problem

Compute intermediate assertion ψ_{1}

$$
\left.\{\text { pre }\} \text { Body }\left\{\psi_{1}\right\} \quad\left\{\psi_{1}\right\} \text { Body \{post }\right\}
$$

[McMillan, 2003]

From intermediate assertions to invariants

$$
\text { \{pre\} Body; Body \{post\} ? }
$$

Bounded model checking problem

Compute intermediate assertion ψ_{1}

$$
\begin{aligned}
& \text { \{pre } \left.\} \text { Body }\left\{\psi_{1}\right\} \quad\left\{\psi_{1}\right\} \text { Body \{post }\right\} \\
& {\left[\psi_{1} \Rightarrow \text { pre }\right]} \\
& \text { pre is invariant }
\end{aligned}
$$

[McMillan, 2003]

From intermediate assertions to invariants

$$
\text { \{pre\} Body; Body \{post\} ? }
$$

Bounded model checking problem

Compute intermediate assertion ψ_{1}

$$
\begin{array}{lc}
\text { \{pre }\} \text { Body }\left\{\psi_{1}\right\} & \left.\left\{\psi_{1}\right\} \text { Body \{post }\right\} \\
{\left[\psi_{1} \Rightarrow\right. \text { pre] }} & \text { [otherwise] } \\
\text { pre is invariant }
\end{array}
$$

From intermediate assertions to invariants

$$
\left.\left\{\text { pre } \vee \psi_{1}\right\} \text { Body; Body \{post }\right\} \text { ? }
$$

Bounded model checking problem

Compute intermediate assertion ψ_{2}

$$
\begin{array}{cc}
\text { \{pre } \left.\vee \psi_{1}\right\} \text { Body }\left\{\psi_{2}\right\} & \left\{\psi_{2}\right\} \text { Body }\{\text { post }\} \\
{\left[\psi_{1} \Rightarrow\right. \text { pre] }} & \text { [otherwise] } \\
\text { pre is invariant } &
\end{array}
$$

From intermediate assertions to invariants

$$
\left.\left\{\text { pre } \vee \psi_{1}\right\} \text { Body; Body \{post }\right\} \text { ? }
$$

Bounded model checking problem

Compute intermediate assertion ψ_{2}

$$
\begin{array}{lc}
\text { \{pre } \left.\vee \psi_{1}\right\} \text { Body }\left\{\psi_{2}\right\} & \left.\left\{\psi_{2}\right\} \text { Body \{post }\right\} \\
{\left[\psi_{2} \Rightarrow \text { pre } \vee \psi_{1}\right]} & \text { [otherwise] } \\
\text { pre } \vee \psi_{1} \text { is invariant } &
\end{array}
$$

From intermediate assertions to invariants

$$
\left.\left\{\text { pre } \vee \psi_{1}\right\} \text { Body; Body \{post }\right\} \text { ? }
$$

Bounded model checking problem

Compute intermediate assertion ψ_{2}

$$
\begin{aligned}
& \left\{\text { pre } \vee \psi_{1}\right\} \text { Body }\left\{\psi_{2}\right\}
\end{aligned} \quad\left\{\psi_{2}\right\} \text { Body }\{\text { post }\}
$$

[McMillan, 2003]

How to compute intermediate assertions?

How to compute intermediate assertions?

VC generation

$\{$ pre $\}$	$\operatorname{pre}\left(s_{0}\right)$
Body $;$	$\rightarrow \operatorname{Body}\left(s_{0}, s_{1}\right)$
Body	$\rightarrow \operatorname{Body}\left(s_{1}, s_{2}\right)$
$\{$ post $\}$	

Theorem (Craig, 1957)

Suppose $A \rightarrow C$ is a valid FOL implication.
Then there is a formula I (an interpolant) such that

- $A \rightarrow I$ and $I \rightarrow C$ are valid,
- every non-logical symbol of I occurs in both A and C.

How to compute intermediate assertions?

generation

\{ pre \}	pre (s_{0})	$A\left(s_{0}, s_{1}\right)$
Body;	$\rightarrow \operatorname{Body}\left(s_{0}, s_{1}\right)$	
Body	$\rightarrow+\operatorname{Body}\left(s_{1}, s_{2}\right)$	I $\left(s_{1}\right)$
\{ post \}	$\rightarrow \operatorname{post}\left(s_{2}\right)$	$C\left(s_{1}, s_{2}\right)$

Theorem (Craig, 1957)

Suppose $A \rightarrow C$ is a valid FOL implication.
Then there is a formula I (an interpolant) such that

- $A \rightarrow I$ and $I \rightarrow C$ are valid,
- every non-logical symbol of I occurs in both A and C.

Illustration

Interpolation problem: $A \rightarrow I \rightarrow C$

Illustration

Interpolation problem: $A \rightarrow I \rightarrow C$

Example

Program with assertion:

$$
\begin{aligned}
& \text { if }(a==2 * x \& \& a>=0)\{ \\
& b=a / 2 \\
& c=3 * b+1 ; \\
& \text { assert }(c>a) ;
\end{aligned}
$$

As a verification condition:
$\mathrm{a}=2 * \mathrm{x}$ \& $\mathrm{a}>=0$
->
$2 * \mathrm{~b}<=\mathrm{a} \& \mathrm{a}<=2 * \mathrm{~b}+1$
->
$c=3 * b+1$
->
c > a

Example

Program with assertion:

$$
\begin{aligned}
& \text { if }(\mathrm{a}==2 * \mathrm{x} \& \& \mathrm{a}>=0)\{ \\
& \mathrm{b}=\mathrm{a} / 2 \text {; } \\
& \mathrm{c}=3 * \mathrm{~b}+1 ; \\
& \text { assert }(\mathrm{c}>\mathrm{a}) \text {; }
\end{aligned}
$$

As a verification condition:
$\mathrm{a}=2 * \mathrm{x}$ \& $\mathrm{a}>=0$
->
$2 * \mathrm{~b}<=\mathrm{a} \& \mathrm{a}<=2 * \mathrm{~b}+1$
->
$c=3 * b+1$
->
c > a
// Interpolant: 3*b >= a
// Interpolant: c >= a + 1

Other applications of interpolation

- Blocking lemmas for test-case generation
- Refinement of abstractions in CEGAR
- Computation of summaries
- Synthesis

Interpolation + theories

Interpolation procedures need to support the program logic:

$\operatorname{int} a[], i ;$
$\max =a[0] ;$
for $(i=1 ; i<n ;++i)$
\quad if $(a[i]>\max)$
$\max =a[i] ;$
$\operatorname{assert}(\max >=a[i / 2]) ;$

E.g., combined use of linear integer arithmetic and arrays

Relevant questions, given a logic L

- Is L closed under interpolation?
- Practical interpolation procedures for L

Definition

Logic L is closed under interpolation if for all $A, B \in F$ such that $A \Rightarrow B$, there is an interpolant expressible in L.

- In particular:

Is quantifier-free fragment of L closed under interpolation?

Interpolation for integers

Presburger Arithmetic (QPA)

$$
\begin{aligned}
t::= & \alpha|c| x \mid \alpha t+\cdots+\alpha t \\
\phi::= & \phi \wedge \phi|\phi \vee \phi| \neg \phi|\phi \rightarrow \phi| \forall x \cdot \phi \mid \exists x \cdot \phi \\
& |t \doteq 0| t \leq 0|\alpha| t
\end{aligned}
$$

t... terms
ϕ... formulae
x... variables
c ... constant symbols
$\alpha \ldots$ integer literals (\mathbb{Z})

Interpolation for integers

Presburger Arithmetic (QPA)

$$
\begin{aligned}
t::= & \alpha|c| x \mid \alpha t+\cdots+\alpha t \\
\phi::= & \phi \wedge \phi|\phi \vee \phi| \neg \phi|\phi \rightarrow \phi| \forall x \cdot \phi \mid \exists x \cdot \phi \\
& |t \doteq 0| t \leq 0|\alpha| t
\end{aligned}
$$

Mainly considered here: the quantifier-free fragment (PA)

Interpolation by quantifier elimination (QE)

Theorem (QE for Presburger Arithmetic)

For every formula ϕ in full QPA, there is an equivalent quantifier-free formula ψ that can effectively be computed.

Interpolation by quantifier elimination (2)

Lemma

If $A \rightarrow C$ is a valid implication, then

- $\exists_{\text {local-syms }(A)}(A)$ is the strongest interpolant,
- $\forall_{\text {local-syms }(C)}(C)$ is the weakest interpolant.
local-syms (A) : symbols occurring in A, but not in C local-syms(C): ...

Corollary

Both PA and QPA are closed under interpolation.

Interpolation vs. QE

However ...

- QE has high computational complexity
- strongest and weakest interpolants are often not needed/desirable
\Rightarrow Larger interpolants, containing irrelevant information

Proof-based interpolation techniques

Abstraction with interpolants

$$
\text { \{pre\} Body; Body \{post\} ? }
$$

Bounded model checking problem

Compute intermediate assertion ψ_{1}

Abstraction with interpolants

\{pre\} Body; Body \{post\} ?

Bounded model checking problem

Compute intermediate assertion ψ_{1}

Towards practical integer interpolation procedures

- Difference logic [McMillan, 2006]
- Integer equalities + divisibility constraints [Jain, Clarke, Grumberg, 2008]
- Unit-two-variable-per-inequality [Cimatti, Griggio, Sebastiani, 2009]
- Simplex-based, full PA
[Lynch, Tang, 2008]
\Rightarrow Leaves local symbols/quantifiers in interpolants

Towards practical interpolation procedures (2)

Proof-based methods for full PA:

- Sequent calculus-based [Brillout, Kroening, Rümmer, Wahl, 2010]
- Simplex-based, special branch-and-cut rule [Kroening, Leroux, Rümmer, 2010]
- Simplex-based, targeting SMT
[Griggio, Le, Sebastiani, 2011]
- From Z3 proofs
[McMillan, 2011]

What makes interpolation over integers difficult?

Reverse interpolants

Definition

Suppose $A \wedge B$ is unsatisfiable.
A reverse interpolant is a formula I such that

- $A \rightarrow I$ and $B \rightarrow \neg I$ are valid,
- every non-logical symbol of I occurs in both A and B.

Lemma

I is reverse interpolant for $A \wedge B$

I is interpolant for $A \rightarrow \neg B$

What makes interpolation over integers difficult?

What makes interpolation over integers difficult?

Consider rational case:

$$
\underbrace{\bigwedge_{i=1}^{n} t_{i} \leq 0}_{A} \wedge \underbrace{\bigwedge_{j=1}^{m} s_{j} \leq 0}_{B}
$$

Lemma (Witnesses)

$A \wedge B$ is unsat over \mathbb{Q} iff there are non-negative $\left\{\alpha_{i}\right\}_{i=1}^{n},\left\{\beta_{j}\right\}_{j=1}^{m}$ such that:

$$
\sum_{i=1}^{n} \alpha_{i} t_{i}+\sum_{j=1}^{m} \beta_{j} s_{j} \quad \in \mathbb{Q}_{>0}
$$

What makes interpolation over integers difficult?

Consider rational case:

$$
\underbrace{\bigwedge_{i=1}^{n} t_{i} \leq 0}_{A} \wedge \underbrace{\bigwedge_{j=1}^{m} s_{j} \leq 0}_{B}
$$

Lemma (Witnesses)

$A \wedge B$ is unsat over \mathbb{Q} iff there are non-negative $\left\{\alpha_{i}\right\}_{i=1}^{n},\left\{\beta_{j}\right\}_{j=1}^{m}$ such that:

$$
\sum_{i=1}^{n} \alpha_{i} t_{i}+\sum_{j=1}^{m} \beta_{j} s_{j} \quad \in \mathbb{Q}_{>0}
$$

Then:

$$
\sum_{i=1}^{n} \alpha_{i} t_{i} \leq 0 \quad \text { is a reverse interpolant }
$$

What makes interpolation over integers difficult? (2)

Why does this not work for integers?

What makes interpolation over integers difficult? (2)

Why does this not work for integers?

Over \mathbb{Z}, additional rules are needed, such as:

- Branch-and-bound (unproblematic, but incomplete)
- Cutting planes, Gomory cuts
- Cuts-from-proofs
- Omega rule
\Rightarrow Interpolation more intricate

What makes interpolation over integers difficult? (3)

Theorem

There is a family $\left\{A_{n} \wedge B_{n}\right\}_{n}$ of PA formulae such that

- $A_{n} \wedge B_{n}$ is unsatisfiable,
- $A_{n} \wedge B_{n}$ has a cutting plane proof of size independent of n,
- all reverse interpolants have size at least linear in n.
(for the definition of PA shown earlier)

What makes interpolation over integers difficult? (4)

Example:

$$
\begin{aligned}
& A_{n}=-n<y+2 n x \wedge y+2 n x \leq 0 \\
& B_{n}=0<y+2 n z \wedge y+2 n z \leq n
\end{aligned}
$$

All reverse interpolants for $A_{n} \wedge B_{n}$ are equivalent to:

$$
I_{n}=(2 n \mid y) \vee(2 n \mid y+1) \vee(2 n \mid y+2) \vee \cdots \vee(2 n \mid y+n-1)
$$

What makes interpolation over integers difficult? (4)

Example:

$$
\begin{aligned}
& A_{n}=-n<y+2 n x \wedge y+2 n x \leq 0 \\
& B_{n}=0<y+2 n z \wedge y+2 n z \leq n
\end{aligned}
$$

All reverse interpolants for $A_{n} \wedge B_{n}$ are equivalent to:

$$
I_{n}=(2 n \mid y) \vee(2 n \mid y+1) \vee(2 n \mid y+2) \vee \cdots \vee(2 n \mid y+n-1)
$$

Problematic: mixed cuts

Three main approaches to handle mixed cuts

- Fully expanded interpolants
- Restricted/taylor-made cut rule
- Extended interpolant language

Next:
Comparison + unifying description

Interpolation outline

Craig interpolant $A \rightarrow I \rightarrow C$

Interpolation outline

Craig interpolant $A \rightarrow I \rightarrow C$

Main non-interpolating proof rules

Closure rule ($\alpha>0$)

$$
\frac{*}{\Gamma, \alpha \leq 0 \vdash \Delta} \text { CLOSE-INEQ }{ }^{\prime}
$$

Linear combination of inequalities $(\alpha>0, \beta>0)$

$$
\frac{\Gamma, \ldots, \alpha s+\beta t \leq 0 \vdash \Delta}{\Gamma, s \leq 0, t \leq 0 \vdash \Delta} \text { FM-ELIM }^{\prime}
$$

Strengthening inequalities (subsumes rounding + cuts)

$$
\frac{\Gamma, t \doteq 0 \vdash \Delta \quad \Gamma, t+1 \leq 0 \vdash \Delta}{\Gamma, t \leq 0 \vdash \Delta} \text { STRENGTHEN }{ }^{\prime}
$$

Example of non-interpolating proof

$\frac{*}{\ldots, 3 \leq 0 \vdash}$ INEQ-CLOSE $^{\prime}$
$\frac{\ldots, 3 x \leq 0,-2 x+1 \leq 0 \vdash}{\ldots, \text { FM-ELIM }^{\prime}} \quad \ldots$
$\frac{\ldots, 3 x-2 \leq 0,-2 x+1 \leq 0 \vdash}{a+x \leq 0,-a+2 x-2 \leq 0,-2 x+1 \leq 0 \vdash}$
STRENGTHEN
FM-ELIM

Interpolation outline

PA implication $A \rightarrow C$

Interpolating proof of $A \rightarrow C$

Craig interpolant $A \rightarrow I \rightarrow C$

Basic idea of proof lifting

Interpolation problem: $A \rightarrow I \rightarrow C$

$$
\begin{gathered}
\frac{\Gamma_{3} \vdash \Delta_{3}}{\Gamma_{2} \vdash \Delta_{2}} \\
\frac{\Gamma_{1} \vdash \Delta_{1}}{\vdots} \\
A \vdash C
\end{gathered}
$$

Basic idea of proof lifting

Interpolation problem: $A \rightarrow I \rightarrow C$

Main idea: annotations track inequalities from A

Basic idea of proof lifting

Interpolation problem: $A \rightarrow I \rightarrow C$

Main idea: annotations track inequalities from A

Basic idea of proof lifting

Interpolation problem: $A \rightarrow I \rightarrow C$

	$\Gamma_{3} \vdash \Delta_{3}$
annotation of	$\bar{\Gamma} \overline{\Gamma_{2} \vdash \Delta_{2}}$
formulae with labels	$\Gamma_{1}^{*} \vdash \Delta_{1}^{*}$

Main idea: annotations track inequalities from A

Basic idea of proof lifting

Interpolation problem: $A \rightarrow I \rightarrow C$

Main idea: annotations track inequalities from A

Basic idea of proof lifting

Interpolation problem: $A \rightarrow I \rightarrow C$

Main idea: annotations track inequalities from A

Basic idea of proof lifting

Interpolation problem: $A \rightarrow I \rightarrow C$

Main idea: annotations track inequalities from A

Basic idea of proof lifting

Interpolation problem: $A \rightarrow I \rightarrow C$

Main idea: annotations track inequalities from A

Basic idea of proof lifting

Interpolation problem: $A \rightarrow I \rightarrow C$

Main idea: annotations track inequalities from A

Basic idea of proof lifting

Interpolation problem: $A \rightarrow I \rightarrow C$

Main idea: annotations track inequalities from A

Basic idea of proof lifting

Interpolation problem: $A \rightarrow I \rightarrow C$

Main idea: annotations track inequalities from A

Labelled formulae

Interpolation problem: $A \rightarrow I \rightarrow C$

Labelled formula Intuition

$$
\phi\left[\phi^{A}\right] \quad \text { " } \phi^{A} \text { is A-contribution to } \phi^{\prime \prime} \text { (} \phi^{A} \text { is the partial interpolant of } \phi
$$

Interpolating rules

Interpolation problem: $A \rightarrow I \rightarrow C$

Initialisation rule: $t \leq 0$ comes from A

$$
\frac{\Gamma, t \leq 0[t \leq 0] \vdash \Delta \bullet I}{\Gamma, t \leq 0 \vdash \Delta \bullet I} \text { IPI-LEFT-L }
$$

Initialisation rule: $t \leq 0$ comes from C

$$
\frac{\Gamma, t \leq 0[0 \leq 0] \vdash \Delta \bullet I}{\Gamma, t \leq 0 \vdash \Delta \bullet I} \text { IPI-LEFT-R }
$$

- Similarly for equations, etc.

Interpolating rules

Closure rule $(\alpha>0)$

$$
\frac{*}{\Gamma, \alpha \leq 0\left[t^{A} \leq 0\right] \vdash \Delta \bullet t^{A} \leq 0} \text { CLOSE-INEQ }
$$

Linear combination of inequalities $(\alpha>0, \beta>0)$

$$
\frac{\Gamma, \ldots, \alpha s+\beta t \leq 0\left[\alpha s^{A}+\beta t^{A} \leq 0\right] \vdash \Delta \bullet I}{\Gamma, s \leq 0\left[s^{A} \leq 0\right], t \leq 0\left[t^{A} \leq 0\right] \vdash \Delta \bullet I}
$$

How to interpolate STRENGTHEN'?

$$
\frac{\Gamma, t \doteq 0 \vdash \Delta \quad \Gamma, t+1 \leq 0 \vdash \Delta}{\Gamma, t \leq 0 \vdash \Delta} \text { STRENGTHEN }^{\prime}
$$

Three sound \& complete ways ...

1. Method: only do pure strengthening

Pure STRENGTHEN

$$
\begin{gathered}
\Gamma, t \doteq 0[t \doteq 0] \vdash \Delta \bullet I \\
\Gamma, t+1 \leq 0[t+1 \leq 0] \vdash \Delta \bullet J \\
\Gamma, t \leq 0[t \leq 0] \vdash \Delta \bullet I \vee J \\
\\
\quad \Gamma, t \doteq 0[0 \doteq 0] \vdash \Delta \bullet I \\
\frac{\Gamma, t+1 \leq 0[0 \leq 0] \vdash \Delta \bullet J}{\Gamma, t \leq 0[0 \leq 0] \vdash \Delta \bullet I \wedge J} \text { STRENGTHEN-L }
\end{gathered}
$$

1. Method: only do pure strengthening

Pure STRENGTHEN

$$
\begin{aligned}
& \Gamma, t \doteq 0[t \doteq 0] \vdash \Delta \bullet I \\
& \Gamma, t+1 \leq 0[t+1 \leq 0] \vdash \Delta \bullet J \\
& \Gamma, t \leq 0[t \leq 0] \vdash \Delta \bullet I \vee J \\
& \text { STRENGTHEN-L } \\
& \Gamma, t \doteq 0[0 \doteq 0] \vdash \Delta \bullet । \\
& \frac{\Gamma, t+1 \leq 0[0 \leq 0] \vdash \Delta \bullet J}{\Gamma, t \leq 0[0 \leq 0] \vdash \Delta \bullet I \wedge J} \text { STRENGTHEN-R }
\end{aligned}
$$

- Resembles Omega test
- Can lead to large proofs, but interpolants of linear size
- Integration with Simplex in [LPAR, 2010]
\Rightarrow Special branch-and-cut rule

Interpolating proof for previous example

$$
\begin{gathered}
\frac{*}{\ldots, 3 \leq 0[6 x \leq 0] \vdash \bullet x \leq 0} \\
\frac{\ldots, 3 x \leq 0[3 x \leq 0],-2 x+1 \leq 0[0 \leq 0] \vdash \bullet x \leq 0}{\ldots-2 \leq 0[3 x-2 \leq 0],-2 x+1 \leq 0[0 \leq 0] \vdash \bullet x \leq 0} \\
\hline a+x \leq 0[a+x \leq 0], \\
-a+2 x-2 \leq 0[-a+2 x-2 \leq 0], \vdash \bullet x \leq 0 \\
-2 x+1 \leq 0[0 \leq 0]
\end{gathered}
$$

Original proof

$\frac{*}{\ldots, 3 \leq 0 \vdash}$ INEQ-CLOSE $^{\prime}$
$\frac{\ldots, 3 x \leq 0,-2 x+1 \leq 0 \vdash}{\ldots, \text { FM-ELIM }^{\prime}} \quad \ldots$
$\frac{\ldots, 3 x-2 \leq 0,-2 x+1 \leq 0 \vdash}{a+x \leq 0,-a+2 x-2 \leq 0,-2 x+1 \leq 0 \vdash}$
STRENGTHEN $^{\prime} \times 2$

2. Method: allow mixed strengthening

General, mixed strengthen ("mixed cuts")

$$
\begin{gathered}
\Gamma, t \doteq 0\left[t^{A} \doteq 0\right] \vdash \Delta \bullet E \\
\Gamma, t+1 \leq 0\left[t^{A} \leq 0\right] \vdash \Delta \bullet I^{0} \\
\Gamma, t+1 \leq 0\left[t^{A}+1 \leq 0\right] \vdash \Delta \bullet I^{1} \\
\Gamma, t \leq 0\left[t^{A} \leq 0\right] \vdash \Delta \bullet I^{1} \vee\left(E \wedge I^{0}\right)
\end{gathered}
$$

2. Method: allow mixed strengthening

General, mixed STRENGTHEN ("mixed cuts")

$$
\begin{gathered}
\Gamma, t \doteq 0\left[t^{A} \doteq 0\right] \vdash \Delta \bullet E \\
\Gamma, t+1 \leq 0\left[t^{A} \leq 0\right] \vdash \Delta \bullet I^{0} \\
\Gamma, t+1 \leq 0\left[t^{A}+1 \leq 0\right] \vdash \Delta \bullet I^{1} \\
\Gamma, t \leq 0\left[t^{A} \leq 0\right] \vdash \Delta \bullet I^{1} \vee\left(E \wedge I^{0}\right)
\end{gathered}
$$

- Covers Omega test, Gomory cuts, etc.
- Interpolants can be exponentially larger than (non-interpolating) proofs
- Sometimes observed in practice:

Proof can be constructed, but proof lifting times out
3. Method: bounded quantification

STRENGTHEN with bounded quantification

3. Method: bounded quantification

STRENGTHEN with bounded quantification

$$
\begin{gathered}
\Gamma, t \doteq 0\left[t^{A} \doteq 0\right] \vdash \Delta \bullet E \\
\Gamma, t+1 \leq 0\left[t^{A} \leq 0\right] \vdash \Delta \bullet I^{0} \\
\frac{\Gamma, t+1 \leq 0\left[t^{A}+1 \leq 0\right] \vdash \Delta \bullet I^{1}}{\Gamma, t \leq 0\left[t^{A} \leq 0\right] \vdash \Delta \bullet I^{1} \vee\left(E \wedge I^{0}\right)} \text { STRENGTHEN }
\end{gathered}
$$

3. Method: bounded quantification

STRENGTHEN with bounded quantification

$$
\begin{gathered}
\Gamma, t \doteq 0\left[t^{A} \doteq 0\right] \vdash \Delta \bullet E \\
\Gamma, t+1 \leq 0\left[t^{A} \leq 0\right] \vdash \Delta \bullet I^{0} \\
\Gamma, t+1 \leq 0\left[t^{A}+1 \leq 0\right] \vdash \Delta \bullet I^{1} \\
\Gamma, t \leq 0\left[t^{A} \leq 0\right] \vdash \Delta \bullet I^{1} \vee\left(E \wedge I^{0}\right)
\end{gathered}
$$

3. Method: bounded quantification

STRENGTHEN with bounded quantification

$$
\begin{gathered}
\Gamma, t \doteq 0\left[t^{A} \doteq 0\right] \vdash \Delta \bullet E \\
\Gamma, t \leq 0\left[t^{A} \leq 0\right] \vdash \Delta \bullet I(1) \vee(E \wedge I(0)) \\
\Gamma, t+1 \leq 0\left[t^{A}+p \leq 0\right] \vdash \Delta \bullet I(p) \\
\text { STRENGTHEN }
\end{gathered}
$$

3. Method: bounded quantification

STRENGTHEN with bounded quantification

$$
\begin{gathered}
\Gamma, t \doteq 0\left[t^{A} \doteq 0\right] \vdash \Delta \bullet E \\
\frac{\Gamma, t+1 \leq 0\left[t^{A}+p \leq 0\right] \vdash \Delta \bullet I(p)}{\Gamma, t \leq 0\left[t^{A} \leq 0\right] \vdash \Delta \vee 0 \leq p \leq 1 .} \\
\begin{array}{c}
\exists(p) \wedge(p \doteq 1 \vee E)
\end{array} \text { STRENGTHEN-BQ }
\end{gathered}
$$

3. Method: bounded quantification

STRENGTHEN with bounded quantification

$$
\begin{gathered}
\Gamma, t \doteq 0\left[t^{A} \doteq 0\right] \vdash \Delta \bullet E \\
\Gamma, t+1 \leq 0\left[t^{A}+p \leq 0\right] \vdash \Delta \bullet I(p) \\
\Gamma, t \leq 0\left[t^{A} \leq 0\right] \vdash \Delta \bullet \begin{array}{l}
\exists \leq p \leq 1 . \\
I(p) \wedge(p \doteq 1 \vee E)
\end{array}
\end{gathered}
$$

- Proofs + interpolants only grow linearly
- Interpolants contain bounded quantifiers
- Specialised versions for rounding possible [IJCAR, 2010]
- Related observation in [Griggio, Le, Sebastiani, 2011]: Mixed cuts can be interpolated concisely using integer division

Combining method $2+3$

Observation, in practice:
QE methods often eliminate bounded quantifiers without blowup

Combining method $2+3$

Observation, in practice:
QE methods often eliminate bounded quantifiers without blowup
Implication $A \rightarrow C$

Proof lifting
(method 2) $\longrightarrow \begin{gathered}\text { Quantifier-free } \\ \text { interpolant } /\end{gathered}$

Combining method $2+3$

Observation, in practice:
QE methods often eliminate bounded quantifiers without blowup
Implication $A \rightarrow C$

Ongoing work

Elimination of bounded quantifiers ...

- Often leads to very concise interpolants
- Sometimes causes blowup (e.g., when encoding bitvector problems)

Ongoing: better integration of methods $2+3$

- Detect in which cases bounded quantifiers are cheap to eliminate

Also ongoing:

- Experimental comparison of methods $1+2+3$, in a model checker

Implementations

Implementations

Method 1: OpenSMT [LPAR, 2010]

- Simplex-based
- Branch-and-cut rule, avoiding mixed cuts

Method $2+3$: Princess [IJCAR, 2010]

- Omega-based
- First interpolants with bounded quantifiers, then quantifier elimination (Omega)
- http://www.philipp.ruemmer.org/princess.shtml

About Princess

- Started in 2007, slowly moving along (name "Princess" \rightarrow complicated explanation)
- Entirely implemented in Scala
- Original motivation:

Explore combination of FOL + theory reasoning

- Input logic:

QPA + uninterpreted predicates/functions

Combination of different prover architectures

Experiment in Princess:

- KE-tableau/DPLL
- Theory procedures
- E-matching
- Free variables + constraints

FOL
Arithmetic
Axiomatisation of theories
Quantifiers

- Interesting completeness results
- Proof generation (used for interpolation)
- Some features that are rather unique

(In)Completeness of the Princess calculus

Lemma (Completeness)

Complete for fragments:

- FOL
- PA
- Purely existential formulae
- Purely universal formulae
- Universal formulae with finite parametrisation (same as $\mathcal{M E}(L I A))$
- Valid formulae in the full logic are not enumerable [Halpern, 1991]

About Scala

Java + functional features

- Algebraic datatypes
- Pattern matching
- Type inference
- Higher-order functions
- Monads
- Actors, concurrent datatypes
- Developed by Martin Odersky's group, EPFL
- Compilation to Java bytecode (primarily)
- Full access to Java libraries

About Scala

Java + functional features

- Algebraic datatypes
- Pattern matching
- Type inference
- Higher-order functions
- Monads
- Actors, concurrent datatypes
- Developed by Martin Odersky's group, EPFL
- Compilation to Java bytecode (primarily)
- Full access to Java libraries
- Is Scala a language usable for solver implementations?

Some observations and thoughts on Scala ...

Elegant APIs possible

```
val c = new ConstantTerm("c")
val d = new ConstantTerm("d")
```

val f = new IFunction("f", 1, false, false)
println(isSat(c >= $12 \& c * 2<40 \& f(c-d)<100))$

Elegant APIs possible

val c = new ConstantTerm("c")
val d = new ConstantTerm("d")
val $f=$ new IFunction("f", 1, false, false)
println(isSat(c >= $12 \& c * 2<40 \& f(c-d)<100))$

Maybe more relevant for solver users than developers

Deployment

- Bytecode is very convenient
- However: Scala tends to generate many many classes E.g. in Princess: before compilation ≈ 350 after compilation ≈ 3000
- ProGuard (compression tool) is useful \Rightarrow Generate one jar file, including all Scala libraries

Performance? (disclaimer)

Princess was not developed in a very performance-oriented way:

- Mostly functional (immutable) datastructures
- No native datastructures (JNI)
- Generally: Correctness considered more important than efficiency

Compared to other languages (Compiler shootout)

compare 2							

JVM warm-up

JVM warm-up (2)

Caused by:

- Dynamic class loading
- Just-in-time compilation + optimisation

This means:

- Restarting solver between queries has to be avoided
- Load solver as a library (jar-file), or
- Run as a daemon

Evaluation on AUFLIA benchmarks

	AUFLIA $+\mathbf{p}$ (193)	AUFLIA-p (193)
Z3	191	191
Princess	$\mathbf{1 4 5}$	$\mathbf{1 3 7}$
CVC3	132	128

- Unsatisfiable AUFLIA benchmarks from SMT-comp 2011
- Intel Core i5 2-core, 3.2 GHz , timeout 1200s, 4Gb
- http://www.philipp.ruemmer.org/princess.shtml

Typical PA SAT queries in a model checker (Eldarica)

Profiling Scala applications

Does not work

Synthetic interpolation benchmarks (beginning 2011)

- Evaluation on SMT-LIB QF_LIA benchmarks
- Partitionings:

First $\frac{k}{10} \cdot n$ benchmark conjuncts as A, rest as B (where n is total number of conjuncts, $k \in\{1, \ldots, 9\}$)

- Intel Xeon X5667 4-core, 3.07GHz, 12GB heap-space, Linux, timeout 900s.
http://www.philipp.ruemmer.org/princess.shtml

Compared tools

- Princess, OpenSMT
- SMTInterpol: interpolating SMT solver from Uni Freiburg
- CSIsat: constraint-based interpolation for linear rational arithmetic + unint. functions
- Omega: quantifier elimination procedure (strongest interpolants can be computed using QE)

Experimental results

	Multiplier	Bitadder	Mathsat	Rings	Convert
	16 unsat	17 unsat	100 unsat	294 unsat	38 unsat
	1 sat				109 sat
					172 unkn.
Princess	$\mathbf{8 / 1 / 4 1}$	$\mathbf{7 / 0 / 6 3}$	$44 / 13 / 396$	$\mathbf{1 3 0 / 0 / 2 0 9}$	$\mathbf{3 8 / 8 2 / 3 3 4}$
	$136 / \mathbf{1 6 2 3}$	$298 / 76953$	$106 / 7007$	$233 / 5146$	$88.0 / \mathbf{1}$
OpenSMT	$5 / 1 / 45$	$7 / 0 / 63$	$\mathbf{7 4 / 1 5 / 6 6 6}$	$9 / 0 / 81$	$37 / 0 / 333$
	$48.9 / 2357$	$103 / 23362$	$53.0 / 2020$	$59.9 / 4611$	$\mathbf{0 . 0 8 / 1}$
SMTInterpol	$5 / 1 / 45$	$5 / 0 / 45$	$65 / 13 / 585$	$0 / 0 /-$	$37 / 0 / 333$
	$24.4 / 48827$	$\mathbf{8 . 5 8 / 4 1 0 7 7}$	$\mathbf{4 5 . 7} / 126705$	$-/-$	$13.6 / 2$
CSIsat	$4 / 1 / 36$	$1 / 0 / 9$	$25 / 12 / 225$	-	-
	$106 / 2640$	$0.56 / 188$	$70.8 / 12683$	-	-
Omega QE	$-/-/ 125$	$-/-/ 129$	$-/-/ 612$	$-/-/ 1474$	$-/-/ 296$
	$109 / 15392$	$97.8 / 93181$	$169 / 101088$	$227 / 55307$	$15.4 / 2668$
	$\#$ unsat / \#sat/\#interpolants/average time (s)/average int. size				

Experimental results: interpolant sizes

Experimental results: interpolant sizes (2)

Conclusions

Is Scala a language usable for solver implementations?

Pros

- Deployment
- Very elegant APIs possible
- Convenient

Cons

- Warm-up time of JVM
- Performance penalty still significant

Thanks for your attention!

