Craig Interpolation for Integer Arithmetic:

Results, Implementation, Experiences

Philipp Rummer
Uppsala University

IWIL Workshop
March 10th, 2012

1/84

Outline

Craig Interpolation for Presburger Arithmetic
e Motivation
¢ Craig's theorem

e Results and methods for integers

Implementation, Experiences
e Implementation in the theorem prover PRINCESS
e Experiences with Scala for solvers

e Some experimental data

Motivation: inference of invariants

Generic verification problem (“safety”)
{ pre } while (%) Body { post }

Standard approach: loop rule using invariant
pre=¢ { ¢} Body { ¢ } ¢=post

{ pre } while (*) Body { post }

How to compute ¢ automatically?

3/84

From intermediate assertions to invariants

{pre} Body; Body {post}

Bounded model checking problem v

Compute intermediate assertion 1

{pre} Body {91} {t1} Body {post}

[McMillan, 2003]

84

From intermediate assertions to invariants

{pre} Body; Body {post}

Bounded model checking problem v

Compute intermediate assertion 1

{pre} Body {91} {t1} Body {post}

[¢1 = pre]

pre is invariant v
[McMillan, 2003]

84

From intermediate assertions to invariants

{pre} Body; Body {post}

Bounded model checking problem v

Compute intermediate assertion 1

{pre} Body {91} {t1} Body {post}

[y = pre] [otherwise]

pre is invariant v
[McMillan, 2003]

84

From intermediate assertions to invariants

{pre v 1} Body; Body {post}
Bounded model checking problem v

Compute intermediate assertion

{pre v i1} Body {2} {12} Body {post}

[y = pre] [otherwise]

pre is invariant v
[McMillan, 2003]

84

From intermediate assertions to invariants

{pre v 1} Body; Body {post}
Bounded model checking problem v

Compute intermediate assertion

{pre v 91} Body {tn} {12} Body {post}

[t)» = pre v 1] [otherwise]

pre VvV is invariant v
[McMillan, 2003]

84

From intermediate assertions to invariants

{pre v 1} Body; Body {post}
Bounded model checking problem v

Compute intermediate assertion

{pre v 91} Body {tn} {12} Body {post}

[th2 = pre v 4]

pre Vi is invariant v
[McMillan, 2003]

84

How to compute intermediate assertions?

{ pre } pre (so)
Body; — Body (0, 51)
Body — Body (s1,52)

{ post } — post ()

/84

How to compute intermediate assertions?

{ pre } pre (so)
Body; — Body (0, 51)
Body — Body (s1,52)

{ post } — post ()

Theorem (Craig, 1957)

Suppose A — C is a valid FOL implication.
Then there is a formula | (an interpolant) such that

e A— [and | - C are valid,

e every non-logical symbol of | occurs in both A and C.

How to compute intermediate assertions?

{ pre } pre (o) Also,51)
Body; — Body (sp, s1) l
EEEEEEEEEEEEEEEEEEEEEEEEENEENEEEEEEEEEEEEEEEESR I S
Body — Body (s1,52) (ll)
{ post } — post (s2) Cls,)

Theorem (Craig, 1957)

Suppose A — C is a valid FOL implication.
Then there is a formula | (an interpolant) such that

e A— [and | - C are valid,

e every non-logical symbol of | occurs in both A and C.

Illustration

Interpolation problem: A— /- C

6/84

Illustration

Interpolation problem: A— /- C

c

W)

6/84

Example

Program with assertion:

if (a == 2*x && a >= 0) {

b=a/ 2;

c = 3%xb + 1;
assert (c > a);
}

As a verification condition:

a=2xx & a>20

->
2%b <= a & a <= 2xb + 1
->

c=3%b + 1

->

c > a

84

Example

Program with assertion:

if (a == 2*x && a >= 0) {

b=a/ 2;

c = 3%xb + 1;
assert (c > a);
}

As a verification condition:

a=2xx & a>20

->

2xb <= a & a <= 2xb + 1

-> // Interpolant: 3*b >= a
c =3%b + 1

-> // Interpolant: c >= a + 1

c > a

Other applications of interpolation

Blocking lemmas for test-case generation
Refinement of abstractions in CEGAR
Computation of summaries

Synthesis

84

Interpolation + theories

Interpolation procedures need to support the program logic:

int a[],i;

max = a[0];

for (i = 1; i < n; ++i)
if (a[i] > max)
max = a[i];

assert (max >= al[i/2]);

E.g., combined use of linear integer arithmetic and arrays

84

Relevant questions, given a logic L

e Is L closed under interpolation?

e Practical interpolation procedures for L

Definition

Logic L is closed under interpolation if
for all A, B € F such that A= B, there is an interpolant

expressible in L.

e In particular:
Is quantifier-free fragment of L closed under interpolation?

10/84

Interpolation for integers

Presburger Arithmetic (QPA)

t

« | c‘x|at+---+at

b= pAG | dve|-d| b | Vxs|Ixe

|t=0|t<0|]t

terms
formulae
variables

constant symbols

S a0 X © ~

integer literals (Z)

11/84

Interpolation for integers

Presburger Arithmetic (QPA)

t = « | c|x|at+---+at

dng | ove|-¢|s—o|vxs|Ixe

|t=0|t<0|]t

¢

Mainly considered here: the quantifier-free fragment (PA)

11/84

Interpolation by quantifier elimination (QE)

Theorem (QE for Presburger Arithmetic)

For every formula ¢ in full QPA, there is an equivalent
quantifier-free formula 1) that can effectively be computed.

12 /84

Interpolation by quantifier elimination (2)

If A— C is a valid implication, then

* Jjocarsyms(a)(A) is the strongest interpolant,

® Yiocal-syms(C)(C) is the weakest interpolant.

local-syms(A): symbols occurring in A, but not in C
local-syms(C): ...

Both PA and QPA are closed under interpolation. I

13 /84

Interpolation vs. QE

However ...
e QE has high computational complexity

e strongest and weakest interpolants are often not
needed/desirable
= Larger interpolants, containing irrelevant information

14 /84

Proof-based interpolation techniques

Implication A - C

[Theorem prover] Model

Proof of A— C

Proof lifting

Interpolating proof of A —» C

Craig interpolant A—= | - C

15 /84

Abstraction with interpolants

{pre} Body; Body {post} 7

Bounded model checking problem v

Compute intermediate assertion 1)1

16 /84

Abstraction with interpolants

{pre} Body; Body {post} 7

Bounded model checking problem v~

Compute intermediate assertion 1)1

A

Interpolant extracted
from proof
=

Abstraction from
unnecessary details

16 /84

Towards practical integer interpolation procedures

Difference logic
[McMillan, 2006]

e Integer equalities + divisibility constraints
[Jain, Clarke, Grumberg, 2008]
Unit-two-variable-per-inequality

[Cimatti, Griggio, Sebastiani, 2009]

Simplex-based, full PA
[Lynch, Tang, 2008]
= Leaves local symbols/quantifiers in interpolants

17 /84

Towards practical interpolation procedures (2)

Proof-based methods for full PA:

e Sequent calculus-based
[Brillout, Kroening, Riimmer, Wahl, 2010]

e Simplex-based, special branch-and-cut rule
[Kroening, Leroux, Riimmer, 2010]

e Simplex-based, targeting SMT
[Griggio, Le, Sebastiani, 2011]

e From Z3 proofs
[McMillan, 2011]

18 /84

What makes interpolation over integers difficult?

19/84

Reverse interpolants

Definition

Suppose A A B is unsatisfiable.
A reverse interpolant is a formula / such that

e A— | and B — =/ are valid,

e every non-logical symbol of / occurs in both A and B.

| is reverse interpolant for An B
<

| is interpolant for A - =B

20/84

What makes interpolation over integers difficult?

n m
Consider rational case: A\ t;<0 A /<0
i-1 j=1

N—— —_———
A B

21/84

What makes interpolation over integers difficult?

n m
Consider rational case: A\ t;<0 A /<0
i-1 j=1
N—— —_———
A B
Lemma (Witnesses)

AN B is unsat over Q iff
there are non-negative {a;}_,{;}]1; such that:

n m
Yaiti+ Y. Bisi €Qso

i=1 j=1

21 /84

What makes interpolation over integers difficult?

n m
Consider rational case: A\ t;<0 A /<0
i-1 j=1

N—— —_———
A B

Lemma (Witnesses)

AN B is unsat over Q iff
there are non-negative {a;}_,{;}]1; such that:

n m
Yaiti+ Y. Bisi €Qso
=i

i=1

Then:

n
Y aiti<0 s a reverse interpolant
i-1

21 /84

What makes interpolation over integers difficult? (2)

Why does this not work for integers?

22/84

What makes interpolation over integers difficult? (2)

Why does this not work for integers?

Over Z, additional rules are needed, such as:

* Branch-and-bound
(unproblematic, but incomplete)

e Cutting planes, Gomory cuts
e Cuts-from-proofs

e Omega rule

= Interpolation more intricate

22 /84

What makes interpolation over integers difficult? (3)

Theorem

There is a family {A, A Bp}, of PA formulae such that
e A, A B, is unsatisfiable,

e A, A B, has a cutting plane proof of size independent of n,
e all reverse interpolants have size at least linear in n.
(for the definition of PA shown earlier)

23/84

What makes interpolation over integers difficult? (4)

Example:

An
B,

-n<y+2nx A y+2nx<0

O<y+2nz A y+2nz<n

All reverse interpolants for A, A B, are equivalent to:

Ih = (2n|y)v(2n|y+1)v(2n|y+2)v--v(2n|y+n-1)

24 /84

What makes interpolation over integers difficult? (4)

Example:

An
B,

-n<y+2nx A y+2nx<0

O<y+2nz A y+2nz<n

All reverse interpolants for A, A B, are equivalent to:

Ih = (2n|y)v(2n|y+1)v(2n|y+2)v--v(2n|y+n-1)

Problematic: mixed cuts

24 /84

Three main approaches to handle mixed cuts

e Fully expanded interpolants
¢ Restricted/taylor-made cut rule

e Extended interpolant language

Next:
Comparison + unifying description

25 /84

Interpolation outline

Implication A - C

[Theorem prover] Model

Proof of A— C

Proof lifting

Interpolating proof of A —» C

Craig interpolant A—= | - C

26 /84

Interpolation outline

Implication A - C

[Theorem prover] Model

Proof of A - C

Proof lifting

Interpolating proof of A —» C

Craig interpolant A—= | - C

26 /84

Main non-interpolating proof rules

Closure rule (a > 0)

CLOSE-INEQ'

Linear combination of inequalities (a > 0,5 > 0)

N, ...,as+p0t<0 + A
I s<0,t<0rF A

FM-ELIM’

Strengthening inequalities (subsumes rounding + cuts)

t=0r A Nt+1<0+ A ,
Ft<0 - A STRENGTHEN

27 /84

Example of non-interpolating proof

* !/
— - INEQ-CLOSE
. 3<0 - Q-CLOS

!
.o, 3x<0, 2x+1<0 + FM-ELIM

3x-2<0. 2x+1<0 - STRENGTHEN' x 2
e <0, < ,
a+x<0, —a+2x-2<0, -2x+1<0 + FM-ELIM

28 /84

Interpolation outline

PA implication A - C

[Theorem prover] Model

Proof of A— C

Proof lifting

Interpolating proof of A —» C

Craig interpolant A— | - C

29 /84

Basic idea of proof lifting

Interpolation problem: A— /- C

*
M3 - As
I'2|—A2
I’1|—'A1

Ar C

30/84

Basic idea of proof lifting

Interpolation problem: A— /- C

*
M3 ~ As
annotation of 2 - A
formulae with labels LA
Ar C

Main idea: annotations track inequalities from A

30/84

Basic idea of proof lifting

Interpolation problem: A— /- C

*
M3 ~ As
annotation of LA?
formulae with labels e A
A* — C*

Main idea: annotations track inequalities from A

30/84

Basic idea of proof lifting

Interpolation problem: A—- /- C

*
M3 - As
annotation of %
formulae with labels 17 A
A* & C*

Main idea: annotations track inequalities from A

30/84

Basic idea of proof lifting

Interpolation problem: A—- /- C

*
annotation of M
formulae with labels [My '_ A
P

Main idea: annotations track inequalities from A

30/84

Basic idea of proof lifting

Interpolation problem: A— /- C

*
3 - A}
. s = A5
annotation of ﬁ
formulae with labels 1F A
A* © C*

Main idea: annotations track inequalities from A

30/84

Basic idea of proof lifting

Interpolation problem: A— /- C

*
s - A}
. > = A5 .
annotation of AR propagation of
formulae with labels 17 A interpolants
A" - C*

Main idea: annotations track inequalities from A

30/84

Basic idea of proof lifting

Interpolation problem: A— /- C

*

M3 - A3 »h

. > = A5 .
annotation of AR propagation of
formulae with labels 174 interpolants
A" - C*

Main idea: annotations track inequalities from A

30/84

Basic idea of proof lifting

Interpolation problem: A— /- C

M3 - A3 »h
M3 - A » b

ropagation of
- A propag

interpolants

annotation of
formulae with labels

A* — C*

Main idea: annotations track inequalities from A

30/84

Basic idea of proof lifting

Interpolation problem: A— /- C

M3 - A3 »h
M3 - A » b

B — ropagation of
M- A »hy propag

interpolants

annotation of
formulae with labels

A* — C*

Main idea: annotations track inequalities from A

30/84

Basic idea of proof lifting

Interpolation problem: A— /- C

*

M3 - A% sl
(5 - A5 »h

L ropagation of
M- A ol propag

interpolants

annotation of
formulae with labels

A - C* vl

Main idea: annotations track inequalities from A

30/84

Labelled formulae

Interpolation problem: A—- /- C

Labelled formula Intuition

“¢” is A-contribution to ¢"
@” is the partial interpolant of ¢

¢[o"]

31/84

Interpolating rules

Interpolation problem: A— /- C

Initialisation rule: t <0 comes from A
t<0[t<0] - A »/

IPI-LEFT-L
Ht<0 - A »/

Initialisation rule: t <0 comes from C
Mt<0[0<0] - A »/

IPI-LEFT-R
Mt<0+ Al

e Similarly for equations, etc.

32/84

Interpolating rules

Closure rule (a > 0)

* CLOSE-INEQ
Ma<0[t"<0] - A »t4<0

Linear combination of inequalities (a > 0,5 > 0)

M,...,as+pBt<0[as? +BtA<0] - A »/
Ms<0[s"<0],t<0[tA<0] - A »/

FM-ELIM

33/84

How to interpolate STRENGTHEN'?

Mt=0+r A Mt+1<0+ A

’
I',tsO A STRENGTHEN

Three sound & complete ways ...

34/84

1. Method: only do pure

Pure STRENGTHEN

t=0[t=0] - A »/
Mt+1<0[t+1<0]+ A »J

strengthening

Mt<0[t<0] - A»lvJ

[t=0[0=0] - A »/
Mt+1<0[0<0] - A »J

Mt<0[0<0] - A»inJ

STRENGTHEN-L

STRENGTHEN-R

35/84

1. Method: only do pure strengthening

Pure STRENGTHEN
Mt=0[t=0] - A »/
Mt+1<0[t+1<0] - A »J

rt<0[t<0] - A»lvlJ STRENGTHEN-L

[t=0[0=0] - A »/
Mt+1<0[0<0] - A »J

Mt<0[0<0] - A »/nJ STRENGTHEN-R

e Resembles Omega test
e Can lead to large proofs, but interpolants of linear size

e Integration with Simplex in [LPAR, 2010]
= Special branch-and-cut rule

35/84

Interpolating proof for previous example

*
..., 3<0[6x<0] v »x<0
..., 3x<0[3x<0], -2x+1<0[0<0] + »x<0
ooy 3x—=2<0[3x-2<0], 2x+1<0[0<0] - »x<0
a+x<0[a+x<0],
—a+2x-2<0[-a+2x-2<0], + »x<0
-2x+1<0[0<0]

Original proof

INEQ-CLOSE’

. *
..., 3<0 + ,
FM-ELIM

..y 3x<0, 2x+1<0 +
3x—2<0, 2x+1<0 + STRENGTHEN' x 2
e <0, < :
a+x<0, —a+2x-2<0, 2x+1<0 ~ IM-ELM

36/84

2. Method: allow mixed strengthening

General, mixed STRENGTHEN (“mixed cuts”)

Mt=0[t"=0] - A »E
Mt+1<0[tA<0] - A »/°
Mt+1<0[tA+1<0] + A » /!

Mt<0[t"<0] - A »IPV(EAI®

STRENGTHEN

37/84

2. Method: allow mixed strengthening

General, mixed STRENGTHEN (“mixed cuts”)

Mt=0[t"=0] - A »E
Mt+1<0[tA<0] - A »/°
Mt+1<0[tA+1<0] + A » /!

STRENGTHEN
Mt<0[t"<0] - A »IPV(EAI®

e Covers Omega test, Gomory cuts, etc.

e Interpolants can be
exponentially larger than (non-interpolating) proofs

e Sometimes observed in practice:
Proof can be constructed, but proof lifting times out

37/84

3. Method: bounded quantification

STRENGTHEN with bounded quantification

38/84

3. Method: bounded quantification

STRENGTHEN with bounded quantification

Mt=0[t"=0] - A »E
Mt+1<0[tA<0] - A »/°
Mt+1<0[th+1<0] - A » /!

Mt<0[t"<0] - A »IPV(EAI®

STRENGTHEN

38/84

3. Method: bounded quantification

STRENGTHEN with bounded quantification

Mt=0[t"=0] - A »E
Mt+1<0[tA<0] - A »/°
Mt+1<0[th+1<0] - A » /!

Mt<0[t"<0] - A » PV (EAI®

STRENGTHEN

38/84

3. Method: bounded quantification
STRENGTHEN with bounded quantification

Mt=0[t"=0] - A »E
Mt+1<0[th+p<0] - A »I(p)

Mt<0[t"<0] - A »I(1) v (EAI))

STRENGTHEN

38/84

3. Method: bounded quantification

STRENGTHEN with bounded quantification

rt=0[t"=0] - A »E
Mt+1<0[th+p<0] - A »I(p)

STRENGTHEN-BQ
J0<p<l.

Mt<0[t"<0] - A » .
:] I(p) A (p=1VE)

38/84

3. Method: bounded quantification

STRENGTHEN with bounded quantification

rt=0[t"=0] - A»E
Mt+1<0[th+p<0] - A »I(p)

J0<p<l.
I(p)A(p=1VE)

STRENGTHEN-BQ
Mt<0o[th<0] - A »

Proofs + interpolants only grow linearly

Interpolants contain bounded quantifiers

Specialised versions for rounding possible [[JCAR, 2010]

Related observation in [Griggio, Le, Sebastiani, 2011]:
Mixed cuts can be interpolated concisely using integer division

38/84

Combining method 2 + 3

Observation, in practice:
QE methods often eliminate bounded quantifiers without blowup

39 /84

Combining method 2 + 3

Observation, in practice:
QE methods often eliminate bounded quantifiers without blowup

Implication A - C

Theorem prover
[]

Proof of A— C

Proof lifting Quantifier-free
(method 2) interpolant /

39/84

Combining method 2 + 3

Observation, in practice:
QE methods often eliminate bounded quantifiers without blowup

Implication A - C

Theorem prover
[]

Proof lifting Interpolant /" with
(method 3) ! bounded quantifiers

)

Proof lifting Quantifier-free Quantifier
(method 2) interpolant / ¢ elimination

Proof of A — C ===p

39/84

Ongoing work

Elimination of bounded quantifiers ...
e Often leads to very concise interpolants

e Sometimes causes blowup
(e.g., when encoding bitvector problems)

Ongoing: better integration of methods 2 + 3

e Detect in which cases bounded quantifiers are cheap to
eliminate

Also ongoing:
e Experimental comparison of methods 1+2+3,
in a model checker

40/ 84

Implementations

Implementations

Method 1: OpenSMT [LPAR, 2010]

e Simplex-based
¢ Branch-and-cut rule, avoiding mixed cuts

Method 2 + 3: Princess [IJCAR, 2010]

e Omega-based

e First interpolants with bounded quantifiers,
then quantifier elimination (Omega)

e http://www.philipp.ruemmer.org/princess.shtml

42 /84

http://www.philipp.ruemmer.org/princess.shtml

About PRINCESS

Started in 2007, slowly moving along
(name "PRINCESS” — complicated explanation)

Entirely implemented in Scala

Original motivation:

Explore combination of FOL + theory reasoning
Input logic:

QPA + uninterpreted predicates/functions

43 /84

Combination of different prover architectures

Experiment in PRINCESS:

¢ KE-tableau/DPLL FOL
e Theory procedures Arithmetic
¢ E-matching Axiomatisation of theories

¢ Free variables 4+ constraints Quantifiers

e Interesting completeness results
* Proof generation (used for interpolation)

e Some features that are rather unique

44 /84

(In)Completeness of the PRINCESS calculus

Lemma (Completeness)
Complete for fragments:

e FOL

e PA

e Purely existential formulae

e Purely universal formulae

Universal formulae with finite parametrisation

(same as ME(LIA))

Valid formulae in the full logic are not enumerable
[Halpern, 1991]

45 /84

About Scala
Java -+ functional features

e Algebraic datatypes

e Pattern matching

e Type inference

e Higher-order functions
e Monads

e Actors, concurrent datatypes

e Developed by Martin Odersky's group, EPFL
o Compilation to Java bytecode (primarily)

e Full access to Java libraries

46 /84

About Scala

Java + functional features

e Algebraic datatypes

e Pattern matching

e Type inference

e Higher-order functions

e Monads

e Actors, concurrent datatypes

e Developed by Martin Odersky's group, EPFL
o Compilation to Java bytecode (primarily)

e Full access to Java libraries

e |s Scala a language usable for solver implementations?

46 /84

Some observations and thoughts on Scala ...

Elegant APlIs possible

val ¢ = new ConstantTerm("c")
val d = new ConstantTerm("d")

val f new IFunction("f", 1, false, false)

println(isSat(c >= 12 & c*2 < 40 & f(c-d) < 100))

48 /84

Elegant APIls possible

val ¢ = new ConstantTerm("c")
val d = new ConstantTerm("d")

val f new IFunction("f", 1, false, false)

println(isSat(c >= 12 & c*2 < 40 & f(c-d) < 100))

Maybe more relevant for solver users than developers

48 /84

Deployment

e Bytecode is very convenient

e However: Scala tends to generate many many classes
E.g. in PRINCESS: before compilation ~ 350
after compilation ~ 3000

¢ ProGuard (compression tool) is useful
= Generate one jar file, including all Scala libraries

49

Performance? (disclaimer)

PRINCESS was not developed in a very performance-oriented way:

e Mostly functional (immutable) datastructures
* No native datastructures (JNI)

e Generally:
Correctness considered more important than efficiency

50 /84

Compared to other languages (Compiler shootout)

chart
compare 2 I= --- 25% median 75% ---| =|
Fortran Intel 00 .00 1.00 1.00 1.49 2.24 5.15
5 C++ GNU g++ 0o .00 1.03 1.27 1.68 2.65 4.06
C GNU gcc 0o .00 1.00 1.30 1.47 2.17 3.24
ATS

Ada 2005 GNAT
= Java 7 -server

.01 1.35 1.62 2.44 4.08 7.35
.11 1.58 1.76 2.02 2.68 5.62
24 1.81 2.18 3.22 5.33 9.79
38 2.01 2.39 2.84 4.10 5.36
10 1.10 1.64 2.64 4.34 B8.38 8.73

|

1

1

1

01 1.01 1.17 1.37 1.60 2.24 7.95

1

1

Scala 1
1

Pascal Free Pascal
= Haskell GHC

e e e = = T T R T R S O R
]
-

= C# Mono 44 144 2,26 272 546 10.26 20.52
Clean 76 176 211 3.01 415 7.21 11.17
OCaml 55 1.55 2.02 3.40 490 6.26 6.26

= Lisp SBCL .02 1.02 1.87 3.B1 4.99 9.67 10.87
F# Mono 43 143 2,53 3.97 5.62 10.24 18.28

i Rarkat 117 218 41a 474 &85 7G58A 1A K&A

51/84

JVM warm-up

Time/s

14

12

10

22 26
Repetitions

JVM warm-up (2)

Caused by:
e Dynamic class loading
e Just-in-time compilation + optimisation

This means:
e Restarting solver between queries has to be avoided

e Load solver as a library (jar-file), or

e Run as a daemon

53 /84

Evaluation on AUFLIA benchmarks

AUFLIA+p (193) AUFLIA-p (193)

Z3 191 191
Princess 145 137
CVv(C3 132 128

e Unsatisfiable AUFLIA benchmarks from SMT-comp 2011

e Intel Core i5 2-core, 3.2GHz, timeout 1200s, 4Gb
e http://www.philipp.ruemmer.org/princess.shtml

54 /84

http://www.philipp.ruemmer.org/princess.shtml

Typical PA SAT queries in a model checker (Eldarica)

Solving time Z3 (3.2)/ms

1000 +

100 +

10

100
Solving time Princess/ms

T
1000

55 /84

Profiling Scala applications

Does not work

56 /84

Synthetic interpolation benchmarks (beginning 2011)

e Evaluation on SMT-LIB QF_LIA benchmarks

e Partitionings:
First % - n benchmark conjuncts as A, rest as B
(where n is total number of conjuncts, k € {1,...,9})

® |ntel Xeon X5667 4-core, 3.07GHz, 12GB heap-space, Linux, timeout 900s.

http://www.philipp.ruemmer.org/princess.shtml

57 /84

http://www.philipp.ruemmer.org/princess.shtml

Compared tools

Princess, OpenSMT
SMTInterpol: interpolating SMT solver from Uni Freiburg

CSlsat: constraint-based interpolation for linear rational
arithmetic + unint. functions

Omega: quantifier elimination procedure

(strongest interpolants can be computed using QE)

58 /84

Experimental results

Multiplier Bitadder Mathsat Rings Convert
16 unsat 17 unsat 100 unsat 294 unsat 38 unsat
1 sat 109 sat
172 unkn.
Princess 8/1/41 7/0/63 44/13/396 130/0/209 38/82/334
136/1623 298/76953 106,/7007 233/5146 88.0/1
OpenSMT 5/1/45 7/0/63 74/15/666 9/0/81 37/0/333
48.9/2357 103/23362 53.0/2020 59.9/4611 0.08/1
SMTInterpol 5/1/45 5/0/45 65/13/585 0/0/- 37/0/333
24.4/48827 8.58/41077 45.7/126705 —/- 13.6/2
CSlsat 4/1/36 1/0/9 25/12/225 - -
106/2640 0.56,/188 70.8/12683
Omega QE —/—/125 —/-/129 —/-/612 —/—/1474 —/—/296
109/15392 97.8/93181 169/101088 227/55307 15.4/2668

F#unsat / #sat / #interpolants / average time (s) / average int. size

1000000 1000000

100000 | 100000 |

10000 10000
" «
g g
o - o .
2 1000 2 1000
c c
a a

100 100
1 - T T T T 1+ - T T T T
10 100 1000 10000 100000 1000000 10 100 1000 10000 100000 100000
OpenSMT

Experimental results: interpolant sizes

SMTinterpol

60 /84

1000000

Experimental results: interpolant sizes (2)

1000000

100000 |

10000

1000 4

Princess

100

100000 4

10000

1000

Princess

100 4

1000
CSlsat

T
10000

T
100000

100000

100 1000 10000 100000 100000

Omega quantifier elimination

61/84

Conclusions

Is Scala a language usable for solver implementations?

Pros Cons
e Deployment e Warm-up time of JVM
e Very elegant APlIs ¢ Performance penalty still
possible significant

e Convenient

62 /84

Thanks for your attention!

63/84

