Craig Interpolation for Integer Arithmetic: Results, Implementation, Experiences

Philipp Rümmer

Uppsala University

IWIL Workshop March 10th, 2012

Outline

Craig Interpolation for Presburger Arithmetic

- Motivation
- Craig's theorem
- Results and methods for integers

Implementation, Experiences

- Implementation in the theorem prover $\operatorname{Princess}$
- Experiences with Scala for solvers
- Some experimental data

Motivation: inference of invariants

Generic verification problem ("safety")

{ pre } while (*) Body { post }

How to compute ϕ automatically?

From intermediate assertions to invariants

[McMillan, 2003]

From intermediate assertions to invariants

How to compute intermediate assertions?

How to compute intermediate assertions?

Theorem (Craig, 1957)

Suppose $A \rightarrow C$ is a valid FOL implication. Then there is a formula I (an interpolant) such that

- $A \rightarrow I$ and $I \rightarrow C$ are valid,
- every non-logical symbol of I occurs in both A and C.

How to compute intermediate assertions?

Theorem (Craig, 1957)

Suppose $A \rightarrow C$ is a valid FOL implication. Then there is a formula I (an interpolant) such that

- $A \rightarrow I$ and $I \rightarrow C$ are valid,
- every non-logical symbol of I occurs in both A and C.

Illustration

Interpolation problem: $A \rightarrow I \rightarrow C$

Illustration

Interpolation problem: $A \rightarrow I \rightarrow C$

Example

Program with assertion:

```
if (a == 2*x && a >= 0) {
    b = a / 2;
    c = 3*b + 1;
    assert (c > a);
}
```

As a verification condition:

```
a = 2*x & a >= 0

->

2*b <= a & a <= 2*b + 1

->

c = 3*b + 1

->

c > a
```

Example

Program with assertion:

```
if (a == 2*x && a >= 0) {
    b = a / 2;
    c = 3*b + 1;
    assert (c > a);
}
```

As a verification condition:

Other applications of interpolation

- Blocking lemmas for test-case generation
- Refinement of abstractions in CEGAR
- Computation of summaries
- Synthesis

Interpolation + theories

Interpolation procedures need to support the program logic:

E.g., combined use of linear integer arithmetic and arrays

Relevant questions, given a logic L

- Is L closed under interpolation?
- Practical interpolation procedures for L

Definition

Logic *L* is **closed under interpolation** if for all $A, B \in F$ such that $A \Rightarrow B$, there is an interpolant expressible in *L*.

• In particular:

Is quantifier-free fragment of L closed under interpolation?

Interpolation for integers

Presburger Arithmetic (QPA)

$$t ::= \alpha \mid c \mid x \mid \alpha t + \dots + \alpha t$$

$$\phi ::= \phi \land \phi \mid \phi \lor \phi \mid \neg \phi \mid \phi \rightarrow \phi \mid \forall x.\phi \mid \exists x.\phi$$

$$\mid t \doteq 0 \mid t \le 0 \mid \alpha \mid t$$

- *t* ... terms
- ϕ \ldots formulae
- x ... variables
- c ... constant symbols
- α ... integer literals (Z)

Interpolation for integers

Presburger Arithmetic (QPA) $t ::= \alpha \mid c \mid x \mid \alpha t + \dots + \alpha t$ $\phi ::= \phi \land \phi \mid \phi \lor \phi \mid \neg \phi \mid \phi \rightarrow \phi \mid \forall x.\phi \mid \exists x.\phi$ $\mid t \doteq 0 \mid t \le 0 \mid \alpha \mid t$

Mainly considered here: the quantifier-free fragment (PA)

Interpolation by quantifier elimination (QE)

Theorem (QE for Presburger Arithmetic)

For every formula ϕ in full QPA, there is an equivalent quantifier-free formula ψ that can effectively be computed.

Interpolation by quantifier elimination (2)

Lemma

If $A \rightarrow C$ is a valid implication, then

- $\exists_{local-syms(A)}(A)$ is the strongest interpolant,
- ∀_{local-syms(C)}(C) is the weakest interpolant.

local-syms(A): symbols occurring in A, but not in C
local-syms(C): ...

Corollary

Both PA and QPA are closed under interpolation.

Interpolation vs. QE

However . . .

- QE has high computational complexity
- strongest and weakest interpolants are often not needed/desirable
 - \Rightarrow Larger interpolants, containing irrelevant information

Proof-based interpolation techniques

Abstraction with interpolants

Abstraction with interpolants

Towards practical integer interpolation procedures

- Difference logic [McMillan, 2006]
- Integer equalities + divisibility constraints [Jain, Clarke, Grumberg, 2008]
- Unit-two-variable-per-inequality [Cimatti, Griggio, Sebastiani, 2009]
- Simplex-based, full PA

[Lynch, Tang, 2008]

 \Rightarrow Leaves local symbols/quantifiers in interpolants

Towards practical interpolation procedures (2)

Proof-based methods for full PA:

- Sequent calculus-based [Brillout, Kroening, Rümmer, Wahl, 2010]
- Simplex-based, special branch-and-cut rule [Kroening, Leroux, Rümmer, 2010]
- Simplex-based, targeting SMT [Griggio, Le, Sebastiani, 2011]
- From Z3 proofs [McMillan, 2011]

Reverse interpolants

Definition

Suppose $A \land B$ is unsatisfiable.

A reverse interpolant is a formula I such that

- $A \rightarrow I$ and $B \rightarrow \neg I$ are valid,
- every non-logical symbol of I occurs in both A and B.

Consider rational case:

$$\bigwedge_{i=1}^{n} t_i \leq 0 \quad \land \quad \bigwedge_{j=1}^{m} s_j \leq 0$$

Consider rational case:
$$\bigwedge_{i=1}^{n} t_i \le 0 \land \bigwedge_{j=1}^{m} s_j \le 0$$

 A

Lemma (Witnesses)

 $A \wedge B$ is unsat over \mathbb{Q} iff there are non-negative $\{\alpha_i\}_{i=1}^n, \{\beta_j\}_{j=1}^m$ such that:

$$\sum_{i=1}^n \alpha_i t_i + \sum_{j=1}^m \beta_j s_j \quad \in \mathbb{Q}_{>0}$$

Consider rational case:
$$\bigwedge_{i=1}^{n} t_i \leq 0 \land \bigwedge_{j=1}^{m} s_j \leq 0$$

Lemma (Witnesses)

 $A \wedge B$ is unsat over \mathbb{Q} iff there are non-negative $\{\alpha_i\}_{i=1}^n, \{\beta_j\}_{j=1}^m$ such that:

n

$$\sum_{i=1}^{n} \alpha_i t_i + \sum_{j=1}^{m} \beta_j s_j \in \mathbb{Q}_{>0}$$

Then:

$$\sum_{i=1}^{n} \alpha_i t_i \le 0 \quad \text{is a reverse interpolant}$$

Why does this not work for integers?

Why does this not work for integers?

Over $\ensuremath{\mathbb{Z}}$, additional rules are needed, such as:

- Branch-and-bound (unproblematic, but incomplete)
- Cutting planes, Gomory cuts
- Cuts-from-proofs
- Omega rule
- \Rightarrow Interpolation more intricate
What makes interpolation over integers difficult? (3)

Theorem

There is a family $\{A_n \land B_n\}_n$ of PA formulae such that

- $A_n \wedge B_n$ is unsatisfiable,
- $A_n \wedge B_n$ has a cutting plane proof of size independent of n,
- all reverse interpolants have size at least linear in n.

(for the definition of PA shown earlier)

What makes interpolation over integers difficult? (4)

Example:

$$A_n = -n < y + 2nx \land y + 2nx \le 0$$

$$B_n = 0 < y + 2nz \land y + 2nz \le n$$

All reverse interpolants for $A_n \wedge B_n$ are equivalent to:

$$I_n = (2n \mid y) \lor (2n \mid y+1) \lor (2n \mid y+2) \lor \cdots \lor (2n \mid y+n-1)$$

What makes interpolation over integers difficult? (4)

Example:

$$A_n = -n < y + 2nx \land y + 2nx \le 0$$

$$B_n = 0 < y + 2nz \land y + 2nz \le n$$

All reverse interpolants for $A_n \wedge B_n$ are equivalent to:

$$I_n = (2n \mid y) \lor (2n \mid y+1) \lor (2n \mid y+2) \lor \cdots \lor (2n \mid y+n-1)$$

Problematic: mixed cuts

Three main approaches to handle mixed cuts

- Fully expanded interpolants
- Restricted/taylor-made cut rule
- Extended interpolant language

Next:

 $Comparison + unifying \ description$

Interpolation outline

Interpolation outline

Main non-interpolating proof rules

Closure rule (
$$\alpha > 0$$
)

$$\frac{*}{\Gamma, \alpha \leq \mathbf{0} \ \vdash \ \Delta} \ \mathrm{CLOSE-INEQ'}$$

Linear combination of inequalities $(\alpha > 0, \beta > 0)$

$$\frac{\Gamma, \ \dots, \alpha s + \beta t \leq 0 \vdash \Delta}{\Gamma, \ s \leq 0, \ t \leq 0 \vdash \Delta}$$
FM-ELIM

Example of non-interpolating proof

Interpolation outline

Interpolation problem: $A \rightarrow I \rightarrow C$

$$\frac{\Gamma_3 \vdash \Delta_3}{\Gamma_2 \vdash \Delta_2} \\
\frac{\Gamma_1 \vdash \Delta_1}{\Gamma_1 \vdash C}$$

Interpolation problem: $A \rightarrow I \rightarrow C$

annotation of
formulae with labels
$$\uparrow \qquad \begin{array}{c} \vdots\\ \Gamma_3 \vdash \Delta_3\\ \hline{\Gamma_2 \vdash \Delta_2}\\ \Gamma_1 \vdash \Delta_1\\ \vdots\\ A \vdash C \end{array}$$

Interpolation problem: $A \rightarrow I \rightarrow C$

annotation of
formulae with labels
$$\uparrow \qquad \begin{array}{c} \overset{*}{\underset{\scriptstyle \stackrel{\scriptstyle i}{\underset{\scriptstyle \\}}}{}} \\ \frac{\Gamma_3 \vdash \Delta_3}{\Gamma_2 \vdash \Delta_2} \\ \overline{\Gamma_1 \vdash \Delta_1} \\ \vdots \\ A^* \vdash C^* \end{array}$$

Interpolation problem: $A \rightarrow I \rightarrow C$

Interpolation problem: $A \rightarrow I \rightarrow C$

Interpolation problem: $A \rightarrow I \rightarrow C$

annotation of
formulae with labels
$$\uparrow \qquad \begin{array}{c} \sum_{i=1}^{*} & \sum_{i=1}^{*} \\ \frac{\Gamma_{3}^{*} & \vdash & \Delta_{3}^{*}}{\Gamma_{2}^{*} & \vdash & \Delta_{2}^{*}} \\ \frac{\Gamma_{2}^{*} & \vdash & \Delta_{2}^{*}}{\Gamma_{1}^{*} & \vdash & \Delta_{1}^{*}} \\ \vdots \\ A^{*} & \vdash & C^{*} \end{array}$$

Interpolation problem: $A \rightarrow I \rightarrow C$

Interpolation problem: $A \rightarrow I \rightarrow C$

Labelled formulae

Interpolation problem: $A \rightarrow I \rightarrow C$

Labelled formula	Intuition
$\phi \left[\phi^{\mathcal{A}} ight]$	" ϕ^A is A-contribution to ϕ " ϕ^A is the <i>partial interpolant</i> of ϕ

Interpolating rules

Interpolation problem: $A \rightarrow I \rightarrow C$

Initialisation rule: $t \le 0$ comes from C

$$\frac{\Gamma, t \leq 0 \left[0 \leq 0 \right] \vdash \Delta \blacktriangleright I}{\Gamma, t \leq 0 \vdash \Delta \vdash I} \text{ IPI-LEFT-R}$$

• Similarly for equations, etc.

Interpolating rules

Closure rule (
$$\alpha > 0$$
)

$$\frac{*}{\Gamma, \alpha \leq 0 [t^{A} \leq 0] \vdash \Delta \bullet t^{A} \leq 0}$$
 CLOSE-INEQ

Linear combination of inequalities $(\alpha > 0, \beta > 0)$

 $\frac{\Gamma, \dots, \alpha s + \beta t \leq 0 \left[\alpha s^{A} + \beta t^{A} \leq 0\right] \vdash \Delta \triangleright I}{\Gamma, s \leq 0 \left[s^{A} \leq 0\right], t \leq 0 \left[t^{A} \leq 0\right] \vdash \Delta \triangleright I}$ FM-ELIM

How to interpolate STRENGTHEN'?

$$\frac{\Gamma, t \doteq 0 \vdash \Delta \qquad \Gamma, t + 1 \le 0 \vdash \Delta}{\Gamma, t \le 0 \vdash \Delta} \text{ strengthen}'$$

Three sound & complete ways ...

1. Method: only do pure strengthening

Pure STRENGTHEN

$$\begin{split} & \Gamma, t \doteq 0 \left[t \doteq 0 \right] \vdash \Delta \checkmark I \\ & \Gamma, t + 1 \leq 0 \left[t + 1 \leq 0 \right] \vdash \Delta \checkmark J \\ \hline & \Gamma, t \leq 0 \left[t \leq 0 \right] \vdash \Delta \checkmark I \lor J \\ \hline & \Gamma, t \leq 0 \left[0 \doteq 0 \right] \vdash \Delta \checkmark I \\ \hline & \Gamma, t \pm 0 \left[0 \leq 0 \right] \vdash \Delta \checkmark J \\ \hline & \Gamma, t \pm 0 \left[0 \leq 0 \right] \vdash \Delta \checkmark J \\ \hline & \Gamma, t \leq 0 \left[0 \leq 0 \right] \vdash \Delta \checkmark I \land J \\ \hline & \Gamma, t \leq 0 \left[0 \leq 0 \right] \vdash \Delta \checkmark I \land J \\ \end{split}$$

1. Method: only do pure strengthening

Pure STRENGTHEN

$$\begin{split} & \Gamma, t \doteq 0 \left[t \doteq 0 \right] \vdash \Delta \checkmark I \\ & \Gamma, t + 1 \leq 0 \left[t + 1 \leq 0 \right] \vdash \Delta \checkmark J \\ \hline & \Gamma, t \leq 0 \left[t \leq 0 \right] \vdash \Delta \checkmark I \lor J \\ \hline & \Gamma, t \leq 0 \left[0 \doteq 0 \right] \vdash \Delta \checkmark I \\ \hline & \Gamma, t \pm 0 \left[0 \leq 0 \right] \vdash \Delta \checkmark J \\ \hline & \Gamma, t \pm 0 \left[0 \leq 0 \right] \vdash \Delta \checkmark J \\ \hline & \Gamma, t \leq 0 \left[0 \leq 0 \right] \vdash \Delta \checkmark I \land J \end{split}$$
STRENGTHEN-R

- Resembles Omega test
- · Can lead to large proofs, but interpolants of linear size
- Integration with Simplex in [LPAR, 2010]
 ⇒ Special branch-and-cut rule

Interpolating proof for previous example

Original proof

$$\frac{\begin{matrix} * \\ \dots, 3 \leq 0 \\ \hline \dots, 3 \leq 0 \\ \hline \dots, 3x \leq 0, -2x + 1 \leq 0 \\ \hline \end{matrix}$$
FM-ELIM' \dots
$$\frac{ \dots, 3x - 2 \leq 0, -2x + 1 \leq 0 \\ \hline \end{matrix}$$
STRENGTHEN' × 2
$$\frac{ \text{FM-ELIM'}}{ a + x \leq 0, -a + 2x - 2 \leq 0, -2x + 1 \leq 0 \\ \vdash \end{array}$$
FM-ELIM'

2. Method: allow mixed strengthening

General, mixed STRENGTHEN ("mixed cuts")

$$\begin{split} & \Gamma, t \doteq 0 \left[t^{A} \doteq 0 \right] \vdash \Delta \blacktriangleright E \\ & \Gamma, t + 1 \leq 0 \left[t^{A} \leq 0 \right] \vdash \Delta \checkmark I^{0} \\ & \frac{\Gamma, t + 1 \leq 0 \left[t^{A} + 1 \leq 0 \right] \vdash \Delta \checkmark I^{1} }{\Gamma, t \leq 0 \left[t^{A} \leq 0 \right] \vdash \Delta \checkmark I^{1} \lor (E \land I^{0})} \text{ STRENGTHEN} \end{split}$$

2. Method: allow mixed strengthening

General, mixed STRENGTHEN ("mixed cuts")

$$\begin{array}{l} \Gamma, t \doteq 0 \left[t^{A} \doteq 0 \right] \vdash \Delta \blacktriangleright E \\ \Gamma, t + 1 \leq 0 \left[t^{A} \leq 0 \right] \vdash \Delta \checkmark l^{0} \\ \hline \Gamma, t + 1 \leq 0 \left[t^{A} + 1 \leq 0 \right] \vdash \Delta \checkmark l^{1} \\ \hline \Gamma, t \leq 0 \left[t^{A} \leq 0 \right] \vdash \Delta \checkmark l^{1} \lor \left(E \land l^{0} \right) \end{array} \text{ STRENGTHEN}$$

- Covers Omega test, Gomory cuts, etc.
- Interpolants can be exponentially larger than (non-interpolating) proofs
- Sometimes observed in practice: Proof can be constructed, but proof lifting times out

$$\begin{split} & \left[\Gamma, t \doteq 0 \left[t^{A} \doteq 0 \right] \vdash \Delta \models E \\ & \left[\Gamma, t + 1 \le 0 \left[t^{A} \le 0 \right] \vdash \Delta \models l^{0} \right] \\ & \left[\Gamma, t + 1 \le 0 \left[t^{A} + 1 \le 0 \right] \vdash \Delta \models l^{1} \right] \\ & \left[\Gamma, t \le 0 \left[t^{A} \le 0 \right] \vdash \Delta \models l^{1} \lor (E \land l^{0}) \right] \end{split}$$
 STRENGTHEN

$$\begin{split} & \left[\Gamma, t \doteq 0 \left[t^{A} \doteq 0 \right] \vdash \Delta \models E \\ & \left[\Gamma, t + 1 \le 0 \left[t^{A} \le 0 \right] \vdash \Delta \models I^{0} \right] \\ & \left[\Gamma, t + 1 \le 0 \left[t^{A} + 1 \le 0 \right] \vdash \Delta \models I^{1} \right] \\ & \left[\Gamma, t \le 0 \left[t^{A} \le 0 \right] \vdash \Delta \models I^{1} \lor (E \land I^{0}) \right] \end{split} \text{ STRENGTHEN}$$

$$\begin{split} & \Gamma, t \doteq 0 \left[t^{A} \doteq 0 \right] \vdash \Delta \blacktriangleright E \\ & \Gamma, t + 1 \le 0 \left[t^{A} + p \le 0 \right] \vdash \Delta \checkmark I(p) \\ & \overline{\Gamma, t \le 0 \left[t^{A} \le 0 \right] \vdash \Delta \checkmark I(1) \lor (E \land I(0))} \end{split} \text{ STRENGTHEN}$$

$$\frac{\Gamma, t \doteq 0 [t^{A} \doteq 0] \vdash \Delta \bullet E}{\Gamma, t + 1 \le 0 [t^{A} + p \le 0] \vdash \Delta \bullet I(p)}$$

$$\frac{\Gamma, t \le 0 [t^{A} \le 0] \vdash \Delta \bullet \frac{\exists 0 \le p \le 1.}{I(p) \land (p \doteq 1 \lor E)}$$
STRENGTHEN-BQ

$$\begin{split} & \Gamma, t \doteq 0 \left[t^{A} \doteq 0 \right] \vdash \Delta \blacktriangleright E \\ & \Gamma, t + 1 \leq 0 \left[t^{A} + p \leq 0 \right] \vdash \Delta \checkmark I(p) \\ \hline & \Gamma, t \leq 0 \left[t^{A} \leq 0 \right] \vdash \Delta \checkmark \boxed{\exists \ 0 \leq p \leq 1.} \\ & I(p) \land (p \doteq 1 \lor E) \end{split}$$
 STRENGTHEN-BQ

- Proofs + interpolants only grow linearly
- Interpolants contain bounded quantifiers
- Specialised versions for rounding possible [IJCAR, 2010]
- Related observation in [Griggio, Le, Sebastiani, 2011]: Mixed cuts can be interpolated concisely using integer division

Combining method 2 + 3

Observation, in practice:

QE methods often eliminate bounded quantifiers without blowup
Combining method 2 + 3

Observation, in practice:

QE methods often eliminate bounded quantifiers without blowup

Combining method 2 + 3

Observation, in practice:

QE methods often eliminate bounded quantifiers without blowup

Ongoing work

Elimination of bounded quantifiers ...

- Often leads to very concise interpolants
- Sometimes causes blowup

(e.g., when encoding bitvector problems)

Ongoing: better integration of methods 2 + 3

• Detect in which cases bounded quantifiers are cheap to eliminate

Also ongoing:

• Experimental comparison of methods 1+2+3, in a model checker

Implementations

Implementations

Method 1: OpenSMT [LPAR, 2010]

- Simplex-based
- Branch-and-cut rule, avoiding mixed cuts

Method 2 + 3: Princess [IJCAR, 2010]

- Omega-based
- First interpolants with bounded quantifiers, then quantifier elimination (Omega)
- http://www.philipp.ruemmer.org/princess.shtml

About **PRINCESS**

- Started in 2007, slowly moving along (name "PRINCESS" → complicated explanation)
- Entirely implemented in Scala
- Original motivation: Explore combination of FOL + theory reasoning
- Input logic:

 $\mathsf{QPA} + \mathsf{uninterpreted} \ \mathsf{predicates} / \mathsf{functions}$

Combination of different prover architectures

Experiment in **PRINCESS**:

- KE-tableau/DPLL
- Theory procedures
- E-matching
- Free variables + constraints

FOL Arithmetic Axiomatisation of theories Quantifiers

- Interesting completeness results
- Proof generation (used for interpolation)
- Some features that are rather unique

(In)Completeness of the $\operatorname{Princess}$ calculus

Lemma (Completeness)

Complete for fragments:

- FOL
- PA
- Purely existential formulae
- Purely universal formulae
- Universal formulae with finite parametrisation (same as ME(LIA))
- Valid formulae in the full logic are not enumerable [Halpern, 1991]

About Scala

Java + functional features

- Algebraic datatypes
- Pattern matching
- Type inference
- Higher-order functions
- Monads
- Actors, concurrent datatypes
- Developed by Martin Odersky's group, EPFL
- Compilation to Java bytecode (primarily)
- Full access to Java libraries

About Scala

Java + functional features

- Algebraic datatypes
- Pattern matching
- Type inference
- Higher-order functions
- Monads
- Actors, concurrent datatypes
- Developed by Martin Odersky's group, EPFL
- Compilation to Java bytecode (primarily)
- Full access to Java libraries
- Is Scala a language usable for solver implementations?

Some observations and thoughts on Scala

Elegant APIs possible

val c = new ConstantTerm("c")
val d = new ConstantTerm("d")
val f = new IFunction("f", 1, false, false)
println(isSat(c >= 12 & c*2 < 40 & f(c-d) < 100))</pre>

Elegant APIs possible

val c = new ConstantTerm("c") val d = new ConstantTerm("d") val f = new IFunction("f", 1, false, false) println(isSat(c >= 12 & c*2 < 40 & f(c-d) < 100))</pre>

Maybe more relevant for solver users than developers

Deployment

- Bytecode is very convenient
- However: Scala tends to generate many many classes E.g. in PRINCESS: before compilation ≈ 350 after compilation ≈ 3000
- ProGuard (compression tool) is useful
 ⇒ Generate one jar file, including all Scala libraries

Performance? (disclaimer)

 $\ensuremath{\operatorname{PRINCESS}}$ was not developed in a very performance-oriented way:

- Mostly functional (immutable) datastructures
- No native datastructures (JNI)
- Generally:

Correctness considered more important than efficiency

Compared to other languages (Compiler shootout)

							chart
compare 2	-		25%	median	75%		-
Fortran Intel	1.00	1.00	1.00	1.00	1.49	2.24	5.15
C++ GNU g++	1.00	1.00	1.03	1.27	1.68	2.65	4.06
C GNU gcc	1.00	1.00	1.00	1.30	1.47	2.17	3.24
ATS	1.01	1.01	1.17	1.37	1.60	2.24	7.95
Ada 2005 GNAT	1.01	1.01	1.35	1.62	2.44	4.08	7.55
Java 7 -server	1.11	1.11	1.58	1.76	2.02	2.68	5.62
Scala	1.24	1.24	1.81	2.18	3.22	5.33	9.79
Pascal Free Pascal	1.38	1.38	2.01	2.39	2.84	4.10	5.36
Haskell GHC	1.10	1.10	1.64	2.64	4.34	8.38	8.73
C# Mono	1.44	1.44	2.26	2.72	5.46	10.26	20.52
Clean	1.76	1.76	2.11	3.01	4.15	7.21	11.17
OCami	1.55	1.55	2.02	3.40	4.90	6.26	6.26
Lisp SBCL	1.02	1.02	1.87	3.81	4.99	9.67	10.87
F# Mono	1.43	1.43	2.53	3.97	5.62	10.24	18.28
Racket	1 17	2 16	4 1 9	4.79	5 55	7 58	18 58

JVM warm-up

JVM warm-up (2)

Caused by:

- Dynamic class loading
- Just-in-time compilation + optimisation

This means:

- Restarting solver between queries has to be avoided
- Load solver as a library (jar-file), or
- Run as a daemon

Evaluation on AUFLIA benchmarks

	AUFLIA+p (193)	AUFLIA-p (193)
Z3	191	191
Princess	145	137
CVC3	132	128

- Unsatisfiable AUFLIA benchmarks from SMT-comp 2011
- Intel Core i5 2-core, 3.2GHz, timeout 1200s, 4Gb
- http://www.philipp.ruemmer.org/princess.shtml

Typical PA SAT queries in a model checker (Eldarica)

Profiling Scala applications

Does not work

Synthetic interpolation benchmarks (beginning 2011)

- Evaluation on SMT-LIB QF_LIA benchmarks
- Partitionings: First k/10 · n benchmark conjuncts as A, rest as B (where n is total number of conjuncts, k ∈ {1,...,9})
- Intel Xeon X5667 4-core, 3.07GHz, 12GB heap-space, Linux, timeout 900s.

http://www.philipp.ruemmer.org/princess.shtml

Compared tools

- Princess, OpenSMT
- SMTInterpol: interpolating SMT solver from Uni Freiburg
- CSIsat: constraint-based interpolation for linear rational arithmetic + unint. functions
- Omega: quantifier elimination procedure (strongest interpolants can be computed using QE)

Experimental results

	Multiplier	Bitadder	Mathsat	Rings	Convert		
	16 unsat		100 unsat	294 unsat	38 unsat		
	1 sat				109 sat		
					172 unkn.		
Princess	8/1/41	7 /0/ 63	44/13/396 130/0/209 38/		38/82/334		
	136/ 1623	298/76953	106/7007	233/5146	88.0/ 1		
OpenSMT	5/1/ 45	7 /0/ 63	74/15/666	9/0/81	37/0/333		
	48.9/2357	103/ 23362	53.0/ 2020	59.9/4611	0.08/1		
SMTInterpol	5/1/ 45	5/0/45	65/13/585	0/0/-	37/0/333		
	24.4 /48827	8.58 /41077	45.7 /126705	-/- 13.6/2			
CSIsat	4/1/36	1/0/9	25/12/225				
	106/2640	0.56/188	70.8/12683	_			
Omega QE	-/-/125	-/-/129	-/-/612	-/-/1474	-/-/296		
	109/15392	97.8/93181	169/101088	227/55307	15.4/2668		
	#unsat / #sat / #interpolants / average time (s) / average int. size						

Experimental results: interpolant sizes

Experimental results: interpolant sizes (2)

Conclusions

Is Scala a language usable for solver implementations?

Pros

- Deployment
- Very elegant APIs possible
- Convenient

Cons

- Warm-up time of JVM
- Performance penalty still significant

Thanks for your attention!